src/HOL/simpdata.ML
author nipkow
Tue Apr 08 10:48:42 1997 +0200 (1997-04-08)
changeset 2919 953a47dc0519
parent 2805 6e5b2d6503eb
child 2935 998cb95fdd43
permissions -rw-r--r--
Dep. on Provers/nat_transitive
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Instantiation of the generic simplifier
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
clasohm@923
    11
open Simplifier;
clasohm@923
    12
paulson@1984
    13
(*** Addition of rules to simpsets and clasets simultaneously ***)
paulson@1984
    14
paulson@1984
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to 
paulson@2031
    16
        the Safe Intr     rule B==>A and 
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
paulson@1984
    23
  fun addIff th = 
paulson@1984
    24
      (case HOLogic.dest_Trueprop (#prop(rep_thm th)) of
paulson@2718
    25
                (Const("Not",_) $ A) =>
paulson@2031
    26
                    AddSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
paulson@2031
    28
                    if con=iff_const
paulson@2031
    29
                    then (AddSIs [zero_var_indexes (th RS iffD2)];  
paulson@2031
    30
                          AddSDs [zero_var_indexes (th RS iffD1)])
paulson@2031
    31
                    else  AddSIs [th]
paulson@2031
    32
              | _ => AddSIs [th];
paulson@1984
    33
       Addsimps [th])
paulson@1984
    34
      handle _ => error ("AddIffs: theorem must be unconditional\n" ^ 
paulson@2031
    35
                         string_of_thm th)
paulson@1984
    36
paulson@1984
    37
  fun delIff th = 
paulson@1984
    38
      (case HOLogic.dest_Trueprop (#prop(rep_thm th)) of
paulson@2718
    39
                (Const("Not",_) $ A) =>
paulson@2031
    40
                    Delrules [zero_var_indexes (th RS notE)]
paulson@2031
    41
              | (con $ _ $ _) =>
paulson@2031
    42
                    if con=iff_const
paulson@2031
    43
                    then Delrules [zero_var_indexes (th RS iffD2),
paulson@2031
    44
                                   zero_var_indexes (th RS iffD1)]
paulson@2031
    45
                    else Delrules [th]
paulson@2031
    46
              | _ => Delrules [th];
paulson@1984
    47
       Delsimps [th])
paulson@1984
    48
      handle _ => warning("DelIffs: ignoring conditional theorem\n" ^ 
paulson@2031
    49
                          string_of_thm th)
paulson@1984
    50
in
paulson@1984
    51
val AddIffs = seq addIff
paulson@1984
    52
val DelIffs = seq delIff
paulson@1984
    53
end;
paulson@1984
    54
paulson@1984
    55
clasohm@923
    56
local
clasohm@923
    57
paulson@1922
    58
  fun prover s = prove_goal HOL.thy s (fn _ => [fast_tac HOL_cs 1]);
clasohm@923
    59
paulson@1922
    60
  val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
paulson@1922
    61
  val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
clasohm@923
    62
paulson@1922
    63
  val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
paulson@1922
    64
  val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;
clasohm@923
    65
paulson@1922
    66
  fun atomize pairs =
paulson@1922
    67
    let fun atoms th =
paulson@2031
    68
          (case concl_of th of
paulson@2031
    69
             Const("Trueprop",_) $ p =>
paulson@2031
    70
               (case head_of p of
paulson@2031
    71
                  Const(a,_) =>
paulson@2031
    72
                    (case assoc(pairs,a) of
paulson@2031
    73
                       Some(rls) => flat (map atoms ([th] RL rls))
paulson@2031
    74
                     | None => [th])
paulson@2031
    75
                | _ => [th])
paulson@2031
    76
           | _ => [th])
paulson@1922
    77
    in atoms end;
clasohm@923
    78
nipkow@2134
    79
  fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
nipkow@2134
    80
nipkow@2134
    81
in
nipkow@2134
    82
paulson@1922
    83
  fun mk_meta_eq r = case concl_of r of
paulson@2031
    84
          Const("==",_)$_$_ => r
paulson@1922
