src/HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
author bulwahn
Mon Sep 13 16:44:19 2010 +0200 (2010-09-13)
changeset 39312 968c33be5c96
parent 39311 2bd067f80b92
child 39382 c797f3ab2ae1
permissions -rw-r--r--
handling function types more carefully than in e98a06145530
wenzelm@33265
     1
(*  Title:      HOL/Tools/Predicate_Compile/predicate_compile_aux.ML
wenzelm@33265
     2
    Author:     Lukas Bulwahn, TU Muenchen
bulwahn@33250
     3
wenzelm@33265
     4
Auxilary functions for predicate compiler.
bulwahn@33250
     5
*)
bulwahn@33250
     6
bulwahn@36047
     7
signature PREDICATE_COMPILE_AUX =
bulwahn@36047
     8
sig
bulwahn@36047
     9
  (* general functions *)
bulwahn@36047
    10
  val apfst3 : ('a -> 'd) -> 'a * 'b * 'c -> 'd * 'b * 'c
bulwahn@36047
    11
  val apsnd3 : ('b -> 'd) -> 'a * 'b * 'c -> 'a * 'd * 'c
bulwahn@36047
    12
  val aptrd3 : ('c -> 'd) -> 'a * 'b * 'c -> 'a * 'b * 'd
bulwahn@36047
    13
  val find_indices : ('a -> bool) -> 'a list -> int list
bulwahn@36047
    14
  val assert : bool -> unit
bulwahn@36047
    15
  (* mode *)
bulwahn@36047
    16
  datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@36047
    17
  val eq_mode : mode * mode -> bool
bulwahn@39311
    18
  val mode_ord: mode * mode -> order
bulwahn@36047
    19
  val list_fun_mode : mode list -> mode
bulwahn@36047
    20
  val strip_fun_mode : mode -> mode list
bulwahn@36047
    21
  val dest_fun_mode : mode -> mode list
bulwahn@36047
    22
  val dest_tuple_mode : mode -> mode list
bulwahn@36047
    23
  val all_modes_of_typ : typ -> mode list
bulwahn@36047
    24
  val all_smodes_of_typ : typ -> mode list
bulwahn@36047
    25
  val fold_map_aterms_prodT : ('a -> 'a -> 'a) -> (typ -> 'b -> 'a * 'b) -> typ -> 'b -> 'a * 'b
bulwahn@36047
    26
  val map_filter_prod : (term -> term option) -> term -> term option
bulwahn@36047
    27
  val replace_ho_args : mode -> term list -> term list -> term list
bulwahn@36047
    28
  val ho_arg_modes_of : mode -> mode list
bulwahn@36047
    29
  val ho_argsT_of : mode -> typ list -> typ list
bulwahn@36047
    30
  val ho_args_of : mode -> term list -> term list
bulwahn@39299
    31
  val ho_args_of_typ : typ -> term list -> term list
bulwahn@39299
    32
  val ho_argsT_of_typ : typ list -> typ list
bulwahn@36047
    33
  val split_map_mode : (mode -> term -> term option * term option)
bulwahn@36047
    34
    -> mode -> term list -> term list * term list
bulwahn@36047
    35
  val split_map_modeT : (mode -> typ -> typ option * typ option)
bulwahn@36047
    36
    -> mode -> typ list -> typ list * typ list
bulwahn@36047
    37
  val split_mode : mode -> term list -> term list * term list
bulwahn@36047
    38
  val split_modeT' : mode -> typ list -> typ list * typ list
bulwahn@36047
    39
  val string_of_mode : mode -> string
bulwahn@36047
    40
  val ascii_string_of_mode : mode -> string
bulwahn@36047
    41
  (* premises *)
bulwahn@36047
    42
  datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@36047
    43
    | Generator of (string * typ)
bulwahn@36251
    44
  val dest_indprem : indprem -> term
bulwahn@36254
    45
  val map_indprem : (term -> term) -> indprem -> indprem
bulwahn@36047
    46
  (* general syntactic functions *)
bulwahn@36047
    47
  val conjuncts : term -> term list
bulwahn@36047
    48
  val is_equationlike : thm -> bool
bulwahn@36047
    49
  val is_pred_equation : thm -> bool
bulwahn@36047
    50
  val is_intro : string -> thm -> bool
bulwahn@36047
    51
  val is_predT : typ -> bool
bulwahn@36047
    52
  val is_constrt : theory -> term -> bool
bulwahn@36047
    53
  val is_constr : Proof.context -> string -> bool
bulwahn@36047
    54
  val focus_ex : term -> Name.context -> ((string * typ) list * term) * Name.context
bulwahn@36047
    55
  val strip_all : term -> (string * typ) list * term
bulwahn@36047
    56
  (* introduction rule combinators *)
bulwahn@36047
    57
  val map_atoms : (term -> term) -> term -> term
bulwahn@36047
    58
  val fold_atoms : (term -> 'a -> 'a) -> term -> 'a -> 'a
bulwahn@36047
    59
  val fold_map_atoms : (term -> 'a -> term * 'a) -> term -> 'a -> term * 'a
bulwahn@36047
    60
  val maps_premises : (term -> term list) -> term -> term
bulwahn@36047
    61
  val map_concl : (term -> term) -> term -> term
bulwahn@36047
    62
  val map_term : theory -> (term -> term) -> thm -> thm
bulwahn@36047
    63
  (* split theorems of case expressions *)
bulwahn@36047
    64
  val prepare_split_thm : Proof.context -> thm -> thm
bulwahn@36047
    65
  val find_split_thm : theory -> term -> thm option
bulwahn@36047
    66
  (* datastructures and setup for generic compilation *)
bulwahn@36047
    67
  datatype compilation_funs = CompilationFuns of {
bulwahn@36047
    68
    mk_predT : typ -> typ,
bulwahn@36047
    69
    dest_predT : typ -> typ,
bulwahn@36047
    70
    mk_bot : typ -> term,
bulwahn@36047
    71
    mk_single : term -> term,
bulwahn@36047
    72
    mk_bind : term * term -> term,
bulwahn@36047
    73
    mk_sup : term * term -> term,
bulwahn@36047
    74
    mk_if : term -> term,
bulwahn@36049
    75
    mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36047
    76
    mk_not : term -> term,
bulwahn@36047
    77
    mk_map : typ -> typ -> term -> term -> term
bulwahn@36047
    78
  };
bulwahn@36047
    79
  val mk_predT : compilation_funs -> typ -> typ
bulwahn@36047
    80
  val dest_predT : compilation_funs -> typ -> typ
bulwahn@36047
    81
  val mk_bot : compilation_funs -> typ -> term
bulwahn@36047
    82
  val mk_single : compilation_funs -> term -> term
bulwahn@36047
    83
  val mk_bind : compilation_funs -> term * term -> term
bulwahn@36047
    84
  val mk_sup : compilation_funs -> term * term -> term
bulwahn@36047
    85
  val mk_if : compilation_funs -> term -> term
bulwahn@36049
    86
  val mk_iterate_upto : compilation_funs -> typ -> term * term * term -> term
bulwahn@36047
    87
  val mk_not : compilation_funs -> term -> term
bulwahn@36047
    88
  val mk_map : compilation_funs -> typ -> typ -> term -> term -> term
bulwahn@36047
    89
  val funT_of : compilation_funs -> mode -> typ -> typ
bulwahn@36047
    90
  (* Different compilations *)
bulwahn@36047
    91
  datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@36047
    92
    | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@36047
    93
  val negative_compilation_of : compilation -> compilation
bulwahn@36047
    94
  val compilation_for_polarity : bool -> compilation -> compilation
bulwahn@36047
    95
