src/HOL/Library/Dlist.thy
author haftmann
Mon Jun 28 15:32:06 2010 +0200 (2010-06-28)
changeset 37595 9591362629e3
parent 37473 013f78aed840
child 37765 26bdfb7b680b
permissions -rw-r--r--
dropped ancient infix mem; refined code generation operations in List.thy
haftmann@35303
     1
(* Author: Florian Haftmann, TU Muenchen *)
haftmann@35303
     2
haftmann@35303
     3
header {* Lists with elements distinct as canonical example for datatype invariants *}
haftmann@35303
     4
haftmann@35303
     5
theory Dlist
haftmann@37473
     6
imports Main Fset
haftmann@35303
     7
begin
haftmann@35303
     8
haftmann@35303
     9
section {* The type of distinct lists *}
haftmann@35303
    10
haftmann@35303
    11
typedef (open) 'a dlist = "{xs::'a list. distinct xs}"
haftmann@35303
    12
  morphisms list_of_dlist Abs_dlist
haftmann@35303
    13
proof
haftmann@35303
    14
  show "[] \<in> ?dlist" by simp
haftmann@35303
    15
qed
haftmann@35303
    16
haftmann@36274
    17
lemma dlist_ext:
haftmann@36274
    18
  assumes "list_of_dlist xs = list_of_dlist ys"
haftmann@36274
    19
  shows "xs = ys"
haftmann@36274
    20
  using assms by (simp add: list_of_dlist_inject)
haftmann@36274
    21
haftmann@36112
    22
haftmann@35303
    23
text {* Formal, totalized constructor for @{typ "'a dlist"}: *}
haftmann@35303
    24
haftmann@35303
    25
definition Dlist :: "'a list \<Rightarrow> 'a dlist" where
haftmann@35303
    26
  [code del]: "Dlist xs = Abs_dlist (remdups xs)"
haftmann@35303
    27
haftmann@35303
    28
lemma distinct_list_of_dlist [simp]:
haftmann@35303
    29
  "distinct (list_of_dlist dxs)"
haftmann@35303
    30
  using list_of_dlist [of dxs] by simp
haftmann@35303
    31
haftmann@35303
    32
lemma list_of_dlist_Dlist [simp]:
haftmann@35303
    33
  "list_of_dlist (Dlist xs) = remdups xs"
haftmann@35303
    34
  by (simp add: Dlist_def Abs_dlist_inverse)
haftmann@35303
    35
haftmann@36112
    36
lemma Dlist_list_of_dlist [simp, code abstype]:
haftmann@35303
    37
  "Dlist (list_of_dlist dxs) = dxs"
haftmann@35303
    38
  by (simp add: Dlist_def list_of_dlist_inverse distinct_remdups_id)
haftmann@35303
    39
haftmann@35303
    40
haftmann@35303
    41
text {* Fundamental operations: *}
haftmann@35303
    42
haftmann@35303
    43
definition empty :: "'a dlist" where
haftmann@35303
    44
  "empty = Dlist []"
haftmann@35303
    45
haftmann@35303
    46
definition insert :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
haftmann@35303
    47
  "insert x dxs = Dlist (List.insert x (list_of_dlist dxs))"
haftmann@35303
    48
haftmann@35303
    49
definition remove :: "'a \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
haftmann@35303
    50
  "remove x dxs = Dlist (remove1 x (list_of_dlist dxs))"
haftmann@35303
    51
haftmann@35303
    52
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b dlist" where
haftmann@35303
    53
  "map f dxs = Dlist (remdups (List.map f (list_of_dlist dxs)))"
haftmann@35303
    54
haftmann@35303
    55
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a dlist \<Rightarrow> 'a dlist" where
haftmann@35303
    56
  "filter P dxs = Dlist (List.filter P (list_of_dlist dxs))"
haftmann@35303
    57
haftmann@35303
    58
haftmann@35303
    59
text {* Derived operations: *}
haftmann@35303
    60
haftmann@35303
    61
definition null :: "'a dlist \<Rightarrow> bool" where
haftmann@35303
    62
  "null dxs = List.null (list_of_dlist dxs)"
haftmann@35303
    63
haftmann@35303
    64
definition member :: "'a dlist \<Rightarrow> 'a \<Rightarrow> bool" where
haftmann@35303
    65
  "member dxs = List.member (list_of_dlist dxs)"
haftmann@35303
    66
haftmann@35303
    67
definition length :: "'a dlist \<Rightarrow> nat" where
haftmann@35303
    68
  "length dxs = List.length (list_of_dlist dxs)"
haftmann@35303
    69
haftmann@35303
    70
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
haftmann@37022
    71
  "fold f dxs = More_List.fold f (list_of_dlist dxs)"
haftmann@37022
    72
