src/HOL/Nat.ML
author wenzelm
Mon Mar 13 16:23:34 2000 +0100 (2000-03-13)
changeset 8442 96023903c2df
parent 8423 3c19160b6432
child 8942 6aad5381ba83
permissions -rw-r--r--
case_tac now subsumes both boolean and datatype cases;
oheimb@2441
     1
(*  Title:      HOL/Nat.ML
clasohm@923
     2
    ID:         $Id$
nipkow@2608
     3
    Author:     Tobias Nipkow
nipkow@2608
     4
    Copyright   1997 TU Muenchen
clasohm@923
     5
*)
clasohm@923
     6
berghofe@5188
     7
(** conversion rules for nat_rec **)
berghofe@5188
     8
berghofe@5188
     9
val [nat_rec_0, nat_rec_Suc] = nat.recs;
berghofe@5188
    10
berghofe@5188
    11
(*These 2 rules ease the use of primitive recursion.  NOTE USE OF == *)
paulson@5316
    12
val prems = Goal
berghofe@5188
    13
    "[| !!n. f(n) == nat_rec c h n |] ==> f(0) = c";
berghofe@5188
    14
by (simp_tac (simpset() addsimps prems) 1);
berghofe@5188
    15
qed "def_nat_rec_0";
berghofe@5188
    16
paulson@5316
    17
val prems = Goal
berghofe@5188
    18
    "[| !!n. f(n) == nat_rec c h n |] ==> f(Suc(n)) = h n (f n)";
berghofe@5188
    19
by (simp_tac (simpset() addsimps prems) 1);
berghofe@5188
    20
qed "def_nat_rec_Suc";
berghofe@5188
    21
berghofe@5188
    22
val [nat_case_0, nat_case_Suc] = nat.cases;
berghofe@5188
    23
berghofe@5188
    24
Goal "n ~= 0 ==> EX m. n = Suc m";
wenzelm@8442
    25
by (case_tac "n" 1);
berghofe@5188
    26
by (REPEAT (Blast_tac 1));
berghofe@5188
    27
qed "not0_implies_Suc";
berghofe@5188
    28
paulson@5316
    29
Goal "m<n ==> n ~= 0";
wenzelm@8442
    30
by (case_tac "n" 1);
berghofe@5188
    31
by (ALLGOALS Asm_full_simp_tac);
berghofe@5188
    32
qed "gr_implies_not0";
berghofe@5188
    33
berghofe@5188
    34
Goal "(n ~= 0) = (0 < n)";
wenzelm@8442
    35
by (case_tac "n" 1);
paulson@7089
    36
by Auto_tac;
berghofe@5188
    37
qed "neq0_conv";
berghofe@5188
    38
AddIffs [neq0_conv];
berghofe@5188
    39
nipkow@5644
    40
Goal "(0 ~= n) = (0 < n)";
wenzelm@8442
    41
by (case_tac "n" 1);
paulson@7089
    42
by Auto_tac;
nipkow@5644
    43
qed "zero_neq_conv";
nipkow@5644
    44
AddIffs [zero_neq_conv];
nipkow@5644
    45
berghofe@5188
    46
(*This theorem is useful with blast_tac: (n=0 ==> False) ==> 0<n *)
berghofe@5188
    47
bind_thm ("gr0I", [neq0_conv, notI] MRS iffD1);
berghofe@5188
    48
nipkow@8115
    49
Goal "(0<n) = (EX m. n = Suc m)";
nipkow@8115
    50
by(fast_tac (claset() addIs [not0_implies_Suc]) 1);
nipkow@8115
    51
qed "gr0_conv_Suc";
nipkow@8115
    52
berghofe@5188
    53
Goal "(~(0 < n)) = (n=0)";
berghofe@5188
    54
by (rtac iffI 1);
berghofe@5188
    55
 by (etac swap 1);
berghofe@5188
    56
 by (ALLGOALS Asm_full_simp_tac);
berghofe@5188
    57
qed "not_gr0";
nipkow@6109
    58
AddIffs [not_gr0];
berghofe@5188
    59
oheimb@8260
    60
Goal "(Suc n <= m') --> (? m. m' = Suc m)";
oheimb@8260
    61
by (induct_tac "m'" 1);