  val string_of_compilation : compilation -> string
bulwahn@36047
    96
  val compilation_names : (string * compilation) list
bulwahn@36047
    97
  val non_random_compilations : compilation list
bulwahn@36047
    98
  val random_compilations : compilation list
bulwahn@36047
    99
  (* Different options for compiler *)
bulwahn@36047
   100
  datatype options = Options of {  
bulwahn@36047
   101
    expected_modes : (string * mode list) option,
bulwahn@36047
   102
    proposed_modes : (string * mode list) option,
bulwahn@36047
   103
    proposed_names : ((string * mode) * string) list,
bulwahn@36047
   104
    show_steps : bool,
bulwahn@36047
   105
    show_proof_trace : bool,
bulwahn@36047
   106
    show_intermediate_results : bool,
bulwahn@36047
   107
    show_mode_inference : bool,
bulwahn@36047
   108
    show_modes : bool,
bulwahn@36047
   109
    show_compilation : bool,
bulwahn@36047
   110
    show_caught_failures : bool,
bulwahn@36047
   111
    skip_proof : bool,
bulwahn@36047
   112
    no_topmost_reordering : bool,
bulwahn@36047
   113
    function_flattening : bool,
bulwahn@36047
   114
    fail_safe_function_flattening : bool,
bulwahn@36248
   115
    specialise : bool,
bulwahn@36047
   116
    no_higher_order_predicate : string list,
bulwahn@36047
   117
    inductify : bool,
bulwahn@36254
   118
    detect_switches : bool,
bulwahn@36047
   119
    compilation : compilation
bulwahn@36047
   120
  };
bulwahn@36047
   121
  val expected_modes : options -> (string * mode list) option
bulwahn@36047
   122
  val proposed_modes : options -> (string * mode list) option
bulwahn@36047
   123
  val proposed_names : options -> string -> mode -> string option
bulwahn@36047
   124
  val show_steps : options -> bool
bulwahn@36047
   125
  val show_proof_trace : options -> bool
bulwahn@36047
   126
  val show_intermediate_results : options -> bool
bulwahn@36047
   127
  val show_mode_inference : options -> bool
bulwahn@36047
   128
  val show_modes : options -> bool
bulwahn@36047
   129
  val show_compilation : options -> bool
bulwahn@36047
   130
  val show_caught_failures : options -> bool
bulwahn@36047
   131
  val skip_proof : options -> bool
bulwahn@36047
   132
  val no_topmost_reordering : options -> bool
bulwahn@36047
   133
  val function_flattening : options -> bool
bulwahn@36047
   134
  val fail_safe_function_flattening : options -> bool
bulwahn@36248
   135
  val specialise : options -> bool
bulwahn@36047
   136
  val no_higher_order_predicate : options -> string list
bulwahn@36047
   137
  val is_inductify : options -> bool
bulwahn@36254
   138
  val detect_switches : options -> bool
bulwahn@36047
   139
  val compilation : options -> compilation
bulwahn@36047
   140
  val default_options : options
bulwahn@36047
   141
  val bool_options : string list
bulwahn@36047
   142
  val print_step : options -> string -> unit
bulwahn@36047
   143
  (* simple transformations *)
bulwahn@36047
   144
  val expand_tuples : theory -> thm -> thm
bulwahn@36047
   145
  val eta_contract_ho_arguments : theory -> thm -> thm
bulwahn@36047
   146
  val remove_equalities : theory -> thm -> thm
bulwahn@36246
   147
  val remove_pointless_clauses : thm -> thm list
bulwahn@36246
   148
  val peephole_optimisation : theory -> thm -> thm option
bulwahn@36047
   149
end;
bulwahn@34948
   150
bulwahn@36047
   151
structure Predicate_Compile_Aux : PREDICATE_COMPILE_AUX =
bulwahn@33250
   152
struct
bulwahn@33250
   153
bulwahn@34948
   154
(* general functions *)
bulwahn@34948
   155
bulwahn@34948
   156
fun apfst3 f (x, y, z) = (f x, y, z)
bulwahn@34948
   157
fun apsnd3 f (x, y, z) = (x, f y, z)
bulwahn@34948
   158
fun aptrd3 f (x, y, z) = (x, y, f z)
bulwahn@34948
   159
bulwahn@34948
   160
fun comb_option f (SOME x1, SOME x2) = SOME (f (x1, x2))
bulwahn@34948
   161
  | comb_option f (NONE, SOME x2) = SOME x2
bulwahn@34948
   162
  | comb_option f (SOME x1, NONE) = SOME x1
bulwahn@34948
   163
  | comb_option f (NONE, NONE) = NONE
bulwahn@34948
   164
bulwahn@35885
   165
fun map2_optional f (x :: xs) (y :: ys) = f x (SOME y) :: (map2_optional f xs ys)
bulwahn@34948
   166
  | map2_optional f (x :: xs) [] = (f x NONE) :: (map2_optional f xs [])
bulwahn@34948
   167
  | map2_optional f [] [] = []
bulwahn@34948
   168
bulwahn@34948
   169
fun find_indices f xs =
bulwahn@34948
   170
  map_filter (fn (i, true) => SOME i | (i, false) => NONE) (map_index (apsnd f) xs)
bulwahn@33328
   171
bulwahn@35885
   172
fun assert check = if check then () else raise Fail "Assertion failed!"
bulwahn@35885
   173
bulwahn@33328
   174
(* mode *)
bulwahn@33328
   175
bulwahn@34948
   176
datatype mode = Bool | Input | Output | Pair of mode * mode | Fun of mode * mode
bulwahn@33619
   177
bulwahn@33623
   178
(* equality of instantiatedness with respect to equivalences:
bulwahn@33623
   179
  Pair Input Input == Input and Pair Output Output == Output *)
bulwahn@34948
   180
fun eq_mode (Fun (m1, m2), Fun (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   181
  | eq_mode (Pair (m1, m2), Pair (m3, m4)) = eq_mode (m1, m3) andalso eq_mode (m2, m4)
bulwahn@34948
   182
  | eq_mode (Pair (m1, m2), Input) = eq_mode (m1, Input) andalso eq_mode (m2, Input)
bulwahn@34948
   183
  | eq_mode (Pair (m1, m2), Output) = eq_mode (m1, Output) andalso eq_mode (m2, Output)
bulwahn@34948
   184
  | eq_mode (Input, Pair (m1, m2)) = eq_mode (Input, m1) andalso eq_mode (Input, m2)
bulwahn@34948
   185
  | eq_mode (Output, Pair (m1, m2)) = eq_mode (Output, m1) andalso eq_mode (Output, m2)
bulwahn@34948
   186
  | eq_mode (Input, Input) = true
bulwahn@34948
   187
  | eq_mode (Output, Output) = true
bulwahn@34948
   188
  | eq_mode (Bool, Bool) = true
bulwahn@34948
   189
  | eq_mode _ = false
bulwahn@33623
   190
bulwahn@39311
   191
fun mode_ord (Input, Output) = LESS
bulwahn@39311
   192
  | mode_ord (Output, Input) = GREATER
bulwahn@39311
   193
  | mode_ord (Input, Input) = EQUAL
bulwahn@39311
   194
  | mode_ord (Output, Output) = EQUAL
bulwahn@39311
   195
  | mode_ord (Bool, Bool) = EQUAL
bulwahn@39311
   196
  | mode_ord (Pair (m1, m2), Pair (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   197
  | mode_ord (Fun (m1, m2), Fun (m3, m4)) = prod_ord mode_ord mode_ord ((m1, m2), (m3, m4))
bulwahn@39311
   198
 
bulwahn@36035
   199
fun list_fun_mode [] = Bool
bulwahn@36035
   200
  | list_fun_mode (m :: ms) = Fun (m, list_fun_mode ms)
bulwahn@36035
   201
bulwahn@33619
   202
(* name: binder_modes? *)
bulwahn@33619
   203