haftmann@37022
    73
definition foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a dlist \<Rightarrow> 'b \<Rightarrow> 'b" where
haftmann@37022
    74
  "foldr f dxs = List.foldr f (list_of_dlist dxs)"
haftmann@35303
    75
haftmann@35303
    76
haftmann@35303
    77
section {* Executable version obeying invariant *}
haftmann@35303
    78
haftmann@35303
    79
lemma list_of_dlist_empty [simp, code abstract]:
haftmann@35303
    80
  "list_of_dlist empty = []"
haftmann@35303
    81
  by (simp add: empty_def)
haftmann@35303
    82
haftmann@35303
    83
lemma list_of_dlist_insert [simp, code abstract]:
haftmann@35303
    84
  "list_of_dlist (insert x dxs) = List.insert x (list_of_dlist dxs)"
haftmann@35303
    85
  by (simp add: insert_def)
haftmann@35303
    86
haftmann@35303
    87
lemma list_of_dlist_remove [simp, code abstract]:
haftmann@35303
    88
  "list_of_dlist (remove x dxs) = remove1 x (list_of_dlist dxs)"
haftmann@35303
    89
  by (simp add: remove_def)
haftmann@35303
    90
haftmann@35303
    91
lemma list_of_dlist_map [simp, code abstract]:
haftmann@35303
    92
  "list_of_dlist (map f dxs) = remdups (List.map f (list_of_dlist dxs))"
haftmann@35303
    93
  by (simp add: map_def)
haftmann@35303
    94
haftmann@35303
    95
lemma list_of_dlist_filter [simp, code abstract]:
haftmann@35303
    96
  "list_of_dlist (filter P dxs) = List.filter P (list_of_dlist dxs)"
haftmann@35303
    97
  by (simp add: filter_def)
haftmann@35303
    98
haftmann@35303
    99
haftmann@36980
   100
text {* Explicit executable conversion *}
haftmann@36980
   101
haftmann@36980
   102
definition dlist_of_list [simp]:
haftmann@36980
   103
  "dlist_of_list = Dlist"
haftmann@36980
   104
haftmann@36980
   105
lemma [code abstract]:
haftmann@36980
   106
  "list_of_dlist (dlist_of_list xs) = remdups xs"
haftmann@36980
   107
  by simp
haftmann@36980
   108
haftmann@36980
   109
haftmann@37106
   110
section {* Induction principle and case distinction *}
haftmann@37106
   111
haftmann@37106
   112
lemma dlist_induct [case_names empty insert, induct type: dlist]:
haftmann@37106
   113
  assumes empty: "P empty"
haftmann@37106
   114
  assumes insrt: "\<And>x dxs. \<not> member dxs x \<Longrightarrow> P dxs \<Longrightarrow> P (insert x dxs)"
haftmann@37106
   115
  shows "P dxs"
haftmann@37106
   116
proof (cases dxs)
haftmann@37106
   117
  case (Abs_dlist xs)
haftmann@37106
   118
  then have "distinct xs" and dxs: "dxs = Dlist xs" by (simp_all add: Dlist_def distinct_remdups_id)
haftmann@37106
   119
  from `distinct xs` have "P (Dlist xs)"
haftmann@37106
   120
  proof (induct xs rule: distinct_induct)
haftmann@37106
   121
    case Nil from empty show ?case by (simp add: empty_def)
haftmann@37106
   122
  next
haftmann@37106
   123
    case (insert x xs)
haftmann@37106
   124
    then have "\<not> member (Dlist xs) x" and "P (Dlist xs)"
haftmann@37595
   125
      by (simp_all add: member_def List.member_def)
haftmann@37106
   126
    with insrt have "P (insert x (Dlist xs))" .
haftmann@37106
   127
    with insert show ?case by (simp add: insert_def distinct_remdups_id)
haftmann@37106
   128
  qed
haftmann@37106
   129
  with dxs show "P dxs" by simp
haftmann@37106
   130
qed
haftmann@37106
   131
haftmann@37106
   132
lemma dlist_case [case_names empty insert, cases type: dlist]:
haftmann@37106
   133
  assumes empty: "dxs = empty \<Longrightarrow> P"
haftmann@37106
   134
  assumes insert: "\<And>x dys. \<not> member dys x \<Longrightarrow> dxs = insert x dys \<Longrightarrow> P"
haftmann@37106
   135
  shows P
haftmann@37106
   136
proof (cases dxs)
haftmann@37106
   137
  case (Abs_dlist xs)
haftmann@37106
   138
  then have dxs: "dxs = Dlist xs" and distinct: "distinct xs"
haftmann@37106
   139
    by (simp_all add: Dlist_def distinct_remdups_id)
haftmann@37106
   140
  show P proof (cases xs)
haftmann@37106
   141
    case Nil with dxs have "dxs = empty" by (simp add: empty_def) 
haftmann@37106
   142
    with empty show P .
