src/HOL/subset.ML
author nipkow
Tue Apr 08 10:48:42 1997 +0200 (1997-04-08)
changeset 2919 953a47dc0519
parent 2893 2ee005e46d6d
child 4159 4aff9b7e5597
permissions -rw-r--r--
Dep. on Provers/nat_transitive
clasohm@1465
     1
(*  Title:      HOL/subset
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Derived rules involving subsets
clasohm@923
     7
Union and Intersection as lattice operations
clasohm@923
     8
*)
clasohm@923
     9
clasohm@923
    10
(*** insert ***)
clasohm@923
    11
clasohm@923
    12
qed_goal "subset_insertI" Set.thy "B <= insert a B"
clasohm@923
    13
 (fn _=> [ (rtac subsetI 1), (etac insertI2 1) ]);
clasohm@923
    14
nipkow@1531
    15
goal Set.thy "!!x. x ~: A ==> (A <= insert x B) = (A <= B)";
paulson@2893
    16
by (Blast_tac 1);
nipkow@1531
    17
qed "subset_insert";
nipkow@1531
    18
clasohm@923
    19
(*** Big Union -- least upper bound of a set  ***)
clasohm@923
    20
clasohm@923
    21
val prems = goal Set.thy
clasohm@923
    22
    "B:A ==> B <= Union(A)";
clasohm@923
    23
by (REPEAT (ares_tac (prems@[subsetI,UnionI]) 1));
clasohm@923
    24
qed "Union_upper";
clasohm@923
    25
clasohm@923
    26
val [prem] = goal Set.thy
clasohm@923
    27
    "[| !!X. X:A ==> X<=C |] ==> Union(A) <= C";
clasohm@1465
    28
by (rtac subsetI 1);
clasohm@923
    29
by (REPEAT (eresolve_tac [asm_rl, UnionE, prem RS subsetD] 1));
clasohm@923
    30
qed "Union_least";
clasohm@923
    31
clasohm@923
    32
(** General union **)
clasohm@923
    33
clasohm@923
    34
val prems = goal Set.thy
clasohm@923
    35
    "a:A ==> B(a) <= (UN x:A. B(x))";
clasohm@923
    36
by (REPEAT (ares_tac (prems@[UN_I RS subsetI]) 1));
clasohm@923
    37
qed "UN_upper";
clasohm@923
    38
clasohm@923
    39
val [prem] = goal Set.thy
clasohm@923
    40
    "[| !!x. x:A ==> B(x)<=C |] ==> (UN x:A. B(x)) <= C";
clasohm@1465
    41
by (rtac subsetI 1);
clasohm@923
    42
by (REPEAT (eresolve_tac [asm_rl, UN_E, prem RS subsetD] 1));
clasohm@923
    43
qed "UN_least";
clasohm@923
    44
clasohm@923
    45
goal Set.thy "B(a) <= (UN x. B(x))";
clasohm@923
    46
by (REPEAT (ares_tac [UN1_I RS subsetI] 1));
clasohm@923
    47
qed "UN1_upper";
clasohm@923
    48
clasohm@923
    49
val [prem] = goal Set.thy "[| !!x. B(x)<=C |] ==> (UN x. B(x)) <= C";
clasohm@1465
    50
by (rtac subsetI 1);
clasohm@923
    51
by (REPEAT (eresolve_tac [asm_rl, UN1_E, prem RS subsetD] 1));
clasohm@923
    52
qed "UN1_least";
clasohm@923
    53
clasohm@923
    54
clasohm@923
    55
(*** Big Intersection -- greatest lower bound of a set ***)
clasohm@923
    56
paulson@2893
    57
goal Set.thy "!!B. B:A ==> Inter(A) <= B";
paulson@2893
    58
by (Blast_tac 1);
clasohm@923
    59
qed "Inter_lower";
clasohm@923
    60
clasohm@923
    61
val [prem] = goal Set.thy
clasohm@923
    62
    "[| !!X. X:A ==> C<=X |] ==> C <= Inter(A)";
clasohm@1465
    63
by (rtac (InterI RS subsetI) 1);
clasohm@923
    64
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
clasohm@923
    65