fun strip_fun_mode (Fun (mode, mode')) = mode :: strip_fun_mode mode'
bulwahn@33619
   204
  | strip_fun_mode Bool = []
bulwahn@35885
   205
  | strip_fun_mode _ = raise Fail "Bad mode for strip_fun_mode"
bulwahn@33619
   206
bulwahn@36047
   207
(* name: strip_fun_mode? *)
bulwahn@33619
   208
fun dest_fun_mode (Fun (mode, mode')) = mode :: dest_fun_mode mode'
bulwahn@33619
   209
  | dest_fun_mode mode = [mode]
bulwahn@33619
   210
bulwahn@33619
   211
fun dest_tuple_mode (Pair (mode, mode')) = mode :: dest_tuple_mode mode'
bulwahn@33619
   212
  | dest_tuple_mode _ = []
bulwahn@33619
   213
bulwahn@35324
   214
fun all_modes_of_typ' (T as Type ("fun", _)) = 
bulwahn@35324
   215
  let
bulwahn@35324
   216
    val (S, U) = strip_type T
bulwahn@35324
   217
  in
bulwahn@35324
   218
    if U = HOLogic.boolT then
bulwahn@35324
   219
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35324
   220
        (map all_modes_of_typ' S) [Bool]
bulwahn@35324
   221
    else
bulwahn@35324
   222
      [Input, Output]
bulwahn@35324
   223
  end
haftmann@37678
   224
  | all_modes_of_typ' (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   225
    map_product (curry Pair) (all_modes_of_typ' T1) (all_modes_of_typ' T2)
bulwahn@35324
   226
  | all_modes_of_typ' _ = [Input, Output]
bulwahn@35324
   227
bulwahn@35324
   228
fun all_modes_of_typ (T as Type ("fun", _)) =
bulwahn@35885
   229
    let
bulwahn@35885
   230
      val (S, U) = strip_type T
bulwahn@35885
   231
    in
bulwahn@35885
   232
      if U = @{typ bool} then
bulwahn@35885
   233
        fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2)
bulwahn@35885
   234
          (map all_modes_of_typ' S) [Bool]
bulwahn@35885
   235
      else
bulwahn@39192
   236
        raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@35885
   237
    end
bulwahn@35885
   238
  | all_modes_of_typ @{typ bool} = [Bool]
bulwahn@39192
   239
  | all_modes_of_typ T =
bulwahn@39192
   240
    raise Fail "Invocation of all_modes_of_typ with a non-predicate type"
bulwahn@34948
   241
bulwahn@35324
   242
fun all_smodes_of_typ (T as Type ("fun", _)) =
bulwahn@35324
   243
  let
bulwahn@35324
   244
    val (S, U) = strip_type T
haftmann@37678
   245
    fun all_smodes (Type (@{type_name Product_Type.prod}, [T1, T2])) = 
bulwahn@35324
   246
      map_product (curry Pair) (all_smodes T1) (all_smodes T2)
bulwahn@35324
   247
      | all_smodes _ = [Input, Output]
bulwahn@35324
   248
  in
bulwahn@35324
   249
    if U = HOLogic.boolT then
bulwahn@35324
   250
      fold_rev (fn m1 => fn m2 => map_product (curry Fun) m1 m2) (map all_smodes S) [Bool]
bulwahn@35324
   251
    else
bulwahn@36047
   252
      raise Fail "invalid type for predicate"
bulwahn@35324
   253
  end
bulwahn@35885
   254
bulwahn@34948
   255
fun ho_arg_modes_of mode =
bulwahn@34948
   256
  let
bulwahn@34948
   257
    fun ho_arg_mode (m as Fun _) =  [m]
bulwahn@34948
   258
      | ho_arg_mode (Pair (m1, m2)) = ho_arg_mode m1 @ ho_arg_mode m2
bulwahn@34948
   259
      | ho_arg_mode _ = []
bulwahn@34948
   260
  in
bulwahn@34948
   261
    maps ho_arg_mode (strip_fun_mode mode)
bulwahn@34948
   262
  end
bulwahn@34948
   263
bulwahn@34948
   264
fun ho_args_of mode ts =
bulwahn@34948
   265
  let
bulwahn@34948
   266
    fun ho_arg (Fun _) (SOME t) = [t]
bulwahn@36047
   267
      | ho_arg (Fun _) NONE = raise Fail "mode and term do not match"
bulwahn@35885
   268
      | ho_arg (Pair (m1, m2)) (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@34948
   269
          ho_arg m1 (SOME t1) @ ho_arg m2 (SOME t2)
bulwahn@34948
   270
      | ho_arg (Pair (m1, m2)) NONE = ho_arg m1 NONE @ ho_arg m2 NONE
bulwahn@34948
   271
      | ho_arg _ _ = []
bulwahn@34948
   272
  in
bulwahn@34948
   273
    flat (map2_optional ho_arg (strip_fun_mode mode) ts)
bulwahn@34948
   274
  end
bulwahn@34948
   275
bulwahn@39299
   276
fun ho_args_of_typ T ts =
bulwahn@39299
   277
  let
bulwahn@39312
   278
    fun ho_arg (T as Type("fun", [_,_])) (SOME t) = if body_type T = @{typ bool} then [t] else []
bulwahn@39299
   279
      | ho_arg (Type("fun", [_,_])) NONE = raise Fail "mode and term do not match"
bulwahn@39299
   280
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2]))
bulwahn@39299
   281
         (SOME (Const (@{const_name Pair}, _) $ t1 $ t2)) =
bulwahn@39299
   282
          ho_arg T1 (SOME t1) @ ho_arg T2 (SOME t2)
bulwahn@39299
   283
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) NONE =
bulwahn@39299
   284
          ho_arg T1 NONE @ ho_arg T2 NONE
bulwahn@39299
   285
      | ho_arg _ _ = []
bulwahn@39299
   286
  in
bulwahn@39299
   287
    flat (map2_optional ho_arg (binder_types T) ts)
bulwahn@39299
   288
  end
bulwahn@39299
   289
bulwahn@39299
   290
fun ho_argsT_of_typ Ts =
bulwahn@39299
   291
  let
bulwahn@39312
   292
    fun ho_arg (T as Type("fun", [_,_])) = if body_type T = @{typ bool} then [T] else []
bulwahn@39299
   293
      | ho_arg (Type(@{type_name "Product_Type.prod"}, [T1, T2])) =
bulwahn@39299
   294
          ho_arg T1 @ ho_arg T2
bulwahn@39299
   295
      | ho_arg _ = []
bulwahn@39299
   296
  in
bulwahn@39299
   297
    maps ho_arg Ts
bulwahn@39299
   298
  end
bulwahn@39299
   299
  
bulwahn@39299
   300
bulwahn@34948
   301
(* temporary function should be replaced by unsplit_input or so? *)
bulwahn@34948
   302
fun replace_ho_args mode hoargs ts =
bulwahn@34948
   303
  let
bulwahn@34948
   304
    fun replace (Fun _, _) (arg' :: hoargs') = (arg', hoargs')
haftmann@37391
   305
      | replace (Pair (m1, m2), Const (@{const_name Pair}, T) $ t1 $ t2) hoargs =
bulwahn@34948
   306
        let
bulwahn@34948
   307
          val (t1', hoargs') = replace (m1, t1) hoargs
bulwahn@34948
   308
          val (t2', hoargs'') = replace (m2, t2) hoargs'
bulwahn@34948
   309
        in
haftmann@37391
   310
          (Const (@{const_name Pair}, T) $ t1' $ t2', hoargs'')
bulwahn@34948
   311
        end
bulwahn@34948
   312
      | replace (_, t) hoargs = (t, hoargs)
bulwahn@34948
   313
  in
bulwahn@35885
   314
    fst (fold_map replace (strip_fun_mode mode ~~ ts) hoargs)
bulwahn@34948
   315
  end
bulwahn@34948
   316
bulwahn@34948
   317
fun ho_argsT_of mode Ts =
bulwahn@34948
   318
  let
bulwahn@34948
   319
    fun ho_arg (Fun _) T = [T]
haftmann@37678
   320
      | ho_arg (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) = ho_arg m1 T1 @ ho_arg m2 T2
bulwahn@34948
   321
      | ho_arg _ _ = []
bulwahn@34948
   322
  in
bulwahn@34948
   323
    flat (map2 ho_arg (strip_fun_mode mode) Ts)