    85
      |   _$(Const("op =",_)$_$_) => r RS eq_reflection
paulson@2718
    86
      |   _$(Const("Not",_)$_) => r RS not_P_imp_P_eq_False
paulson@1922
    87
      |   _ => r RS P_imp_P_eq_True;
paulson@1922
    88
  (* last 2 lines requires all formulae to be of the from Trueprop(.) *)
clasohm@923
    89
paulson@2082
    90
val simp_thms = map prover
paulson@2082
    91
 [ "(x=x) = True",
paulson@2082
    92
   "(~True) = False", "(~False) = True", "(~ ~ P) = P",
paulson@2082
    93
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
paulson@2082
    94
   "(True=P) = P", "(P=True) = P",
paulson@2082
    95
   "(True --> P) = P", "(False --> P) = True", 
paulson@2082
    96
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
    97
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
paulson@2082
    98
   "(P & True) = P", "(True & P) = P", 
nipkow@2800
    99
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   100
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@2082
   101
   "(P | True) = True", "(True | P) = True", 
nipkow@2800
   102
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   103
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@2082
   104
   "((~P) = (~Q)) = (P=Q)",
nipkow@2129
   105
   "(!x.P) = P", "(? x.P) = P", "? x. x=t", "? x. t=x", 
paulson@2082
   106
   "(? x. x=t & P(x)) = P(t)", "(? x. t=x & P(x)) = P(t)", 
paulson@2082
   107
   "(! x. x=t --> P(x)) = P(t)", "(! x. t=x --> P(x)) = P(t)" ];
clasohm@923
   108
lcp@988
   109
(*Add congruence rules for = (instead of ==) *)
oheimb@2636
   110
infix 4 addcongs delcongs;
clasohm@923
   111
fun ss addcongs congs = ss addeqcongs (congs RL [eq_reflection]);
oheimb@2636
   112
fun ss delcongs congs = ss deleqcongs (congs RL [eq_reflection]);
clasohm@923
   113
clasohm@1264
   114
fun Addcongs congs = (simpset := !simpset addcongs congs);
oheimb@2636
   115
fun Delcongs congs = (simpset := !simpset delcongs congs);
clasohm@1264
   116
clasohm@923
   117
fun mksimps pairs = map mk_meta_eq o atomize pairs o gen_all;
clasohm@923
   118
paulson@1922
   119
val imp_cong = impI RSN
paulson@1922
   120
    (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@1922
   121
        (fn _=> [fast_tac HOL_cs 1]) RS mp RS mp);
paulson@1922
   122
paulson@1948
   123
(*Miniscoping: pushing in existential quantifiers*)
paulson@1948
   124
val ex_simps = map prover 
paulson@2031
   125
                ["(EX x. P x & Q)   = ((EX x.P x) & Q)",
paulson@2031
   126
                 "(EX x. P & Q x)   = (P & (EX x.Q x))",
paulson@2031
   127
                 "(EX x. P x | Q)   = ((EX x.P x) | Q)",
paulson@2031
   128
                 "(EX x. P | Q x)   = (P | (EX x.Q x))",
paulson@2031
   129
                 "(EX x. P x --> Q) = ((ALL x.P x) --> Q)",
paulson@2031
   130
                 "(EX x. P --> Q x) = (P --> (EX x.Q x))"];
paulson@1948
   131
paulson@1948
   132
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   133
val all_simps = map prover
paulson@2031
   134
                ["(ALL x. P x & Q)   = ((ALL x.P x) & Q)",
paulson@2031
   135
                 "(ALL x. P & Q x)   = (P & (ALL x.Q x))",
paulson@2031
   136
                 "(ALL x. P x | Q)   = ((ALL x.P x) | Q)",
paulson@2031
   137
                 "(ALL x. P | Q x)   = (P | (ALL x.Q x))",
paulson@2031
   138
                 "(ALL x. P x --> Q) = ((EX x.P x) --> Q)",
paulson@2031
   139
                 "(ALL x. P --> Q x) = (P --> (ALL x.Q x))"];
paulson@1948
   140
berghofe@1722
   141
clasohm@923
   142
paulson@2022
   143
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   144
clasohm@923
   145
val ex_all_equiv =
clasohm@923
   146
  let val lemma1 = prove_goal HOL.thy
clasohm@923
   147
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   148
        (fn prems => [resolve_tac prems 1, etac exI 1]);
clasohm@923
   149
      val lemma2 = prove_goalw HOL.thy [Ex_def]
clasohm@923
   150
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
clasohm@923
   151
