src/HOL/Extraction.thy
author haftmann
Thu Aug 09 15:52:42 2007 +0200 (2007-08-09)
changeset 24194 96013f81faef
parent 24162 8dfd5dd65d82
child 25424 170f4cc34697
permissions -rw-r--r--
re-eliminated Option.thy
berghofe@13403
     1
(*  Title:      HOL/Extraction.thy
berghofe@13403
     2
    ID:         $Id$
berghofe@13403
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13403
     4
*)
berghofe@13403
     5
berghofe@13403
     6
header {* Program extraction for HOL *}
berghofe@13403
     7
nipkow@15131
     8
theory Extraction
haftmann@24194
     9
imports Datatype
haftmann@16417
    10
uses "Tools/rewrite_hol_proof.ML"
nipkow@15131
    11
begin
berghofe@13403
    12
berghofe@13403
    13
subsection {* Setup *}
berghofe@13403
    14
wenzelm@16121
    15
setup {*
wenzelm@16121
    16
let
berghofe@13725
    17
fun realizes_set_proc (Const ("realizes", Type ("fun", [Type ("Null", []), _])) $ r $
berghofe@13725
    18
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
skalberg@15531
    19
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, binder_types U @
berghofe@13725
    20
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
skalberg@15531
    21
      | (Free (s, U), ts) => SOME (list_comb (Free (s, binder_types U @
berghofe@13725
    22
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
skalberg@15531
    23
      | _ => NONE)
berghofe@13725
    24
  | realizes_set_proc (Const ("realizes", Type ("fun", [T, _])) $ r $
berghofe@13725
    25
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
skalberg@15531
    26
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, T :: binder_types U @
berghofe@13725
    27
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
skalberg@15531
    28
      | (Free (s, U), ts) => SOME (list_comb (Free (s, T :: binder_types U @
berghofe@13725
    29
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
skalberg@15531
    30
      | _ => NONE)
skalberg@15531
    31
  | realizes_set_proc _ = NONE;
berghofe@13725
    32
berghofe@13725
    33
fun mk_realizes_set r rT s (setT as Type ("set", [elT])) =
berghofe@13725
    34
  Abs ("x", elT, Const ("realizes", rT --> HOLogic.boolT --> HOLogic.boolT) $
berghofe@13725
    35
    incr_boundvars 1 r $ (Const ("op :", elT --> setT --> HOLogic.boolT) $
berghofe@13725
    36
      Bound 0 $ incr_boundvars 1 s));
wenzelm@16121
    37
in
wenzelm@18708
    38
  Extraction.add_types
skalberg@15531
    39
      [("bool", ([], NONE)),
wenzelm@18708
    40
       ("set", ([realizes_set_proc], SOME mk_realizes_set))] #>
wenzelm@18708
    41
  Extraction.set_preprocessor (fn thy =>
berghofe@13403
    42
      Proofterm.rewrite_proof_notypes
berghofe@13403
    43
        ([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
berghofe@13403
    44
          ProofRewriteRules.rprocs true) o
wenzelm@17203
    45
      Proofterm.rewrite_proof thy
berghofe@13599
    46
        (RewriteHOLProof.rews, ProofRewriteRules.rprocs true) o
wenzelm@18708
    47
      ProofRewriteRules.elim_vars (curry Const "arbitrary"))
wenzelm@16121
    48
end
berghofe@13403
    49
*}
berghofe@13403
    50
berghofe@13403
    51
lemmas [extraction_expand] =
berghofe@22281
    52
  meta_spec atomize_eq atomize_all atomize_imp atomize_conj
berghofe@13403
    53
  allE rev_mp conjE Eq_TrueI Eq_FalseI eqTrueI eqTrueE eq_cong2
haftmann@20941
    54
  notE' impE' impE iffE imp_cong simp_thms eq_True eq_False
wenzelm@18456
    55
  induct_forall_eq induct_implies_eq induct_equal_eq induct_conj_eq
wenzelm@18456
    56
  induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@18511
    57
  induct_atomize induct_rulify induct_rulify_fallback
haftmann@20941
    58
  True_implies_equals
berghofe@13403
    59
berghofe@13403
    60
datatype sumbool = Left | Right
berghofe@13403
    61
berghofe@13403
    62
subsection {* Type of extracted program *}
berghofe@13403
    63
berghofe@13403
    64
extract_type
berghofe@13403
    65
  "typeof (Trueprop P) \<equiv> typeof P"
berghofe@13403
    66
berghofe@13403