bulwahn@34948
   324
  end
bulwahn@34948
   325
bulwahn@34948
   326
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   327
fun split_map_mode f mode ts =
bulwahn@34948
   328
  let
bulwahn@34948
   329
    fun split_arg_mode' (m as Fun _) t = f m t
haftmann@37391
   330
      | split_arg_mode' (Pair (m1, m2)) (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   331
        let
bulwahn@34948
   332
          val (i1, o1) = split_arg_mode' m1 t1
bulwahn@34948
   333
          val (i2, o2) = split_arg_mode' m2 t2
bulwahn@34948
   334
        in
bulwahn@34948
   335
          (comb_option HOLogic.mk_prod (i1, i2), comb_option HOLogic.mk_prod (o1, o2))
bulwahn@34948
   336
        end
bulwahn@35324
   337
      | split_arg_mode' m t =
bulwahn@35324
   338
        if eq_mode (m, Input) then (SOME t, NONE)
bulwahn@35324
   339
        else if eq_mode (m, Output) then (NONE,  SOME t)
bulwahn@35885
   340
        else raise Fail "split_map_mode: mode and term do not match"
bulwahn@34948
   341
  in
bulwahn@34948
   342
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) ts)
bulwahn@34948
   343
  end
bulwahn@34948
   344
bulwahn@34948
   345
(* splits mode and maps function to higher-order argument types *)
bulwahn@34948
   346
fun split_map_modeT f mode Ts =
bulwahn@34948
   347
  let
bulwahn@34948
   348
    fun split_arg_mode' (m as Fun _) T = f m T
haftmann@37678
   349
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   350
        let
bulwahn@34948
   351
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   352
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   353
        in
bulwahn@34948
   354
          (comb_option HOLogic.mk_prodT (i1, i2), comb_option HOLogic.mk_prodT (o1, o2))
bulwahn@34948
   355
        end
bulwahn@34948
   356
      | split_arg_mode' Input T = (SOME T, NONE)
bulwahn@34948
   357
      | split_arg_mode' Output T = (NONE,  SOME T)
bulwahn@35885
   358
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   359
  in
bulwahn@34948
   360
    (pairself (map_filter I) o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   361
  end
bulwahn@34948
   362
bulwahn@34948
   363
fun split_mode mode ts = split_map_mode (fn _ => fn _ => (NONE, NONE)) mode ts
bulwahn@34948
   364
haftmann@37678
   365
fun fold_map_aterms_prodT comb f (Type (@{type_name Product_Type.prod}, [T1, T2])) s =
bulwahn@34948
   366
  let
bulwahn@34948
   367
    val (x1, s') = fold_map_aterms_prodT comb f T1 s
bulwahn@34948
   368
    val (x2, s'') = fold_map_aterms_prodT comb f T2 s'
bulwahn@34948
   369
  in
bulwahn@34948
   370
    (comb x1 x2, s'')
bulwahn@34948
   371
  end
bulwahn@34948
   372
  | fold_map_aterms_prodT comb f T s = f T s
bulwahn@34948
   373
haftmann@37391
   374
fun map_filter_prod f (Const (@{const_name Pair}, _) $ t1 $ t2) =
bulwahn@34948
   375
  comb_option HOLogic.mk_prod (map_filter_prod f t1, map_filter_prod f t2)
bulwahn@34948
   376
  | map_filter_prod f t = f t
bulwahn@34948
   377
bulwahn@34948
   378
(* obviously, split_mode' and split_modeT' do not match? where does that cause problems? *)
bulwahn@34948
   379
  
bulwahn@34948
   380
fun split_modeT' mode Ts =
bulwahn@34948
   381
  let
bulwahn@34948
   382
    fun split_arg_mode' (Fun _) T = ([], [])
haftmann@37678
   383
      | split_arg_mode' (Pair (m1, m2)) (Type (@{type_name Product_Type.prod}, [T1, T2])) =
bulwahn@34948
   384
        let
bulwahn@34948
   385
          val (i1, o1) = split_arg_mode' m1 T1
bulwahn@34948
   386
          val (i2, o2) = split_arg_mode' m2 T2
bulwahn@34948
   387
        in
bulwahn@34948
   388
          (i1 @ i2, o1 @ o2)
bulwahn@34948
   389
        end
bulwahn@34948
   390
      | split_arg_mode' Input T = ([T], [])
bulwahn@34948
   391
      | split_arg_mode' Output T = ([], [T])
bulwahn@35885
   392
      | split_arg_mode' _ _ = raise Fail "split_modeT': mode and type do not match"
bulwahn@34948
   393
  in
bulwahn@34948
   394
    (pairself flat o split_list) (map2 split_arg_mode' (strip_fun_mode mode) Ts)
bulwahn@34948
   395
  end
bulwahn@34948
   396
bulwahn@34948
   397
fun string_of_mode mode =
bulwahn@33619
   398
  let
bulwahn@33619
   399
    fun string_of_mode1 Input = "i"
bulwahn@33619
   400
      | string_of_mode1 Output = "o"
bulwahn@33619
   401
      | string_of_mode1 Bool = "bool"
bulwahn@33619
   402
      | string_of_mode1 mode = "(" ^ (string_of_mode3 mode) ^ ")"
bulwahn@33626
   403
    and string_of_mode2 (Pair (m1, m2)) = string_of_mode3 m1 ^ " * " ^  string_of_mode2 m2
bulwahn@33619
   404
      | string_of_mode2 mode = string_of_mode1 mode
bulwahn@33619
   405
    and string_of_mode3 (Fun (m1, m2)) = string_of_mode2 m1 ^ " => " ^ string_of_mode3 m2
bulwahn@33619
   406
      | string_of_mode3 mode = string_of_mode2 mode
bulwahn@34948
   407
  in string_of_mode3 mode end
bulwahn@33619
   408
bulwahn@34948
   409
fun ascii_string_of_mode mode' =
bulwahn@33626
   410
  let
bulwahn@33626
   411
    fun ascii_string_of_mode' Input = "i"
bulwahn@33626
   412
      | ascii_string_of_mode' Output = "o"
bulwahn@33626
   413
      | ascii_string_of_mode' Bool = "b"
bulwahn@33626
   414
      | ascii_string_of_mode' (Pair (m1, m2)) =
bulwahn@33626
   415
          "P" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   416
      | ascii_string_of_mode' (Fun (m1, m2)) = 
bulwahn@33626
   417
          "F" ^ ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Fun m2 ^ "B"
bulwahn@33626
   418
    and ascii_string_of_mode'_Fun (Fun (m1, m2)) =
bulwahn@33626
   419
          ascii_string_of_mode' m1 ^ (if m2 = Bool then "" else "_" ^ ascii_string_of_mode'_Fun m2)
bulwahn@33626
   420
      | ascii_string_of_mode'_Fun Bool = "B"
bulwahn@33626
   421
      | ascii_string_of_mode'_Fun m = ascii_string_of_mode' m
bulwahn@33626
   422
    and ascii_string_of_mode'_Pair (Pair (m1, m2)) =
bulwahn@33626
   423
          ascii_string_of_mode' m1 ^ ascii_string_of_mode'_Pair m2
bulwahn@33626
   424
      | ascii_string_of_mode'_Pair m = ascii_string_of_mode' m
bulwahn@33626
   425
  in ascii_string_of_mode'_Fun mode' end
bulwahn@33626
   426
bulwahn@34948
   427
(* premises *)
bulwahn@33619
   428
bulwahn@34948
   429
datatype indprem = Prem of term | Negprem of term | Sidecond of term
bulwahn@34948
   430
  | Generator of (string * typ);
bulwahn@33619
   431
bulwahn@36251
   432
fun dest_indprem (Prem t) = t
bulwahn@36251
   433
  | dest_indprem (Negprem t) = t
bulwahn@36251
   434
  | dest_indprem (Sidecond t) = t
bulwahn@36251
   435
  | dest_indprem (Generator _) = raise Fail "cannot destruct generator"