        (fn prems => [REPEAT(resolve_tac prems 1)])
clasohm@923
   152
  in equal_intr lemma1 lemma2 end;
clasohm@923
   153
clasohm@923
   154
end;
clasohm@923
   155
clasohm@923
   156
fun prove nm thm  = qed_goal nm HOL.thy thm (fn _ => [fast_tac HOL_cs 1]);
clasohm@923
   157
clasohm@923
   158
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   159
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   160
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   161
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   162
paulson@1922
   163
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   164
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   165
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   166
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   167
clasohm@923
   168
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   169
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   170
paulson@1892
   171
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   172
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   173
nipkow@2134
   174
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   175
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   176
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   177
nipkow@1485
   178
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   179
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@1922
   180
prove "not_iff" "(P~=Q) = (P = (~Q))";
nipkow@1485
   181
nipkow@2134
   182
(*Avoids duplication of subgoals after expand_if, when the true and false 
nipkow@2134
   183
  cases boil down to the same thing.*) 
nipkow@2134
   184
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   185
oheimb@1660
   186
prove "not_all" "(~ (! x.P(x))) = (? x.~P(x))";
paulson@1922
   187
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
oheimb@1660
   188
prove "not_ex"  "(~ (? x.P(x))) = (! x.~P(x))";
paulson@1922
   189
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   190
nipkow@1655
   191
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   192
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   193
nipkow@2134
   194
(* '&' congruence rule: not included by default!
nipkow@2134
   195
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   196
nipkow@2134
   197
let val th = prove_goal HOL.thy 
nipkow@2134
   198
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
nipkow@2134
   199
                (fn _=> [fast_tac HOL_cs 1])
nipkow@2134
   200
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   201
nipkow@2134
   202
let val th = prove_goal HOL.thy 
nipkow@2134
   203
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
nipkow@2134
   204
                (fn _=> [fast_tac HOL_cs 1])
nipkow@2134
   205
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   206
nipkow@2134
   207
(* '|' congruence rule: not included by default! *)
nipkow@2134
   208
nipkow@2134
   209
let val th = prove_goal HOL.thy 
nipkow@2134
   210
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
nipkow@2134
   211
                (fn _=> [fast_tac HOL_cs 1])
nipkow@2134
   212
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   213
nipkow@2134
   214
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   215
nipkow@2134
   216
qed_goalw "o_apply" HOL.thy [o_def] "(f o g) x = f (g x)"
nipkow@2134
   217
 (fn _ => [rtac refl 1]);
nipkow@2134
   218
nipkow@2134
   219
qed_goal "meta_eq_to_obj_eq" HOL.thy "x==y ==> x=y"
nipkow@2134
   220
  (fn [prem] => [rewtac prem, rtac refl 1]);
nipkow@2134
   221
nipkow@2134
   222
qed_goalw "if_True" HOL.thy [if_def] "(if True then x else y) = x"
nipkow@2134
   223
 (fn _=>[fast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   224
nipkow@2134
   225
qed_goalw "if_False" HOL.thy [if_def] "(if False then x else y) = y"
nipkow@2134
   226
 (fn _=>[fast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   227
nipkow@2134
   228
qed_goal "if_P" HOL.thy "P ==> (if P then x else y) = x"
nipkow@2134
   229