    67
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    68
     typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('Q))"
berghofe@13403
    69
berghofe@13403
    70
  "typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE(Null))"
berghofe@13403
    71
berghofe@13403
    72
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    73
     typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('P \<Rightarrow> 'Q))"
berghofe@13403
    74
berghofe@13403
    75
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
    76
     typeof (\<forall>x. P x) \<equiv> Type (TYPE(Null))"
berghofe@13403
    77
berghofe@13403
    78
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
    79
     typeof (\<forall>x::'a. P x) \<equiv> Type (TYPE('a \<Rightarrow> 'P))"
berghofe@13403
    80
berghofe@13403
    81
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
    82
     typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a))"
berghofe@13403
    83
berghofe@13403
    84
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
    85
     typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a \<times> 'P))"
berghofe@13403
    86
berghofe@13403
    87
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
    88
     typeof (P \<or> Q) \<equiv> Type (TYPE(sumbool))"
berghofe@13403
    89
berghofe@13403
    90
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    91
     typeof (P \<or> Q) \<equiv> Type (TYPE('Q option))"
berghofe@13403
    92
berghofe@13403
    93
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
    94
     typeof (P \<or> Q) \<equiv> Type (TYPE('P option))"
berghofe@13403
    95
berghofe@13403
    96
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    97
     typeof (P \<or> Q) \<equiv> Type (TYPE('P + 'Q))"
berghofe@13403
    98
berghofe@13403
    99
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
   100
     typeof (P \<and> Q) \<equiv> Type (TYPE('Q))"
berghofe@13403
   101
berghofe@13403
   102
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   103
     typeof (P \<and> Q) \<equiv> Type (TYPE('P))"
berghofe@13403
   104
berghofe@13403
   105
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
   106
     typeof (P \<and> Q) \<equiv> Type (TYPE('P \<times> 'Q))"
berghofe@13403
   107
berghofe@13403
   108
  "typeof (P = Q) \<equiv> typeof ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P))"
berghofe@13403
   109
berghofe@13403
   110
  "typeof (x \<in> P) \<equiv> typeof P"
berghofe@13403
   111
berghofe@13403
   112
subsection {* Realizability *}
berghofe@13403
   113
berghofe@13403
   114
realizability
berghofe@13403
   115
  "(realizes t (Trueprop P)) \<equiv> (Trueprop (realizes t P))"
berghofe@13403
   116
berghofe@13403
   117
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   118
     (realizes t (P \<longrightarrow> Q)) \<equiv> (realizes Null P \<longrightarrow> realizes t Q)"
berghofe@13403
   119
berghofe@13403
   120
  "(typeof P) \<equiv> (Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
   121
   (typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   122
     (realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x::'P. realizes x P \<longrightarrow> realizes Null Q)"
berghofe@13403
   123
berghofe@13403
   124
  "(realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x. realizes x P \<longrightarrow> realizes (t x) Q)"
berghofe@13403
   125
berghofe@13403
   126
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   127
     (realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes Null (P x))"
berghofe@13403
   128
berghofe@13403
   129
  "(realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes (t x) (P x))"
berghofe@13403
   130
berghofe@13403
   131
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   132
     (realizes t (\<exists>x. P x)) \<equiv> (realizes Null (P t))"
berghofe@13403
   133
berghofe@13403
   134
  "(realizes t (\<exists>x. P x)) \<equiv> (realizes (snd t) (P (fst t)))"
berghofe@13403
   135
berghofe@13403
   136