bulwahn@36251
   436
bulwahn@36254
   437
fun map_indprem f (Prem t) = Prem (f t)
bulwahn@36254
   438
  | map_indprem f (Negprem t) = Negprem (f t)
bulwahn@36254
   439
  | map_indprem f (Sidecond t) = Sidecond (f t)
bulwahn@36254
   440
  | map_indprem f (Generator (v, T)) = Generator (dest_Free (f (Free (v, T))))
bulwahn@36254
   441
bulwahn@33250
   442
(* general syntactic functions *)
bulwahn@33250
   443
bulwahn@33250
   444
(*Like dest_conj, but flattens conjunctions however nested*)
haftmann@38795
   445
fun conjuncts_aux (Const (@{const_name HOL.conj}, _) $ t $ t') conjs = conjuncts_aux t (conjuncts_aux t' conjs)
bulwahn@33250
   446
  | conjuncts_aux t conjs = t::conjs;
bulwahn@33250
   447
bulwahn@33250
   448
fun conjuncts t = conjuncts_aux t [];
bulwahn@33250
   449
bulwahn@33250
   450
fun is_equationlike_term (Const ("==", _) $ _ $ _) = true
haftmann@38864
   451
  | is_equationlike_term (Const (@{const_name Trueprop}, _) $ (Const (@{const_name HOL.eq}, _) $ _ $ _)) = true
bulwahn@33250
   452
  | is_equationlike_term _ = false
bulwahn@33250
   453
  
bulwahn@33250
   454
val is_equationlike = is_equationlike_term o prop_of 
bulwahn@33250
   455
bulwahn@33250
   456
fun is_pred_equation_term (Const ("==", _) $ u $ v) =
bulwahn@33250
   457
  (fastype_of u = @{typ bool}) andalso (fastype_of v = @{typ bool})
bulwahn@33250
   458
  | is_pred_equation_term _ = false
bulwahn@33250
   459
  
bulwahn@33250
   460
val is_pred_equation = is_pred_equation_term o prop_of 
bulwahn@33250
   461
bulwahn@33250
   462
fun is_intro_term constname t =
bulwahn@34948
   463
  the_default false (try (fn t => case fst (strip_comb (HOLogic.dest_Trueprop (Logic.strip_imp_concl t))) of
bulwahn@33250
   464
    Const (c, _) => c = constname
bulwahn@34948
   465
  | _ => false) t)
bulwahn@33250
   466
  
bulwahn@33250
   467
fun is_intro constname t = is_intro_term constname (prop_of t)
bulwahn@33250
   468
haftmann@38552
   469
fun is_pred thy constname = (body_type (Sign.the_const_type thy constname) = HOLogic.boolT);
bulwahn@33250
   470
bulwahn@35885
   471
fun is_predT (T as Type("fun", [_, _])) = (snd (strip_type T) = @{typ bool})
bulwahn@33250
   472
  | is_predT _ = false
bulwahn@33250
   473
bulwahn@33250
   474
(*** check if a term contains only constructor functions ***)
bulwahn@34948
   475
(* TODO: another copy in the core! *)
bulwahn@33623
   476
(* FIXME: constructor terms are supposed to be seen in the way the code generator
bulwahn@33623
   477
  sees constructors.*)
bulwahn@33250
   478
fun is_constrt thy =
bulwahn@33250
   479
  let
bulwahn@33250
   480
    val cnstrs = flat (maps
bulwahn@33250
   481
      (map (fn (_, (Tname, _, cs)) => map (apsnd (rpair Tname o length)) cs) o #descr o snd)
bulwahn@33250
   482
      (Symtab.dest (Datatype.get_all thy)));
bulwahn@33250
   483
    fun check t = (case strip_comb t of
bulwahn@36032
   484
        (Var _, []) => true
bulwahn@36032
   485
      | (Free _, []) => true
bulwahn@33250
   486
      | (Const (s, T), ts) => (case (AList.lookup (op =) cnstrs s, body_type T) of
bulwahn@33250
   487
            (SOME (i, Tname), Type (Tname', _)) => length ts = i andalso Tname = Tname' andalso forall check ts
bulwahn@33250
   488
          | _ => false)
bulwahn@33250
   489
      | _ => false)
bulwahn@36032
   490
  in check end;
bulwahn@34948
   491
bulwahn@34948
   492
fun is_funtype (Type ("fun", [_, _])) = true
bulwahn@34948
   493
  | is_funtype _ = false;
bulwahn@34948
   494
bulwahn@34948
   495
fun is_Type (Type _) = true
bulwahn@34948
   496
  | is_Type _ = false
bulwahn@34948
   497
bulwahn@34948
   498
(* returns true if t is an application of an datatype constructor *)
bulwahn@34948
   499
(* which then consequently would be splitted *)
bulwahn@34948
   500
(* else false *)
bulwahn@34948
   501
(*
bulwahn@34948
   502
fun is_constructor thy t =
bulwahn@34948
   503
  if (is_Type (fastype_of t)) then
bulwahn@34948
   504
    (case DatatypePackage.get_datatype thy ((fst o dest_Type o fastype_of) t) of
bulwahn@34948
   505
      NONE => false
bulwahn@34948
   506
    | SOME info => (let
bulwahn@34948
   507
      val constr_consts = maps (fn (_, (_, _, constrs)) => map fst constrs) (#descr info)
bulwahn@34948
   508
      val (c, _) = strip_comb t
bulwahn@34948
   509
      in (case c of
bulwahn@34948
   510
        Const (name, _) => name mem_string constr_consts
bulwahn@34948
   511
        | _ => false) end))
bulwahn@34948
   512
  else false
bulwahn@34948
   513
*)
bulwahn@34948
   514
bulwahn@35891
   515
val is_constr = Code.is_constr o ProofContext.theory_of;
bulwahn@34948
   516
bulwahn@36047
   517
fun strip_all t = (Term.strip_all_vars t, Term.strip_all_body t)
bulwahn@36047
   518
haftmann@38558
   519
fun strip_ex (Const (@{const_name Ex}, _) $ Abs (x, T, t)) =
bulwahn@33250
   520
  let
bulwahn@33250
   521
    val (xTs, t') = strip_ex t
bulwahn@33250
   522
  in
bulwahn@33250
   523
    ((x, T) :: xTs, t')
bulwahn@33250
   524
  end
bulwahn@33250
   525
  | strip_ex t = ([], t)
bulwahn@33250
   526
bulwahn@33250
   527
fun focus_ex t nctxt =
bulwahn@33250
   528
  let
bulwahn@33250
   529
    val ((xs, Ts), t') = apfst split_list (strip_ex t) 
bulwahn@33250
   530
    val (xs', nctxt') = Name.variants xs nctxt;
bulwahn@33250
   531
    val ps' = xs' ~~ Ts;
bulwahn@33250
   532
    val vs = map Free ps';
bulwahn@33250
   533
    val t'' = Term.subst_bounds (rev vs, t');
bulwahn@33250
   534
  in ((ps', t''), nctxt') end;
bulwahn@33250
   535
bulwahn@33250
   536
(* introduction rule combinators *)
bulwahn@33250
   537
bulwahn@33250
   538
fun map_atoms f intro = 
bulwahn@33250
   539
  let
bulwahn@33250
   540
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   541
    fun appl t = (case t of
bulwahn@35885
   542
        (@{term Not} $ t') => HOLogic.mk_not (f t')
bulwahn@33250
   543
      | _ => f t)
bulwahn@33250
   544
  in
bulwahn@33250
   545
    Logic.list_implies
bulwahn@33250
   546
      (map (HOLogic.mk_Trueprop o appl o HOLogic.dest_Trueprop) literals, head)
bulwahn@33250
   547
  end
bulwahn@33250
   548
bulwahn@33250
   549
fun fold_atoms f intro s =
bulwahn@33250
   550
  let
bulwahn@33250
   551
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   552
    fun appl t s = (case t of
bulwahn@35885
   553
      (@{term Not} $ t') => f t' s
bulwahn@33250
   554
      | _ => f t s)
bulwahn@33250
   555
  in fold appl (map HOLogic.dest_Trueprop literals) s end
bulwahn@33250
   556
bulwahn@33250
   557