oheimb@8260
    62
by  Auto_tac;
oheimb@8260
    63
qed_spec_mp "Suc_le_D";
oheimb@8260
    64
paulson@6805
    65
(*Useful in certain inductive arguments*)
paulson@6805
    66
Goal "(m < Suc n) = (m=0 | (EX j. m = Suc j & j < n))";
wenzelm@8442
    67
by (case_tac "m" 1);
paulson@6805
    68
by Auto_tac;
paulson@6805
    69
qed "less_Suc_eq_0_disj";
paulson@6805
    70
paulson@7058
    71
Goalw [Least_nat_def]
paulson@7058
    72
 "[| ? n. P(Suc n); ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))";
paulson@7058
    73
by (rtac select_equality 1);
paulson@7058
    74
by (fold_goals_tac [Least_nat_def]);
paulson@7058
    75
by (safe_tac (claset() addSEs [LeastI]));
paulson@7058
    76
by (rename_tac "j" 1);
wenzelm@8442
    77
by (case_tac "j" 1);
paulson@7058
    78
by (Blast_tac 1);
paulson@7058
    79
by (blast_tac (claset() addDs [Suc_less_SucD, not_less_Least]) 1);
paulson@7058
    80
by (rename_tac "k n" 1);
wenzelm@8442
    81
by (case_tac "k" 1);
paulson@7058
    82
by (Blast_tac 1);
paulson@7058
    83
by (hyp_subst_tac 1);
paulson@7058
    84
by (rewtac Least_nat_def);
paulson@7058
    85
by (rtac (select_equality RS arg_cong RS sym) 1);
paulson@7089
    86
by (blast_tac (claset() addDs [Suc_mono]) 1);
paulson@7089
    87
by (cut_inst_tac [("m","m")] less_linear 1);
paulson@7089
    88
by (blast_tac (claset() addIs [Suc_mono]) 1);
paulson@7058
    89
qed "Least_Suc";
berghofe@5188
    90
paulson@7058
    91
val prems = Goal "[| P 0; P 1; !!k. P k ==> P (Suc (Suc k)) |] ==> P n";
paulson@7058
    92
by (rtac less_induct 1);
wenzelm@8442
    93
by (case_tac "n" 1);
wenzelm@8442
    94
by (case_tac "nat" 2);
paulson@7089
    95
by (ALLGOALS (blast_tac (claset() addIs prems@[less_trans])));
paulson@7058
    96
qed "nat_induct2";
berghofe@5188
    97
wenzelm@5069
    98
Goal "min 0 n = 0";
paulson@3023
    99
by (rtac min_leastL 1);
nipkow@5983
   100
by (Simp_tac 1);
nipkow@2608
   101
qed "min_0L";
nipkow@1301
   102
wenzelm@5069
   103
Goal "min n 0 = 0";
paulson@3023
   104
by (rtac min_leastR 1);
nipkow@5983
   105
by (Simp_tac 1);
nipkow@2608
   106
qed "min_0R";
clasohm@923
   107
wenzelm@5069
   108
Goalw [min_def] "min (Suc m) (Suc n) = Suc(min m n)";
paulson@3023
   109
by (Simp_tac 1);
nipkow@2608
   110
qed "min_Suc_Suc";
oheimb@1660
   111
nipkow@2608
   112
Addsimps [min_0L,min_0R,min_Suc_Suc];
nipkow@6433
   113
nipkow@6433
   114
Goalw [max_def] "max 0 n = n";
nipkow@6433
   115
by (Simp_tac 1);
nipkow@6433
   116
qed "max_0L";
nipkow@6433
   117
nipkow@6433
   118
Goalw [max_def] "max n 0 = n";
nipkow@6433
   119
by (Simp_tac 1);
nipkow@6433
   120
qed "max_0R";
nipkow@6433
   121
nipkow@6433
   122
Goalw [max_def] "max (Suc m) (Suc n) = Suc(max m n)";
nipkow@6433
   123
by (Simp_tac 1);
nipkow@6433
   124
qed "max_Suc_Suc";
nipkow@6433
   125
nipkow@6433
   126
Addsimps [max_0L,max_0R,max_Suc_Suc];