src/HOL/Finite.ML
author wenzelm
Mon Nov 03 12:13:18 1997 +0100 (1997-11-03)
changeset 4089 96fba19bcbe2
parent 4059 59c1422c9da5
child 4153 e534c4c32d54
permissions -rw-r--r--
isatool fixclasimp;
clasohm@1465
     1
(*  Title:      HOL/Finite.thy
clasohm@923
     2
    ID:         $Id$
nipkow@1531
     3
    Author:     Lawrence C Paulson & Tobias Nipkow
nipkow@1531
     4
    Copyright   1995  University of Cambridge & TU Muenchen
clasohm@923
     5
nipkow@1531
     6
Finite sets and their cardinality
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Finite;
clasohm@923
    10
nipkow@3413
    11
section "finite";
nipkow@1531
    12
nipkow@3413
    13
(*
clasohm@923
    14
goalw Finite.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
clasohm@1465
    15
by (rtac lfp_mono 1);
clasohm@923
    16
by (REPEAT (ares_tac basic_monos 1));
clasohm@923
    17
qed "Fin_mono";
clasohm@923
    18
clasohm@923
    19
goalw Finite.thy Fin.defs "Fin(A) <= Pow(A)";
wenzelm@4089
    20
by (blast_tac (claset() addSIs [lfp_lowerbound]) 1);
clasohm@923
    21
qed "Fin_subset_Pow";
clasohm@923
    22
clasohm@923
    23
(* A : Fin(B) ==> A <= B *)
clasohm@923
    24
val FinD = Fin_subset_Pow RS subsetD RS PowD;
nipkow@3413
    25
*)
clasohm@923
    26
clasohm@923
    27
(*Discharging ~ x:y entails extra work*)
clasohm@923
    28
val major::prems = goal Finite.thy 
nipkow@3413
    29
    "[| finite F;  P({}); \
nipkow@3413
    30
\       !!F x. [| finite F;  x ~: F;  P(F) |] ==> P(insert x F) \
clasohm@923
    31
\    |] ==> P(F)";
nipkow@3413
    32
by (rtac (major RS Finites.induct) 1);
nipkow@3413
    33
by (excluded_middle_tac "a:A" 2);
clasohm@923
    34
by (etac (insert_absorb RS ssubst) 3 THEN assume_tac 3);   (*backtracking!*)
clasohm@923
    35
by (REPEAT (ares_tac prems 1));
nipkow@3413
    36
qed "finite_induct";
nipkow@3413
    37
nipkow@3413
    38
val major::prems = goal Finite.thy 
nipkow@3413
    39
    "[| finite F; \
nipkow@3413
    40
\       P({}); \
nipkow@3413
    41
\       !!F a. [| finite F; a:A; a ~: F;  P(F) |] ==> P(insert a F) \
nipkow@3413
    42
\    |] ==> F <= A --> P(F)";
nipkow@3413
    43
by (rtac (major RS finite_induct) 1);
wenzelm@4089
    44
by (ALLGOALS (blast_tac (claset() addIs prems)));
nipkow@3413
    45
val lemma = result();
clasohm@923
    46
nipkow@3413
    47
val prems = goal Finite.thy 
nipkow@3413
    48
    "[| finite F;  F <= A; \
nipkow@3413
    49
\       P({}); \
nipkow@3413
    50
\       !!F a. [| finite F; a:A; a ~: F;  P(F) |] ==> P(insert a F) \
nipkow@3413
    51
\    |] ==> P(F)";
paulson@3457
    52
by (blast_tac (HOL_cs addIs ((lemma RS mp)::prems)) 1);
nipkow@3413
    53
qed "finite_subset_induct";
nipkow@3413
    54
nipkow@3413
    55
Addsimps Finites.intrs;
nipkow@3413
    56
AddSIs Finites.intrs;
clasohm@923
    57
clasohm@923
    58
(*The union of two finite sets is finite*)
clasohm@923
    59
val major::prems = goal Finite.thy
nipkow@3413
    60
    "[| finite F;  finite G |] ==> finite(F Un G)";
nipkow@3413
    61
by (rtac (major RS finite_induct) 1);
wenzelm@4089
    62
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