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   137
   (typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   138
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   139
     (case t of Left \<Rightarrow> realizes Null P | Right \<Rightarrow> realizes Null Q)"
berghofe@13403
   140
berghofe@13403
   141
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   142
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   143
     (case t of None \<Rightarrow> realizes Null P | Some q \<Rightarrow> realizes q Q)"
berghofe@13403
   144
berghofe@13403
   145
  "(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   146
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   147
     (case t of None \<Rightarrow> realizes Null Q | Some p \<Rightarrow> realizes p P)"
berghofe@13403
   148
berghofe@13403
   149
  "(realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   150
   (case t of Inl p \<Rightarrow> realizes p P | Inr q \<Rightarrow> realizes q Q)"
berghofe@13403
   151
berghofe@13403
   152
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   153
     (realizes t (P \<and> Q)) \<equiv> (realizes Null P \<and> realizes t Q)"
berghofe@13403
   154
berghofe@13403
   155
  "(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   156
     (realizes t (P \<and> Q)) \<equiv> (realizes t P \<and> realizes Null Q)"
berghofe@13403
   157
berghofe@13403
   158
  "(realizes t (P \<and> Q)) \<equiv> (realizes (fst t) P \<and> realizes (snd t) Q)"
berghofe@13403
   159
berghofe@13403
   160
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   161
     realizes t (\<not> P) \<equiv> \<not> realizes Null P"
berghofe@13403
   162
berghofe@13403
   163
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow>
berghofe@13403
   164
     realizes t (\<not> P) \<equiv> (\<forall>x::'P. \<not> realizes x P)"
berghofe@13403
   165
berghofe@13403
   166
  "typeof (P::bool) \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   167
   typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   168
     realizes t (P = Q) \<equiv> realizes Null P = realizes Null Q"
berghofe@13403
   169
berghofe@13403
   170
  "(realizes t (P = Q)) \<equiv> (realizes t ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)))"
berghofe@13403
   171
berghofe@13403
   172
subsection {* Computational content of basic inference rules *}
berghofe@13403
   173
berghofe@13403
   174
theorem disjE_realizer:
berghofe@13403
   175
  assumes r: "case x of Inl p \<Rightarrow> P p | Inr q \<Rightarrow> Q q"
berghofe@13403
   176
  and r1: "\<And>p. P p \<Longrightarrow> R (f p)" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
berghofe@13403
   177
  shows "R (case x of Inl p \<Rightarrow> f p | Inr q \<Rightarrow> g q)"
berghofe@13403
   178
proof (cases x)
berghofe@13403
   179
  case Inl
berghofe@13403
   180
  with r show ?thesis by simp (rule r1)
berghofe@13403
   181
next
berghofe@13403
   182
  case Inr
berghofe@13403
   183
  with r show ?thesis by simp (rule r2)
berghofe@13403
   184
qed
berghofe@13403
   185
berghofe@13403
   186
theorem disjE_realizer2:
berghofe@13403
   187
  assumes r: "case x of None \<Rightarrow> P | Some q \<Rightarrow> Q q"
berghofe@13403
   188
  and r1: "P \<Longrightarrow> R f" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
berghofe@13403
   189
  shows "R (case x of None \<Rightarrow> f | Some q \<Rightarrow> g q)"
berghofe@13403
   190
proof (cases x)
berghofe@13403
   191
  case None
berghofe@13403
   192
  with r show ?thesis by simp (rule r1)
berghofe@13403
   193
next
berghofe@13403
   194
  case Some
berghofe@13403
   195
  with r show ?thesis by simp (rule r2)
berghofe@13403
   196
qed
berghofe@13403
   197
berghofe@13403
   198
theorem disjE_realizer3:
berghofe@13403
   199
  assumes r: "case x of Left \<Rightarrow> P | Right \<Rightarrow> Q"
berghofe@13403
   200
  and r1: "P \<Longrightarrow> R f" and r2: "Q \<Longrightarrow> R g"
berghofe@13403
   201
  shows "R (case x of Left \<Rightarrow> f | Right \<Rightarrow> g)"