fun fold_map_atoms f intro s =
bulwahn@33250
   558
  let
bulwahn@33250
   559
    val (literals, head) = Logic.strip_horn intro
bulwahn@33250
   560
    fun appl t s = (case t of
bulwahn@35885
   561
      (@{term Not} $ t') => apfst HOLogic.mk_not (f t' s)
bulwahn@33250
   562
      | _ => f t s)
bulwahn@33250
   563
    val (literals', s') = fold_map appl (map HOLogic.dest_Trueprop literals) s
bulwahn@33250
   564
  in
bulwahn@33250
   565
    (Logic.list_implies (map HOLogic.mk_Trueprop literals', head), s')
bulwahn@33250
   566
  end;
bulwahn@33250
   567
bulwahn@36246
   568
fun map_premises f intro =
bulwahn@36246
   569
  let
bulwahn@36246
   570
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   571
  in
bulwahn@36246
   572
    Logic.list_implies (map f premises, head)
bulwahn@36246
   573
  end
bulwahn@36246
   574
bulwahn@36246
   575
fun map_filter_premises f intro =
bulwahn@36246
   576
  let
bulwahn@36246
   577
    val (premises, head) = Logic.strip_horn intro
bulwahn@36246
   578
  in
bulwahn@36246
   579
    Logic.list_implies (map_filter f premises, head)
bulwahn@36246
   580
  end
bulwahn@36246
   581
bulwahn@33250
   582
fun maps_premises f intro =
bulwahn@33250
   583
  let
bulwahn@33250
   584
    val (premises, head) = Logic.strip_horn intro
bulwahn@33250
   585
  in
bulwahn@33250
   586
    Logic.list_implies (maps f premises, head)
bulwahn@33250
   587
  end
bulwahn@35324
   588
bulwahn@35875
   589
fun map_concl f intro =
bulwahn@35875
   590
  let
bulwahn@35875
   591
    val (premises, head) = Logic.strip_horn intro
bulwahn@35875
   592
  in
bulwahn@35875
   593
    Logic.list_implies (premises, f head)
bulwahn@35875
   594
  end
bulwahn@35875
   595
bulwahn@35875
   596
(* combinators to apply a function to all basic parts of nested products *)
bulwahn@35875
   597
haftmann@37391
   598
fun map_products f (Const (@{const_name Pair}, T) $ t1 $ t2) =
haftmann@37391
   599
  Const (@{const_name Pair}, T) $ map_products f t1 $ map_products f t2
bulwahn@35875
   600
  | map_products f t = f t
bulwahn@35324
   601
bulwahn@35324
   602
(* split theorems of case expressions *)
bulwahn@35324
   603
bulwahn@35324
   604
fun prepare_split_thm ctxt split_thm =
bulwahn@35324
   605
    (split_thm RS @{thm iffD2})
wenzelm@35624
   606
    |> Local_Defs.unfold ctxt [@{thm atomize_conjL[symmetric]},
bulwahn@35324
   607
      @{thm atomize_all[symmetric]}, @{thm atomize_imp[symmetric]}]
bulwahn@35324
   608
bulwahn@36029
   609
fun find_split_thm thy (Const (name, T)) = Option.map #split (Datatype_Data.info_of_case thy name)
bulwahn@36029
   610
  | find_split_thm thy _ = NONE
bulwahn@35324
   611
bulwahn@33250
   612
(* lifting term operations to theorems *)
bulwahn@33250
   613
bulwahn@33250
   614
fun map_term thy f th =
bulwahn@33250
   615
  Skip_Proof.make_thm thy (f (prop_of th))
bulwahn@33250
   616
bulwahn@33250
   617
(*
bulwahn@33250
   618
fun equals_conv lhs_cv rhs_cv ct =
bulwahn@33250
   619
  case Thm.term_of ct of
bulwahn@33250
   620
    Const ("==", _) $ _ $ _ => Conv.arg_conv cv ct  
bulwahn@33250
   621
  | _ => error "equals_conv"  
bulwahn@33250
   622
*)
bulwahn@33250
   623
bulwahn@36038
   624
(* Different compilations *)
bulwahn@33250
   625
bulwahn@35881
   626
datatype compilation = Pred | Depth_Limited | Random | Depth_Limited_Random | DSeq | Annotated
bulwahn@36018
   627
  | Pos_Random_DSeq | Neg_Random_DSeq | New_Pos_Random_DSeq | New_Neg_Random_DSeq
bulwahn@35324
   628
bulwahn@35324
   629
fun negative_compilation_of Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@35324
   630
  | negative_compilation_of Neg_Random_DSeq = Pos_Random_DSeq
bulwahn@36018
   631
  | negative_compilation_of New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@36018
   632
  | negative_compilation_of New_Neg_Random_DSeq = New_Pos_Random_DSeq
bulwahn@35324
   633
  | negative_compilation_of c = c
bulwahn@35324
   634
  
bulwahn@35324
   635
fun compilation_for_polarity false Pos_Random_DSeq = Neg_Random_DSeq
bulwahn@36018
   636
  | compilation_for_polarity false New_Pos_Random_DSeq = New_Neg_Random_DSeq
bulwahn@35324
   637
  | compilation_for_polarity _ c = c
bulwahn@34948
   638
bulwahn@35885
   639
fun string_of_compilation c =
bulwahn@35885
   640
  case c of
bulwahn@34948
   641
    Pred => ""
bulwahn@34948
   642
  | Random => "random"
bulwahn@34948
   643
  | Depth_Limited => "depth limited"
bulwahn@35881
   644
  | Depth_Limited_Random => "depth limited random"
bulwahn@34948
   645
  | DSeq => "dseq"
bulwahn@34948
   646
  | Annotated => "annotated"
bulwahn@35324
   647
  | Pos_Random_DSeq => "pos_random dseq"
bulwahn@35324
   648
  | Neg_Random_DSeq => "neg_random_dseq"
bulwahn@36018
   649
  | New_Pos_Random_DSeq => "new_pos_random dseq"
bulwahn@36018
   650
  | New_Neg_Random_DSeq => "new_neg_random_dseq"
bulwahn@36038
   651
bulwahn@36018
   652
val compilation_names = [("pred", Pred),
bulwahn@36018
   653
  ("random", Random),
bulwahn@36018
   654
  ("depth_limited", Depth_Limited),
bulwahn@36018
   655
  ("depth_limited_random", Depth_Limited_Random),
bulwahn@36018
   656
  (*("annotated", Annotated),*)
bulwahn@36018
   657
  ("dseq", DSeq), ("random_dseq", Pos_Random_DSeq),
bulwahn@36018
   658
  ("new_random_dseq", New_Pos_Random_DSeq)]
bulwahn@36038
   659
bulwahn@36038
   660
val non_random_compilations = [Pred, Depth_Limited, DSeq, Annotated]
bulwahn@36038
   661
bulwahn@36038
   662
bulwahn@36038
   663
val random_compilations = [Random, Depth_Limited_Random,
bulwahn@36038
   664
  Pos_Random_DSeq, Neg_Random_DSeq, New_Pos_Random_DSeq, New_Neg_Random_DSeq]
bulwahn@36038
   665
bulwahn@36046
   666
(* datastructures and setup for generic compilation *)
bulwahn@36046
   667
bulwahn@36046
   668
datatype compilation_funs = CompilationFuns of {
bulwahn@36046
   669
  mk_predT : typ -> typ,
bulwahn@36046
   670
  dest_predT : typ -> typ,
bulwahn@36046
   671
  mk_bot : typ -> term,
bulwahn@36046
   672
  mk_single : term -> term,
bulwahn@36046
   673
  mk_bind : term * term -> term,
bulwahn@36046
   674
  mk_sup : term * term -> term,
bulwahn@36046
   675
  mk_if : term -> term,
bulwahn@36049
   676
  mk_iterate_upto : typ -> term * term * term -> term,
bulwahn@36046
   677
  mk_not : term -> term,
bulwahn@36046
   678
  mk_map : typ -> typ -> term -> term -> term
bulwahn@36046
   679
};
bulwahn@36038
   680
bulwahn@36046
   681
fun mk_predT (CompilationFuns funs) = #mk_predT funs
bulwahn@36046
   682
fun dest_predT (CompilationFuns funs) = #dest_predT funs