 (fn [prem] => [ stac (prem RS eqTrueI) 1, rtac if_True 1 ]);
nipkow@2134
   230
(*
nipkow@2134
   231
qed_goal "if_not_P" HOL.thy "~P ==> (if P then x else y) = y"
nipkow@2134
   232
 (fn [prem] => [ stac (prem RS not_P_imp_P_iff_F) 1, rtac if_False 1 ]);
nipkow@2134
   233
*)
nipkow@2134
   234
qed_goalw "if_not_P" HOL.thy [if_def] "!!P. ~P ==> (if P then x else y) = y"
nipkow@2134
   235
 (fn _ => [fast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   236
nipkow@2134
   237
qed_goal "expand_if" HOL.thy
nipkow@2134
   238
    "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
nipkow@2134
   239
 (fn _=> [ (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1),
nipkow@2134
   240
         stac if_P 2,
nipkow@2134
   241
         stac if_not_P 1,
nipkow@2134
   242
         REPEAT(fast_tac HOL_cs 1) ]);
nipkow@2134
   243
nipkow@2134
   244
qed_goal "if_bool_eq" HOL.thy
nipkow@2134
   245
                   "(if P then Q else R) = ((P-->Q) & (~P-->R))"
nipkow@2134
   246
                   (fn _ => [rtac expand_if 1]);
nipkow@2134
   247
oheimb@2263
   248
local val mktac = mk_case_split_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   249
in
oheimb@2263
   250
fun split_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   251
end;
oheimb@2263
   252
oheimb@2263
   253
local val mktac = mk_case_split_inside_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   254
in
oheimb@2263
   255
fun split_inside_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   256
end;
oheimb@2263
   257
oheimb@2263
   258
oheimb@2251
   259
qed_goal "if_cancel" HOL.thy "(if c then x else x) = x"
oheimb@2251
   260
  (fn _ => [split_tac [expand_if] 1, fast_tac HOL_cs 1]);
oheimb@2251
   261
nipkow@2134
   262
(** 'if' congruence rules: neither included by default! *)
nipkow@2134
   263
nipkow@2134
   264
(*Simplifies x assuming c and y assuming ~c*)
nipkow@2134
   265
qed_goal "if_cong" HOL.thy
nipkow@2134
   266
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
nipkow@2134
   267
\  (if b then x else y) = (if c then u else v)"
nipkow@2134
   268
  (fn rew::prems =>
nipkow@2134
   269
   [stac rew 1, stac expand_if 1, stac expand_if 1,
nipkow@2134
   270
    fast_tac (HOL_cs addDs prems) 1]);
nipkow@2134
   271
nipkow@2134
   272
(*Prevents simplification of x and y: much faster*)
nipkow@2134
   273
qed_goal "if_weak_cong" HOL.thy
nipkow@2134
   274
  "b=c ==> (if b then x else y) = (if c then x else y)"
nipkow@2134
   275
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   276
nipkow@2134
   277
(*Prevents simplification of t: much faster*)
nipkow@2134
   278
qed_goal "let_weak_cong" HOL.thy
nipkow@2134
   279
  "a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
nipkow@2134
   280
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   281
nipkow@2134
   282
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   283
  might cause exponential blow-up.  But imp_disjL has been in for a while
nipkow@2134
   284
  and cannot be removed without affecting existing proofs.  Moreover, 
nipkow@2134
   285
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   286
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   287
nipkow@2134
   288
val mksimps_pairs =
nipkow@2134
   289
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   290
   ("All", [spec]), ("True", []), ("False", []),
nipkow@2134
   291
   ("If", [if_bool_eq RS iffD1])];
nipkow@1758
   292
oheimb@2636
   293
fun unsafe_solver prems = FIRST'[resolve_tac (TrueI::refl::prems),
oheimb@2636
   294
				 atac, etac FalseE];
oheimb@2636
   295
(*No premature instantiation of variables during simplification*)
oheimb@2636
   296
fun   safe_solver prems = FIRST'[match_tac (TrueI::refl::prems),
oheimb@2636
   297
				 eq_assume_tac, ematch_tac [FalseE]];
oheimb@2443
   298
oheimb@2636
   299
val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
oheimb@2636
   300
			    setSSolver   safe_solver
oheimb@2636
   301
			    setSolver  unsafe_solver
oheimb@2636