berghofe@13403
   202
proof (cases x)
berghofe@13403
   203
  case Left
berghofe@13403
   204
  with r show ?thesis by simp (rule r1)
berghofe@13403
   205
next
berghofe@13403
   206
  case Right
berghofe@13403
   207
  with r show ?thesis by simp (rule r2)
berghofe@13403
   208
qed
berghofe@13403
   209
berghofe@13403
   210
theorem conjI_realizer:
berghofe@13403
   211
  "P p \<Longrightarrow> Q q \<Longrightarrow> P (fst (p, q)) \<and> Q (snd (p, q))"
berghofe@13403
   212
  by simp
berghofe@13403
   213
berghofe@13403
   214
theorem exI_realizer:
berghofe@13918
   215
  "P y x \<Longrightarrow> P (snd (x, y)) (fst (x, y))" by simp
berghofe@13918
   216
berghofe@13918
   217
theorem exE_realizer: "P (snd p) (fst p) \<Longrightarrow>
berghofe@15393
   218
  (\<And>x y. P y x \<Longrightarrow> Q (f x y)) \<Longrightarrow> Q (let (x, y) = p in f x y)"
berghofe@15393
   219
  by (cases p) (simp add: Let_def)
berghofe@13918
   220
berghofe@13918
   221
theorem exE_realizer': "P (snd p) (fst p) \<Longrightarrow>
berghofe@13918
   222
  (\<And>x y. P y x \<Longrightarrow> Q) \<Longrightarrow> Q" by (cases p) simp
berghofe@13403
   223
berghofe@13403
   224
realizers
berghofe@13725
   225
  impI (P, Q): "\<lambda>pq. pq"
skalberg@14168
   226
    "\<Lambda> P Q pq (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   227
berghofe@13403
   228
  impI (P): "Null"
skalberg@14168
   229
    "\<Lambda> P Q (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   230
skalberg@14168
   231
  impI (Q): "\<lambda>q. q" "\<Lambda> P Q q. impI \<cdot> _ \<cdot> _"
berghofe@13403
   232
berghofe@13725
   233
  impI: "Null" "impI"
berghofe@13403
   234
berghofe@13725
   235
  mp (P, Q): "\<lambda>pq. pq"
skalberg@14168
   236
    "\<Lambda> P Q pq (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   237
berghofe@13403
   238
  mp (P): "Null"
skalberg@14168
   239
    "\<Lambda> P Q (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   240
skalberg@14168
   241
  mp (Q): "\<lambda>q. q" "\<Lambda> P Q q. mp \<cdot> _ \<cdot> _"
berghofe@13403
   242
berghofe@13725
   243
  mp: "Null" "mp"
berghofe@13403
   244
skalberg@14168
   245
  allI (P): "\<lambda>p. p" "\<Lambda> P p. allI \<cdot> _"
berghofe@13403
   246
berghofe@13725
   247
  allI: "Null" "allI"
berghofe@13403
   248
skalberg@14168
   249
  spec (P): "\<lambda>x p. p x" "\<Lambda> P x p. spec \<cdot> _ \<cdot> x"
berghofe@13403
   250
berghofe@13725
   251
  spec: "Null" "spec"
berghofe@13403
   252
skalberg@14168
   253
  exI (P): "\<lambda>x p. (x, p)" "\<Lambda> P x p. exI_realizer \<cdot> P \<cdot> p \<cdot> x"
berghofe@13403
   254
skalberg@14168
   255
  exI: "\<lambda>x. x" "\<Lambda> P x (h: _). h"
berghofe@13403
   256
berghofe@15393
   257
  exE (P, Q): "\<lambda>p pq. let (x, y) = p in pq x y"
skalberg@14168
   258
    "\<Lambda> P Q p (h: _) pq. exE_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> pq \<bullet> h"
berghofe@13403
   259
berghofe@13403
   260
  exE (P): "Null"
skalberg@14168
   261
    "\<Lambda> P Q p. exE_realizer' \<cdot> _ \<cdot> _ \<cdot> _"
berghofe@13403
   262
berghofe@13725
   263
  exE (Q): "\<lambda>x pq. pq x"
skalberg@14168
   264
    "\<Lambda> P Q x (h1: _) pq (h2: _). h2 \<cdot> x \<bullet> h1"
berghofe@13403
   265
berghofe@13403
   266
  exE: "Null"
skalberg@14168
   267
    "\<Lambda> P Q x (h1: _) (h2: _). h2 \<cdot> x \<bullet> h1"
berghofe@13403
   268
berghofe@13725
   269
  conjI (P, Q): "Pair"
skalberg@14168
   270
    "\<Lambda> P Q p (h: _) q. conjI_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> q \<bullet> h"
berghofe@13403
   271
berghofe@13725
   272
  conjI (P): "\<lambda>p. p"
skalberg@14168
   273
    "\<Lambda> P Q p. conjI \<cdot> _ \<cdot> _"
berghofe@13403
   274
berghofe@13725
   275
  conjI (Q): "\<lambda>q. q"
skalberg@14168
   276
    "\<Lambda> P Q (h: _) q. conjI \<cdot> _ \<cdot> _ \<bullet> h"
berghofe@13403
   277
berghofe@13725
   278
  conjI: "Null" "conjI"
berghofe@13403
   279
berghofe@13725
   280