haftmann@37106
   143
  next
haftmann@37106
   144
    case (Cons x xs)
haftmann@37106
   145
    with dxs distinct have "\<not> member (Dlist xs) x"
haftmann@37106
   146
      and "dxs = insert x (Dlist xs)"
haftmann@37595
   147
      by (simp_all add: member_def List.member_def insert_def distinct_remdups_id)
haftmann@37106
   148
    with insert show P .
haftmann@37106
   149
  qed
haftmann@37106
   150
qed
haftmann@37106
   151
haftmann@37106
   152
haftmann@35303
   153
section {* Implementation of sets by distinct lists -- canonical! *}
haftmann@35303
   154
haftmann@35303
   155
definition Set :: "'a dlist \<Rightarrow> 'a fset" where
haftmann@35303
   156
  "Set dxs = Fset.Set (list_of_dlist dxs)"
haftmann@35303
   157
haftmann@35303
   158
definition Coset :: "'a dlist \<Rightarrow> 'a fset" where
haftmann@35303
   159
  "Coset dxs = Fset.Coset (list_of_dlist dxs)"
haftmann@35303
   160
haftmann@35303
   161
code_datatype Set Coset
haftmann@35303
   162
haftmann@35303
   163
declare member_code [code del]
haftmann@35303
   164
declare is_empty_Set [code del]
haftmann@35303
   165
declare empty_Set [code del]
haftmann@35303
   166
declare UNIV_Set [code del]
haftmann@35303
   167
declare insert_Set [code del]
haftmann@35303
   168
declare remove_Set [code del]
haftmann@37029
   169
declare compl_Set [code del]
haftmann@37029
   170
declare compl_Coset [code del]
haftmann@35303
   171
declare map_Set [code del]
haftmann@35303
   172
declare filter_Set [code del]
haftmann@35303
   173
declare forall_Set [code del]
haftmann@35303
   174
declare exists_Set [code del]
haftmann@35303
   175
declare card_Set [code del]
haftmann@35303
   176
declare inter_project [code del]
haftmann@35303
   177
declare subtract_remove [code del]
haftmann@35303
   178
declare union_insert [code del]
haftmann@35303
   179
declare Infimum_inf [code del]
haftmann@35303
   180
declare Supremum_sup [code del]
haftmann@35303
   181
haftmann@35303
   182
lemma Set_Dlist [simp]:
haftmann@35303
   183
  "Set (Dlist xs) = Fset (set xs)"
haftmann@37473
   184
  by (rule fset_eqI) (simp add: Set_def)
haftmann@35303
   185
haftmann@35303
   186
lemma Coset_Dlist [simp]:
haftmann@35303
   187
  "Coset (Dlist xs) = Fset (- set xs)"
haftmann@37473
   188
  by (rule fset_eqI) (simp add: Coset_def)
haftmann@35303
   189
haftmann@35303
   190
lemma member_Set [simp]:
haftmann@35303
   191
  "Fset.member (Set dxs) = List.member (list_of_dlist dxs)"
haftmann@35303
   192
  by (simp add: Set_def member_set)
haftmann@35303
   193
haftmann@35303
   194
lemma member_Coset [simp]:
haftmann@35303
   195
  "Fset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)"
haftmann@35303
   196
  by (simp add: Coset_def member_set not_set_compl)
haftmann@35303
   197
haftmann@36980
   198
lemma Set_dlist_of_list [code]:
haftmann@36980
   199
  "Fset.Set xs = Set (dlist_of_list xs)"
haftmann@37473
   200
  by (rule fset_eqI) simp
haftmann@36980
   201
haftmann@36980
   202
lemma Coset_dlist_of_list [code]:
haftmann@36980
   203
  "Fset.Coset xs = Coset (dlist_of_list xs)"
haftmann@37473
   204
  by (rule fset_eqI) simp
haftmann@36980
   205
haftmann@35303
   206
lemma is_empty_Set [code]:
haftmann@35303
   207
  "Fset.is_empty (Set dxs) \<longleftrightarrow> null dxs"
haftmann@37595
   208
  by (simp add: null_def List.null_def member_set)
haftmann@35303
   209
haftmann@35303
   210
lemma bot_code [code]:
haftmann@35303
   211
  "bot = Set empty"
haftmann@35303
   212
  by (simp add: empty_def)
haftmann@35303
   213
haftmann@35303
   214
lemma top_code [code]:
haftmann@35303
   215
  "top = Coset empty"
haftmann@35303
   216
  by (simp add: empty_def)
haftmann@35303
   217
haftmann@35303
   218
lemma insert_code [code]:
haftmann@35303
   219
  "Fset.insert x (Set dxs) = Set (insert x dxs)"
haftmann@35303
   220
  "Fset.insert x (Coset dxs) = Coset (remove x dxs)"
haftmann@35303
   221
  by (simp_all add: insert_def remove_def member_set not_set_compl)
haftmann@35303
   222
haftmann@35303
   223
lemma remove_code [code]:
haftmann@35303
   224
  "Fset.remove x (Set dxs) = Set (remove x dxs)"
haftmann@35303
   225
  "Fset.remove x (Coset dxs) = Coset (insert x dxs)"
haftmann@35303
   226
  by (auto simp add: insert_def remove_def member_set not_set_compl)
haftmann@35303
   227
haftmann@35303
   228
lemma member_code [code]:
haftmann@35303
   229
  "Fset.member (Set dxs) = member dxs"
haftmann@35303
   230
  "Fset.member (Coset dxs) = Not \<circ> member dxs"
haftmann@35303
   231
  by (simp_all add: member_def)
haftmann@35303
   232
haftmann@37029
   233
lemma compl_code [code]:
haftmann@37029
   234
  "- Set dxs = Coset dxs"
haftmann@37029
   235
  "- Coset dxs = Set dxs"
haftmann@37473
   236
  by (rule fset_eqI, simp add: member_set not_set_compl)+
haftmann@37029
   237
haftmann@35303
   238
lemma map_code [code]:
haftmann@35303
   239
  "Fset.map f (Set dxs) = Set (map f dxs)"
haftmann@37473
   240
  by (rule fset_eqI) (simp add: member_set)
haftmann@35303
   241
  
haftmann@35303
   242
lemma filter_code [code]:
haftmann@35303
   243
  "Fset.filter f (Set dxs) = Set (filter f dxs)"
haftmann@37473
   244
  by (rule fset_eqI) (simp add: member_set)
haftmann@35303
   245
haftmann@35303
   246
lemma forall_Set [code]:
haftmann@35303
   247
  "Fset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)"
haftmann@35303
   248
  by (simp add: member_set list_all_iff)
haftmann@35303
   249
haftmann@35303
   250
lemma exists_Set [code]:
haftmann@35303
   251
  "Fset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)"
haftmann@35303
   252
  by (simp add: member_set list_ex_iff)
haftmann@35303
   253
haftmann@35303
   254
lemma card_code [code]:
haftmann@35303
   255
  "Fset.card (Set dxs) = length dxs"
haftmann@35303
   256
  by (simp add: length_def member_set distinct_card)
haftmann@35303
   257
haftmann@35303
   258
lemma inter_code [code]:
haftmann@35303
   259
  "inf A (Set xs) = Set (filter (Fset.member A) xs)"
haftmann@37022
   260
  "inf A (Coset xs) = foldr Fset.remove xs A"
haftmann@37022
   261
  by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter)
haftmann@35303
   262
haftmann@35303
   263
lemma subtract_code [code]:
haftmann@37022
   264
  "A - Set xs = foldr Fset.remove xs A"
haftmann@35303
   265
  "A - Coset xs = Set (filter (Fset.member A) xs)"
haftmann@37022
   266
  by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter)
haftmann@35303
   267
haftmann@35303
   268
lemma union_code [code]:
haftmann@37022
   269
  "sup (Set xs) A = foldr Fset.insert xs A"
haftmann@35303
   270
  "sup (Coset xs) A = Coset (filter (Not \<circ> Fset.member A) xs)"
haftmann@37022
   271
  by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter)
haftmann@35303
   272
haftmann@35303
   273
context complete_lattice
haftmann@35303
   274
begin
haftmann@35303
   275
haftmann@35303
   276
lemma Infimum_code [code]:
haftmann@37022
   277
  "Infimum (Set As) = foldr inf As top"
haftmann@37022
   278
  by (simp only: Set_def Infimum_inf foldr_def inf.commute)
haftmann@35303
   279
haftmann@35303
   280
lemma Supremum_code [code]:
haftmann@37022
   281
  "Supremum (Set As) = foldr sup As bot"
haftmann@37022
   282
  by (simp only: Set_def Supremum_sup foldr_def sup.commute)
haftmann@35303
   283
haftmann@35303
   284
end
haftmann@35303
   285
haftmann@37022
   286
hide_const (open) member fold foldr empty insert remove map filter null member length fold
haftmann@35303
   287
haftmann@35303
   288
end