   302
			    setmksimps (mksimps mksimps_pairs);
oheimb@2443
   303
oheimb@2636
   304
val HOL_ss = HOL_basic_ss addsimps ([triv_forall_equality, (* prunes params *)
oheimb@2636
   305
				     if_True, if_False, if_cancel,
oheimb@2636
   306
				     o_apply, imp_disjL, conj_assoc, disj_assoc,
oheimb@2636
   307
				     de_Morgan_conj, de_Morgan_disj, 
oheimb@2636
   308
				     not_all, not_ex, cases_simp]
oheimb@2636
   309
				    @ ex_simps @ all_simps @ simp_thms)
oheimb@2636
   310
			  addcongs [imp_cong];
paulson@2082
   311
nipkow@1655
   312
qed_goal "if_distrib" HOL.thy
nipkow@1655
   313
  "f(if c then x else y) = (if c then f x else f y)" 
nipkow@1655
   314
  (fn _ => [simp_tac (HOL_ss setloop (split_tac [expand_if])) 1]);
nipkow@1655
   315
oheimb@2097
   316
qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = f o g o h"
oheimb@2098
   317
  (fn _ => [rtac ext 1, rtac refl 1]);
paulson@1984
   318
paulson@1984
   319
paulson@1984
   320
paulson@1984
   321
paulson@1984
   322
(*** Install simpsets and datatypes in theory structure ***)
paulson@1984
   323
oheimb@2251
   324
simpset := HOL_ss;
paulson@1984
   325
paulson@1984
   326
exception SS_DATA of simpset;
paulson@1984
   327
paulson@1984
   328
let fun merge [] = SS_DATA empty_ss
paulson@1984
   329
      | merge ss = let val ss = map (fn SS_DATA x => x) ss;
paulson@1984
   330
                   in SS_DATA (foldl merge_ss (hd ss, tl ss)) end;
paulson@1984
   331
paulson@1984
   332
    fun put (SS_DATA ss) = simpset := ss;
paulson@1984
   333
paulson@1984
   334
    fun get () = SS_DATA (!simpset);
paulson@1984
   335
in add_thydata "HOL"
paulson@1984
   336
     ("simpset", ThyMethods {merge = merge, put = put, get = get})
paulson@1984
   337
end;
paulson@1984
   338
paulson@1984
   339
type dtype_info = {case_const:term, case_rewrites:thm list,
paulson@1984
   340
                   constructors:term list, nchotomy:thm, case_cong:thm};
paulson@1984
   341
paulson@1984
   342
exception DT_DATA of (string * dtype_info) list;
paulson@1984
   343
val datatypes = ref [] : (string * dtype_info) list ref;
paulson@1984
   344
paulson@1984
   345
let fun merge [] = DT_DATA []
paulson@1984
   346
      | merge ds =
paulson@1984
   347
          let val ds = map (fn DT_DATA x => x) ds;
paulson@1984
   348
          in DT_DATA (foldl (gen_union eq_fst) (hd ds, tl ds)) end;
paulson@1984
   349
paulson@1984
   350
    fun put (DT_DATA ds) = datatypes := ds;
paulson@1984
   351
paulson@1984
   352
    fun get () = DT_DATA (!datatypes);
paulson@1984
   353
in add_thydata "HOL"
paulson@1984
   354
     ("datatypes", ThyMethods {merge = merge, put = put, get = get})
paulson@1984
   355
end;
paulson@1984
   356
paulson@1984
   357
paulson@1984
   358
add_thy_reader_file "thy_data.ML";
oheimb@2636
   359
oheimb@2636
   360
oheimb@2636
   361
oheimb@2636
   362
oheimb@2636
   363
(*** Integration of simplifier with classical reasoner ***)
oheimb@2636
   364
oheimb@2636
   365
(* rot_eq_tac rotates the first equality premise of subgoal i to the front,
oheimb@2636
   366
   fails if there is no equaliy or if an equality is already at the front *)
paulson@2805
   367
fun rot_eq_tac i = 
paulson@2805
   368
  let fun is_eq (Const ("Trueprop", _) $ (Const("op =",_) $ _ $ _)) = true
paulson@2805
   369
	| is_eq _ = false;
paulson@2805
   370
      fun find_eq n [] = None
paulson@2805
   371
	| find_eq n (t :: ts) = if (is_eq t) then Some n 
paulson@2805
   372
				else find_eq (n + 1) ts;
paulson@2805
   373
      fun rot_eq state = 
paulson@2805
   374
	  let val (_, _, Bi, _) = dest_state (state, i) 
paulson@2805
   375
	  in  case find_eq 0 (Logic.strip_assums_hyp Bi) of
paulson@2805
   376
		  None   => no_tac
paulson@2805
   377
		| Some 0 => no_tac
paulson@2805
   378
		| Some n => rotate_tac n i
paulson@2805
   379
	  end;
paulson@2805
   380
  in STATE rot_eq end;
oheimb@2636
   381
oheimb@2636
   382
(*an unsatisfactory fix for the incomplete asm_full_simp_tac!