  conjunct1 (P, Q): "fst"
skalberg@14168
   281
    "\<Lambda> P Q pq. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   282
berghofe@13725
   283
  conjunct1 (P): "\<lambda>p. p"
skalberg@14168
   284
    "\<Lambda> P Q p. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   285
berghofe@13403
   286
  conjunct1 (Q): "Null"
skalberg@14168
   287
    "\<Lambda> P Q q. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   288
berghofe@13725
   289
  conjunct1: "Null" "conjunct1"
berghofe@13403
   290
berghofe@13725
   291
  conjunct2 (P, Q): "snd"
skalberg@14168
   292
    "\<Lambda> P Q pq. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   293
berghofe@13403
   294
  conjunct2 (P): "Null"
skalberg@14168
   295
    "\<Lambda> P Q p. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   296
berghofe@13725
   297
  conjunct2 (Q): "\<lambda>p. p"
skalberg@14168
   298
    "\<Lambda> P Q p. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   299
berghofe@13725
   300
  conjunct2: "Null" "conjunct2"
berghofe@13725
   301
berghofe@13725
   302
  disjI1 (P, Q): "Inl"
skalberg@14168
   303
    "\<Lambda> P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_1 \<cdot> P \<cdot> _ \<cdot> p)"
berghofe@13403
   304
berghofe@13725
   305
  disjI1 (P): "Some"
skalberg@14168
   306
    "\<Lambda> P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> P \<cdot> p)"
berghofe@13403
   307
berghofe@13725
   308
  disjI1 (Q): "None"
skalberg@14168
   309
    "\<Lambda> P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   310
berghofe@13725
   311
  disjI1: "Left"
skalberg@14168
   312
    "\<Lambda> P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   313
berghofe@13725
   314
  disjI2 (P, Q): "Inr"
skalberg@14168
   315
    "\<Lambda> Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
berghofe@13403
   316
berghofe@13725
   317
  disjI2 (P): "None"
skalberg@14168
   318
    "\<Lambda> Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   319
berghofe@13725
   320
  disjI2 (Q): "Some"
skalberg@14168
   321
    "\<Lambda> Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
berghofe@13403
   322
berghofe@13725
   323
  disjI2: "Right"
skalberg@14168
   324
    "\<Lambda> Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_2 \<cdot> _ \<cdot> _)"
berghofe@13403
   325
berghofe@13725
   326
  disjE (P, Q, R): "\<lambda>pq pr qr.
berghofe@13403
   327
     (case pq of Inl p \<Rightarrow> pr p | Inr q \<Rightarrow> qr q)"
skalberg@14168
   328
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   329
       disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   330
berghofe@13725
   331
  disjE (Q, R): "\<lambda>pq pr qr.
berghofe@13403
   332
     (case pq of None \<Rightarrow> pr | Some q \<Rightarrow> qr q)"
skalberg@14168
   333
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   334
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   335
berghofe@13725
   336
  disjE (P, R): "\<lambda>pq pr qr.
berghofe@13403
   337
     (case pq of None \<Rightarrow> qr | Some p \<Rightarrow> pr p)"
skalberg@14168
   338
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr (h3: _).
berghofe@13725
   339
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> qr \<cdot> pr \<bullet> h1 \<bullet> h3 \<bullet> h2"
berghofe@13403
   340
berghofe@13725
   341
  disjE (R): "\<lambda>pq pr qr.
berghofe@13403
   342
     (case pq of Left \<Rightarrow> pr | Right \<Rightarrow> qr)"
skalberg@14168
   343
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   344
       disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   345
berghofe@13403
   346
  disjE (P, Q): "Null"
skalberg@14168
   347
    "\<Lambda> P Q R pq. disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   348
berghofe@13403
   349
  disjE (Q): "Null"
skalberg@14168
   350
    "\<Lambda> P Q R pq. disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   351
berghofe@13403
   352
  disjE (P): "Null"
skalberg@14168
   353
    "\<Lambda> P Q R pq (h1: _) (h2: _) (h3: _).