qed "Inter_greatest";
clasohm@923
    66
clasohm@923
    67
val prems = goal Set.thy "a:A ==> (INT x:A. B(x)) <= B(a)";
clasohm@1465
    68
by (rtac subsetI 1);
clasohm@923
    69
by (REPEAT (resolve_tac prems 1 ORELSE etac INT_D 1));
clasohm@923
    70
qed "INT_lower";
clasohm@923
    71
clasohm@923
    72
val [prem] = goal Set.thy
clasohm@923
    73
    "[| !!x. x:A ==> C<=B(x) |] ==> C <= (INT x:A. B(x))";
clasohm@1465
    74
by (rtac (INT_I RS subsetI) 1);
clasohm@923
    75
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
clasohm@923
    76
qed "INT_greatest";
clasohm@923
    77
clasohm@923
    78
goal Set.thy "(INT x. B(x)) <= B(a)";
paulson@2893
    79
by (Blast_tac 1);
clasohm@923
    80
qed "INT1_lower";
clasohm@923
    81
clasohm@923
    82
val [prem] = goal Set.thy
clasohm@923
    83
    "[| !!x. C<=B(x) |] ==> C <= (INT x. B(x))";
clasohm@1465
    84
by (rtac (INT1_I RS subsetI) 1);
clasohm@923
    85
by (REPEAT (eresolve_tac [asm_rl, prem RS subsetD] 1));
clasohm@923
    86
qed "INT1_greatest";
clasohm@923
    87
clasohm@923
    88
(*** Finite Union -- the least upper bound of 2 sets ***)
clasohm@923
    89
clasohm@923
    90
goal Set.thy "A <= A Un B";
paulson@2893
    91
by (Blast_tac 1);
clasohm@923
    92
qed "Un_upper1";
clasohm@923
    93
clasohm@923
    94
goal Set.thy "B <= A Un B";
paulson@2893
    95
by (Blast_tac 1);
clasohm@923
    96
qed "Un_upper2";
clasohm@923
    97
paulson@2893
    98
goal Set.thy "!!C. [| A<=C;  B<=C |] ==> A Un B <= C";
paulson@2893
    99
by (Blast_tac 1);
clasohm@923
   100
qed "Un_least";
clasohm@923
   101
clasohm@923
   102
(*** Finite Intersection -- the greatest lower bound of 2 sets *)
clasohm@923
   103
clasohm@923
   104
goal Set.thy "A Int B <= A";
paulson@2893
   105
by (Blast_tac 1);
clasohm@923
   106
qed "Int_lower1";
clasohm@923
   107
clasohm@923
   108
goal Set.thy "A Int B <= B";
paulson@2893
   109
by (Blast_tac 1);
clasohm@923
   110
qed "Int_lower2";
clasohm@923
   111
paulson@2893
   112
goal Set.thy "!!C. [| C<=A;  C<=B |] ==> C <= A Int B";
paulson@2893
   113
by (Blast_tac 1);
clasohm@923
   114
qed "Int_greatest";
clasohm@923
   115
clasohm@923
   116
(*** Set difference ***)
clasohm@923
   117
clasohm@923
   118
qed_goal "Diff_subset" Set.thy "A-B <= (A::'a set)"
paulson@2893
   119
 (fn _ => [ (Blast_tac 1) ]);
clasohm@923
   120
clasohm@923
   121
(*** Monotonicity ***)
clasohm@923
   122
clasohm@923
   123
val [prem] = goal Set.thy "mono(f) ==> f(A) Un f(B) <= f(A Un B)";
clasohm@923
   124
by (rtac Un_least 1);
clasohm@923
   125
by (rtac (Un_upper1 RS (prem RS monoD)) 1);
clasohm@923
   126
by (rtac (Un_upper2 RS (prem RS monoD)) 1);
clasohm@923
   127
qed "mono_Un";
clasohm@923
   128
clasohm@923
   129
val [prem] = goal Set.thy "mono(f) ==> f(A Int B) <= f(A) Int f(B)";
clasohm@923
   130
by (rtac Int_greatest 1);
clasohm@923
   131
by (rtac (Int_lower1 RS (prem RS monoD)) 1);
clasohm@923
   132
by (rtac (Int_lower2 RS (prem RS monoD)) 1);
clasohm@923
   133
qed "mono_Int";