nipkow@3413
    63
qed "finite_UnI";
clasohm@923
    64
clasohm@923
    65
(*Every subset of a finite set is finite*)
nipkow@3413
    66
val [subs,fin] = goal Finite.thy "[| A<=B;  finite B |] ==> finite A";
nipkow@3413
    67
by (EVERY1 [subgoal_tac "ALL C. C<=B --> finite C",
clasohm@1465
    68
            rtac mp, etac spec,
clasohm@1465
    69
            rtac subs]);
nipkow@3413
    70
by (rtac (fin RS finite_induct) 1);
wenzelm@4089
    71
by (simp_tac (simpset() addsimps [subset_Un_eq]) 1);
wenzelm@4089
    72
by (safe_tac (claset() addSDs [subset_insert_iff RS iffD1]));
clasohm@923
    73
by (eres_inst_tac [("t","C")] (insert_Diff RS subst) 2);
clasohm@1264
    74
by (ALLGOALS Asm_simp_tac);
nipkow@3413
    75
qed "finite_subset";
clasohm@923
    76
nipkow@3413
    77
goal Finite.thy "finite(F Un G) = (finite F & finite G)";
wenzelm@4089
    78
by (blast_tac (claset() addIs [finite_UnI] addDs
nipkow@3413
    79
                [Un_upper1 RS finite_subset, Un_upper2 RS finite_subset]) 1);
nipkow@3413
    80
qed "finite_Un";
nipkow@3413
    81
AddIffs[finite_Un];
nipkow@1531
    82
nipkow@3413
    83
goal Finite.thy "finite(insert a A) = finite A";
paulson@1553
    84
by (stac insert_is_Un 1);
nipkow@3413
    85
by (simp_tac (HOL_ss addsimps [finite_Un]) 1);
paulson@3427
    86
by (Blast_tac 1);
nipkow@3413
    87
qed "finite_insert";
nipkow@3413
    88
Addsimps[finite_insert];
nipkow@1531
    89
nipkow@3413
    90
(*The image of a finite set is finite *)
nipkow@3413
    91
goal Finite.thy  "!!F. finite F ==> finite(h``F)";
nipkow@3413
    92
by (etac finite_induct 1);
clasohm@1264
    93
by (Simp_tac 1);
nipkow@3413
    94
by (Asm_simp_tac 1);
nipkow@3413
    95
qed "finite_imageI";
clasohm@923
    96
clasohm@923
    97
val major::prems = goal Finite.thy 
nipkow@3413
    98
    "[| finite c;  finite b;                                  \
clasohm@1465
    99
\       P(b);                                                   \
nipkow@3413
   100
\       !!x y. [| finite y;  x:y;  P(y) |] ==> P(y-{x}) \
clasohm@923
   101
\    |] ==> c<=b --> P(b-c)";
nipkow@3413
   102
by (rtac (major RS finite_induct) 1);
paulson@2031
   103
by (stac Diff_insert 2);
clasohm@923
   104
by (ALLGOALS (asm_simp_tac
wenzelm@4089
   105
                (simpset() addsimps (prems@[Diff_subset RS finite_subset]))));
nipkow@1531
   106
val lemma = result();
clasohm@923
   107
clasohm@923
   108
val prems = goal Finite.thy 
nipkow@3413
   109
    "[| finite A;                                       \
nipkow@3413
   110
\       P(A);                                           \
nipkow@3413
   111
\       !!a A. [| finite A;  a:A;  P(A) |] ==> P(A-{a}) \
clasohm@923
   112
\    |] ==> P({})";
clasohm@923
   113
by (rtac (Diff_cancel RS subst) 1);
nipkow@1531
   114
by (rtac (lemma RS mp) 1);
clasohm@923
   115
by (REPEAT (ares_tac (subset_refl::prems) 1));
nipkow@3413
   116
qed "finite_empty_induct";
nipkow@1531
   117
nipkow@1531
   118
paulson@1618
   119
(* finite B ==> finite (B - Ba) *)
paulson@1618
   120
bind_thm ("finite_Diff", Diff_subset RS finite_subset);