berghofe@13725
   354
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _ \<bullet> h1 \<bullet> h3 \<bullet> h2"
berghofe@13403
   355
berghofe@13403
   356
  disjE: "Null"
skalberg@14168
   357
    "\<Lambda> P Q R pq. disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   358
berghofe@13725
   359
  FalseE (P): "arbitrary"
skalberg@14168
   360
    "\<Lambda> P. FalseE \<cdot> _"
berghofe@13403
   361
berghofe@13725
   362
  FalseE: "Null" "FalseE"
berghofe@13403
   363
berghofe@13403
   364
  notI (P): "Null"
skalberg@14168
   365
    "\<Lambda> P (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. notI \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   366
berghofe@13725
   367
  notI: "Null" "notI"
berghofe@13403
   368
berghofe@13725
   369
  notE (P, R): "\<lambda>p. arbitrary"
skalberg@14168
   370
    "\<Lambda> P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   371
berghofe@13403
   372
  notE (P): "Null"
skalberg@14168
   373
    "\<Lambda> P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   374
berghofe@13725
   375
  notE (R): "arbitrary"
skalberg@14168
   376
    "\<Lambda> P R. notE \<cdot> _ \<cdot> _"
berghofe@13403
   377
berghofe@13725
   378
  notE: "Null" "notE"
berghofe@13403
   379
berghofe@13725
   380
  subst (P): "\<lambda>s t ps. ps"
skalberg@14168
   381
    "\<Lambda> s t P (h: _) ps. subst \<cdot> s \<cdot> t \<cdot> P ps \<bullet> h"
berghofe@13403
   382
berghofe@13725
   383
  subst: "Null" "subst"
berghofe@13725
   384
berghofe@13725
   385
  iffD1 (P, Q): "fst"
skalberg@14168
   386
    "\<Lambda> Q P pq (h: _) p.
berghofe@13403
   387
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   388
berghofe@13725
   389
  iffD1 (P): "\<lambda>p. p"
skalberg@14168
   390
    "\<Lambda> Q P p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h)"
berghofe@13403
   391
berghofe@13403
   392
  iffD1 (Q): "Null"
skalberg@14168
   393
    "\<Lambda> Q P q1 (h: _) q2.
berghofe@13403
   394
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   395
berghofe@13725
   396
  iffD1: "Null" "iffD1"
berghofe@13403
   397
berghofe@13725
   398
  iffD2 (P, Q): "snd"
skalberg@14168
   399
    "\<Lambda> P Q pq (h: _) q.
berghofe@13403
   400
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   401
berghofe@13725
   402
  iffD2 (P): "\<lambda>p. p"
skalberg@14168
   403
    "\<Lambda> P Q p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h)"
berghofe@13403
   404
berghofe@13403
   405
  iffD2 (Q): "Null"
skalberg@14168
   406
    "\<Lambda> P Q q1 (h: _) q2.
berghofe@13403
   407
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   408
berghofe@13725
   409
  iffD2: "Null" "iffD2"
berghofe@13403
   410
berghofe@13725
   411
  iffI (P, Q): "Pair"
skalberg@14168
   412
    "\<Lambda> P Q pq (h1 : _) qp (h2 : _). conjI_realizer \<cdot>
berghofe@13725
   413
       (\<lambda>pq. \<forall>x. P x \<longrightarrow> Q (pq x)) \<cdot> pq \<cdot>
berghofe@13725
   414
       (\<lambda>qp. \<forall>x. Q x \<longrightarrow> P (qp x)) \<cdot> qp \<bullet>
skalberg@14168
   415
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
skalberg@14168
   416
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
berghofe@13403
   417
berghofe@13725
   418
  iffI (P): "\<lambda>p. p"
skalberg@14168
   419
    "\<Lambda> P Q (h1 : _) p (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
skalberg@14168
   420
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
berghofe@13403
   421
       (impI \<cdot> _ \<cdot> _ \<bullet> h2)"
berghofe@13403
   422
berghofe@13725
   423
  iffI (Q): "\<lambda>q. q"
skalberg@14168
   424
    "\<Lambda> P Q q (h1 : _) (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
berghofe@13403
   425
       (impI \<cdot> _ \<cdot> _ \<bullet> h1) \<bullet>
skalberg@14168
   426
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
berghofe@13403
   427
berghofe@13725
   428
  iffI: "Null" "iffI"
berghofe@13403
   429
berghofe@13725
   430
(*
berghofe@13403
   431
  classical: "Null"
skalberg@14168
   432
    "\<Lambda> P. classical \<cdot> _"
berghofe@13725
   433
*)
berghofe@13403
   434
berghofe@13403
   435
end