bulwahn@36046
   683
fun mk_bot (CompilationFuns funs) = #mk_bot funs
bulwahn@36046
   684
fun mk_single (CompilationFuns funs) = #mk_single funs
bulwahn@36046
   685
fun mk_bind (CompilationFuns funs) = #mk_bind funs
bulwahn@36046
   686
fun mk_sup (CompilationFuns funs) = #mk_sup funs
bulwahn@36046
   687
fun mk_if (CompilationFuns funs) = #mk_if funs
bulwahn@36049
   688
fun mk_iterate_upto (CompilationFuns funs) = #mk_iterate_upto funs
bulwahn@36046
   689
fun mk_not (CompilationFuns funs) = #mk_not funs
bulwahn@36046
   690
fun mk_map (CompilationFuns funs) = #mk_map funs
bulwahn@36046
   691
bulwahn@36046
   692
(** function types and names of different compilations **)
bulwahn@36046
   693
bulwahn@36046
   694
fun funT_of compfuns mode T =
bulwahn@36046
   695
  let
bulwahn@36046
   696
    val Ts = binder_types T
bulwahn@36046
   697
    val (inTs, outTs) = split_map_modeT (fn m => fn T => (SOME (funT_of compfuns m T), NONE)) mode Ts
bulwahn@36046
   698
  in
bulwahn@36046
   699
    inTs ---> (mk_predT compfuns (HOLogic.mk_tupleT outTs))
bulwahn@36046
   700
  end;
bulwahn@36046
   701
bulwahn@36046
   702
(* Different options for compiler *)
bulwahn@34948
   703
bulwahn@33250
   704
datatype options = Options of {  
bulwahn@34948
   705
  expected_modes : (string * mode list) option,
bulwahn@34948
   706
  proposed_modes : (string * mode list) option,
bulwahn@34948
   707
  proposed_names : ((string * mode) * string) list,
bulwahn@33250
   708
  show_steps : bool,
bulwahn@33250
   709
  show_proof_trace : bool,
bulwahn@33250
   710
  show_intermediate_results : bool,
bulwahn@33251
   711
  show_mode_inference : bool,
bulwahn@33251
   712
  show_modes : bool,
bulwahn@33250
   713
  show_compilation : bool,
bulwahn@35324
   714
  show_caught_failures : bool,
bulwahn@33250
   715
  skip_proof : bool,
bulwahn@35324
   716
  no_topmost_reordering : bool,
bulwahn@35324
   717
  function_flattening : bool,
bulwahn@36248
   718
  specialise : bool,
bulwahn@35324
   719
  fail_safe_function_flattening : bool,
bulwahn@35324
   720
  no_higher_order_predicate : string list,
bulwahn@33250
   721
  inductify : bool,
bulwahn@36254
   722
  detect_switches : bool,
bulwahn@34948
   723
  compilation : compilation
bulwahn@33250
   724
};
bulwahn@33250
   725
bulwahn@33250
   726
fun expected_modes (Options opt) = #expected_modes opt
bulwahn@33752
   727
fun proposed_modes (Options opt) = #proposed_modes opt
bulwahn@34948
   728
fun proposed_names (Options opt) name mode = AList.lookup (eq_pair (op =) eq_mode)
bulwahn@33623
   729
  (#proposed_names opt) (name, mode)
bulwahn@33620
   730
bulwahn@33250
   731
fun show_steps (Options opt) = #show_steps opt
bulwahn@33250
   732
fun show_intermediate_results (Options opt) = #show_intermediate_results opt
bulwahn@33250
   733
fun show_proof_trace (Options opt) = #show_proof_trace opt
bulwahn@33251
   734
fun show_modes (Options opt) = #show_modes opt
bulwahn@33251
   735
fun show_mode_inference (Options opt) = #show_mode_inference opt
bulwahn@33250
   736
fun show_compilation (Options opt) = #show_compilation opt
bulwahn@35324
   737
fun show_caught_failures (Options opt) = #show_caught_failures opt
bulwahn@35324
   738
bulwahn@33250
   739
fun skip_proof (Options opt) = #skip_proof opt
bulwahn@33250
   740
bulwahn@35324
   741
fun function_flattening (Options opt) = #function_flattening opt
bulwahn@35324
   742
fun fail_safe_function_flattening (Options opt) = #fail_safe_function_flattening opt
bulwahn@36248
   743
fun specialise (Options opt) = #specialise opt
bulwahn@35324
   744
fun no_topmost_reordering (Options opt) = #no_topmost_reordering opt
bulwahn@35324
   745
fun no_higher_order_predicate (Options opt) = #no_higher_order_predicate opt
bulwahn@35324
   746
bulwahn@33250
   747
fun is_inductify (Options opt) = #inductify opt
bulwahn@34948
   748
bulwahn@34948
   749
fun compilation (Options opt) = #compilation opt
bulwahn@33250
   750
bulwahn@36254
   751
fun detect_switches (Options opt) = #detect_switches opt
bulwahn@36254
   752
bulwahn@33250
   753
val default_options = Options {
bulwahn@33250
   754
  expected_modes = NONE,
bulwahn@33752
   755
  proposed_modes = NONE,
bulwahn@33623
   756
  proposed_names = [],
bulwahn@33250
   757
  show_steps = false,
bulwahn@33250
   758
  show_intermediate_results = false,
bulwahn@33250
   759
  show_proof_trace = false,
bulwahn@33251
   760
  show_modes = false,
bulwahn@33250
   761
  show_mode_inference = false,
bulwahn@33250
   762
  show_compilation = false,
bulwahn@35324
   763
  show_caught_failures = false,
bulwahn@34948
   764
  skip_proof = true,
bulwahn@35324
   765
  no_topmost_reordering = false,
bulwahn@35324
   766
  function_flattening = false,
bulwahn@36248
   767
  specialise = false,
bulwahn@35324
   768
  fail_safe_function_flattening = false,
bulwahn@35324
   769
  no_higher_order_predicate = [],
bulwahn@33250
   770
  inductify = false,
bulwahn@36254
   771
  detect_switches = true,
bulwahn@34948
   772
  compilation = Pred
bulwahn@33250
   773
}
bulwahn@33250
   774
bulwahn@34948
   775
val bool_options = ["show_steps", "show_intermediate_results", "show_proof_trace", "show_modes",
bulwahn@35381
   776
  "show_mode_inference", "show_compilation", "skip_proof", "inductify", "no_function_flattening",
bulwahn@36254
   777
  "detect_switches", "specialise", "no_topmost_reordering"]
bulwahn@34948
   778
bulwahn@33250
   779
fun print_step options s =
bulwahn@33250
   780
  if show_steps options then tracing s else ()
bulwahn@33250
   781
bulwahn@36047
   782
(* simple transformations *)
bulwahn@36047
   783
bulwahn@36047
   784
(** tuple processing **)
bulwahn@33250
   785
bulwahn@33250
   786
fun expand_tuples thy intro =
bulwahn@33250
   787
  let
bulwahn@33250
   788
    fun rewrite_args [] (pats, intro_t, ctxt) = (pats, intro_t, ctxt)
bulwahn@33250
   789
      | rewrite_args (arg::args) (pats, intro_t, ctxt) = 
bulwahn@33250
   790
      (case HOLogic.strip_tupleT (fastype_of arg) of
bulwahn@33250
   791
        (Ts as _ :: _ :: _) =>
bulwahn@33250
   792
        let
haftmann@37678
   793
          fun rewrite_arg' (Const (@{const_name Pair}, _) $ _ $ t2, Type (@{type_name Product_Type.prod}, [_, T2]))
bulwahn@33250
   794
            (args, (pats, intro_t, ctxt)) = rewrite_arg' (t2, T2) (args, (pats, intro_t, ctxt))
haftmann@37678
   795
            | rewrite_arg' (t, Type (@{type_name Product_Type.prod}, [T1, T2])) (args, (pats, intro_t, ctxt)) =
bulwahn@33250
   796
              let
bulwahn@33250