oheimb@2636
   383
  better: asm_really_full_simp_tac, a yet to be implemented version of
oheimb@2636
   384
			asm_full_simp_tac that applies all equalities in the
oheimb@2636
   385
			premises to all the premises *)
oheimb@2636
   386
fun safe_asm_more_full_simp_tac ss = TRY o rot_eq_tac THEN' 
oheimb@2636
   387
				     safe_asm_full_simp_tac ss;
oheimb@2636
   388
oheimb@2636
   389
(*Add a simpset to a classical set!*)
oheimb@2636
   390
infix 4 addss;
oheimb@2636
   391
fun cs addss ss = cs addSaltern (CHANGED o (safe_asm_more_full_simp_tac ss));
oheimb@2636
   392
(*old version, for compatibility with unstable old proofs*)
oheimb@2636
   393
infix 4 unsafe_addss;
oheimb@2636
   394
fun cs unsafe_addss ss = cs addbefore asm_full_simp_tac ss;
oheimb@2636
   395
oheimb@2636
   396
fun Addss ss = (claset := !claset addss ss);
oheimb@2636
   397
(*old version, for compatibility with unstable old proofs*)
oheimb@2636
   398
fun Unsafe_Addss ss = (claset := !claset unsafe_addss ss);
oheimb@2636
   399
oheimb@2636
   400
(*Designed to be idempotent, except if best_tac instantiates variables
oheimb@2636
   401
  in some of the subgoals*)
oheimb@2636
   402
(*old version, for compatibility with unstable old proofs*)
oheimb@2636
   403
fun unsafe_auto_tac (cs,ss) = 
oheimb@2636
   404
    ALLGOALS (asm_full_simp_tac ss) THEN
oheimb@2636
   405
    REPEAT   (safe_tac cs THEN ALLGOALS (asm_full_simp_tac ss)) THEN
oheimb@2636
   406
    REPEAT   (FIRSTGOAL (best_tac (cs addss ss))) THEN
oheimb@2636
   407
    prune_params_tac;
oheimb@2636
   408
oheimb@2636
   409
type clasimpset = (claset * simpset);
oheimb@2636
   410
oheimb@2636
   411
val HOL_css = (HOL_cs, HOL_ss);
oheimb@2636
   412
oheimb@2636
   413
fun pair_upd1 f ((a,b),x) = (f(a,x), b);
oheimb@2636
   414
fun pair_upd2 f ((a,b),x) = (a, f(b,x));
oheimb@2636
   415
oheimb@2636
   416
infix 4 addSIs2 addSEs2 addSDs2 addIs2 addEs2 addDs2
oheimb@2636
   417
	addsimps2 delsimps2 addcongs2 delcongs2;
paulson@2748
   418
fun op addSIs2   arg = pair_upd1 (op addSIs) arg;
paulson@2748
   419
fun op addSEs2   arg = pair_upd1 (op addSEs) arg;
paulson@2748
   420
fun op addSDs2   arg = pair_upd1 (op addSDs) arg;
paulson@2748
   421
fun op addIs2    arg = pair_upd1 (op addIs ) arg;
paulson@2748
   422
fun op addEs2    arg = pair_upd1 (op addEs ) arg;
paulson@2748
   423
fun op addDs2    arg = pair_upd1 (op addDs ) arg;
paulson@2748
   424
fun op addsimps2 arg = pair_upd2 (op addsimps) arg;
paulson@2748
   425
fun op delsimps2 arg = pair_upd2 (op delsimps) arg;
paulson@2748
   426
fun op addcongs2 arg = pair_upd2 (op addcongs) arg;
paulson@2748
   427
fun op delcongs2 arg = pair_upd2 (op delcongs) arg;
oheimb@2636
   428
paulson@2805
   429
fun auto_tac (cs,ss) = 
paulson@2805
   430
    let val cs' = cs addss ss 
paulson@2805
   431
    in  EVERY [TRY (safe_tac cs'),
paulson@2805
   432
	       REPEAT (FIRSTGOAL (fast_tac cs')),
paulson@2805
   433
	       prune_params_tac] 
paulson@2805
   434
    end;
oheimb@2636
   435
oheimb@2636
   436
fun Auto_tac () = auto_tac (!claset, !simpset);
oheimb@2636
   437
oheimb@2636
   438
fun auto () = by (Auto_tac ());