   797
                val ([x, y], ctxt') = Variable.variant_fixes ["x", "y"] ctxt
bulwahn@33250
   798
                val pat = (t, HOLogic.mk_prod (Free (x, T1), Free (y, T2)))
bulwahn@33250
   799
                val intro_t' = Pattern.rewrite_term thy [pat] [] intro_t
bulwahn@33250
   800
                val args' = map (Pattern.rewrite_term thy [pat] []) args
bulwahn@33250
   801
              in
bulwahn@33250
   802
                rewrite_arg' (Free (y, T2), T2) (args', (pat::pats, intro_t', ctxt'))
bulwahn@33250
   803
              end
bulwahn@33250
   804
            | rewrite_arg' _ (args, (pats, intro_t, ctxt)) = (args, (pats, intro_t, ctxt))
bulwahn@33250
   805
          val (args', (pats, intro_t', ctxt')) = rewrite_arg' (arg, fastype_of arg)
bulwahn@33250
   806
            (args, (pats, intro_t, ctxt))
bulwahn@33250
   807
        in
bulwahn@33250
   808
          rewrite_args args' (pats, intro_t', ctxt')
bulwahn@33250
   809
        end
bulwahn@33250
   810
      | _ => rewrite_args args (pats, intro_t, ctxt))
bulwahn@33250
   811
    fun rewrite_prem atom =
bulwahn@33250
   812
      let
bulwahn@33250
   813
        val (_, args) = strip_comb atom
bulwahn@33250
   814
      in rewrite_args args end
wenzelm@36610
   815
    val ctxt = ProofContext.init_global thy
bulwahn@33250
   816
    val (((T_insts, t_insts), [intro']), ctxt1) = Variable.import false [intro] ctxt
bulwahn@33250
   817
    val intro_t = prop_of intro'
bulwahn@33250
   818
    val concl = Logic.strip_imp_concl intro_t
bulwahn@33250
   819
    val (p, args) = strip_comb (HOLogic.dest_Trueprop concl)
bulwahn@33250
   820
    val (pats', intro_t', ctxt2) = rewrite_args args ([], intro_t, ctxt1)
bulwahn@33250
   821
    val (pats', intro_t', ctxt3) = 
bulwahn@33250
   822
      fold_atoms rewrite_prem intro_t' (pats', intro_t', ctxt2)
bulwahn@33250
   823
    fun rewrite_pat (ct1, ct2) =
bulwahn@33250
   824
      (ct1, cterm_of thy (Pattern.rewrite_term thy pats' [] (term_of ct2)))
bulwahn@33250
   825
    val t_insts' = map rewrite_pat t_insts
bulwahn@33250
   826
    val intro'' = Thm.instantiate (T_insts, t_insts') intro
bulwahn@33250
   827
    val [intro'''] = Variable.export ctxt3 ctxt [intro'']
bulwahn@33250
   828
    val intro'''' = Simplifier.full_simplify
bulwahn@33250
   829
      (HOL_basic_ss addsimps [@{thm fst_conv}, @{thm snd_conv}, @{thm Pair_eq}])
bulwahn@33250
   830
      intro'''
bulwahn@33250
   831
    (* splitting conjunctions introduced by Pair_eq*)
bulwahn@33250
   832
    fun split_conj prem =
bulwahn@33250
   833
      map HOLogic.mk_Trueprop (conjuncts (HOLogic.dest_Trueprop prem))
bulwahn@33250
   834
    val intro''''' = map_term thy (maps_premises split_conj) intro''''
bulwahn@33250
   835
  in
bulwahn@33250
   836
    intro'''''
bulwahn@33250
   837
  end
bulwahn@33250
   838
bulwahn@36047
   839
(** eta contract higher-order arguments **)
bulwahn@35875
   840
bulwahn@35875
   841
fun eta_contract_ho_arguments thy intro =
bulwahn@35875
   842
  let
bulwahn@35875
   843
    fun f atom = list_comb (apsnd ((map o map_products) Envir.eta_contract) (strip_comb atom))
bulwahn@35875
   844
  in
bulwahn@35875
   845
    map_term thy (map_concl f o map_atoms f) intro
bulwahn@35875
   846
  end
bulwahn@35875
   847
bulwahn@36047
   848
(** remove equalities **)
bulwahn@36022
   849
bulwahn@36022
   850
fun remove_equalities thy intro =
bulwahn@36022
   851
  let
bulwahn@36022
   852
    fun remove_eqs intro_t =
bulwahn@36022
   853
      let
bulwahn@36022
   854
        val (prems, concl) = Logic.strip_horn intro_t
bulwahn@36022
   855
        fun remove_eq (prems, concl) =
bulwahn@36022
   856
          let
bulwahn@36022
   857
            fun removable_eq prem =
bulwahn@36022
   858
              case try (HOLogic.dest_eq o HOLogic.dest_Trueprop) prem of
bulwahn@36022
   859
                SOME (lhs, rhs) => (case lhs of
bulwahn@36022
   860
                  Var _ => true
bulwahn@36022
   861
                  | _ => (case rhs of Var _ => true | _ => false))
bulwahn@36022
   862
              | NONE => false
bulwahn@36022
   863
          in
bulwahn@36022
   864
            case find_first removable_eq prems of
bulwahn@36022
   865
              NONE => (prems, concl)
bulwahn@36022
   866
            | SOME eq =>
bulwahn@36022
   867
              let
bulwahn@36022
   868
                val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop eq)
bulwahn@36022
   869
                val prems' = remove (op =) eq prems
bulwahn@36022
   870
                val subst = (case lhs of
bulwahn@36022
   871
                  (v as Var _) =>
bulwahn@36022
   872
                    (fn t => if t = v then rhs else t)
bulwahn@36022
   873
                | _ => (case rhs of
bulwahn@36022
   874
                   (v as Var _) => (fn t => if t = v then lhs else t)))
bulwahn@36022
   875
              in
bulwahn@36022
   876
                remove_eq (map (map_aterms subst) prems', map_aterms subst concl)
bulwahn@36022
   877
              end
bulwahn@36022
   878
          end
bulwahn@36022
   879
      in
bulwahn@36022
   880
        Logic.list_implies (remove_eq (prems, concl))
bulwahn@36022
   881
      end
bulwahn@36022
   882
  in
bulwahn@36022
   883
    map_term thy remove_eqs intro
bulwahn@36022
   884
  end
bulwahn@35875
   885
bulwahn@36246
   886
(* Some last processing *)
bulwahn@36246
   887
bulwahn@36246
   888
fun remove_pointless_clauses intro =
bulwahn@36246
   889
  if Logic.strip_imp_prems (prop_of intro) = [@{prop "False"}] then
bulwahn@36246
   890
    []
bulwahn@36246
   891
  else [intro]
bulwahn@36246
   892
bulwahn@36246
   893
(* some peephole optimisations *)
bulwahn@36246
   894
bulwahn@36246
   895
fun peephole_optimisation thy intro =
bulwahn@36246
   896
  let
wenzelm@36610
   897
    val process =
wenzelm@36610
   898
      MetaSimplifier.rewrite_rule (Predicate_Compile_Simps.get (ProofContext.init_global thy))
bulwahn@36246
   899
    fun process_False intro_t =
bulwahn@36246
   900
      if member (op =) (Logic.strip_imp_prems intro_t) @{prop "False"} then NONE else SOME intro_t
bulwahn@36246
   901
    fun process_True intro_t =
bulwahn@36246
   902
      map_filter_premises (fn p => if p = @{prop True} then NONE else SOME p) intro_t
bulwahn@36246
   903
  in
bulwahn@36246
   904
    Option.map (Skip_Proof.make_thm thy)
bulwahn@36246
   905
      (process_False (process_True (prop_of (process intro))))
bulwahn@36246
   906
  end
bulwahn@36246
   907
bulwahn@33250
   908
end;