nipkow@1531
   121
Addsimps [finite_Diff];
nipkow@1531
   122
paulson@3368
   123
goal Finite.thy "finite(A-{a}) = finite(A)";
paulson@3368
   124
by (case_tac "a:A" 1);
paulson@3457
   125
by (rtac (finite_insert RS sym RS trans) 1);
paulson@3368
   126
by (stac insert_Diff 1);
paulson@3368
   127
by (ALLGOALS Asm_simp_tac);
paulson@3368
   128
qed "finite_Diff_singleton";
paulson@3368
   129
AddIffs [finite_Diff_singleton];
paulson@3368
   130
paulson@4059
   131
(*Lemma for proving finite_imageD*)
nipkow@3413
   132
goal Finite.thy "!!A. finite B ==> !A. f``A = B --> inj_onto f A --> finite A";
paulson@1553
   133
by (etac finite_induct 1);
nipkow@3413
   134
 by (ALLGOALS Asm_simp_tac);
paulson@3708
   135
by (Clarify_tac 1);
nipkow@3413
   136
by (subgoal_tac "EX y:A. f y = x & F = f``(A-{y})" 1);
paulson@3708
   137
 by (Clarify_tac 1);
wenzelm@4089
   138
 by (full_simp_tac (simpset() addsimps [inj_onto_def]) 1);
nipkow@3413
   139
 by (Blast_tac 1);
paulson@3368
   140
by (thin_tac "ALL A. ?PP(A)" 1);
nipkow@3413
   141
by (forward_tac [[equalityD2, insertI1] MRS subsetD] 1);
paulson@3708
   142
by (Clarify_tac 1);
paulson@3368
   143
by (res_inst_tac [("x","xa")] bexI 1);
paulson@4059
   144
by (ALLGOALS 
wenzelm@4089
   145
    (asm_full_simp_tac (simpset() addsimps [inj_onto_image_set_diff])));
paulson@3368
   146
val lemma = result();
paulson@3368
   147
paulson@3368
   148
goal Finite.thy "!!A. [| finite(f``A);  inj_onto f A |] ==> finite A";
paulson@3457
   149
by (dtac lemma 1);
paulson@3368
   150
by (Blast_tac 1);
paulson@3368
   151
qed "finite_imageD";
paulson@3368
   152
nipkow@4014
   153
(** The finite UNION of finite sets **)
nipkow@4014
   154
nipkow@4014
   155
val [prem] = goal Finite.thy
nipkow@4014
   156
 "finite A ==> (!a:A. finite(B a)) --> finite(UN a:A. B a)";
nipkow@4014
   157
br (prem RS finite_induct) 1;
nipkow@4014
   158
by(ALLGOALS Asm_simp_tac);
nipkow@4014
   159
bind_thm("finite_UnionI", ballI RSN (2, result() RS mp));
nipkow@4014
   160
Addsimps [finite_UnionI];
nipkow@4014
   161
nipkow@4014
   162
(** Sigma of finite sets **)
nipkow@4014
   163
nipkow@4014
   164
goalw Finite.thy [Sigma_def]
nipkow@4014
   165
 "!!A. [| finite A; !a:A. finite(B a) |] ==> finite(SIGMA a:A. B a)";
wenzelm@4089
   166
by(blast_tac (claset() addSIs [finite_UnionI]) 1);
nipkow@4014
   167
bind_thm("finite_SigmaI", ballI RSN (2,result()));
nipkow@4014
   168
Addsimps [finite_SigmaI];
paulson@3368
   169
paulson@3368
   170
(** The powerset of a finite set **)
paulson@3368
   171
paulson@3368
   172
goal Finite.thy "!!A. finite(Pow A) ==> finite A";
paulson@3368
   173
by (subgoal_tac "finite ((%x.{x})``A)" 1);
paulson@3457
   174
by (rtac finite_subset 2);
paulson@3457
   175
by (assume_tac 3);
paulson@3368
   176
by (ALLGOALS
wenzelm@4089
   177
    (fast_tac (claset() addSDs [rewrite_rule [inj_onto_def] finite_imageD])));
paulson@3368
   178
val lemma = result();
paulson@3368
   179
paulson@3368
   180
goal Finite.thy "finite(Pow A) = finite A";
paulson@3457
   181
by (rtac iffI 1);
paulson@3457
   182
by (etac lemma 1);
paulson@3368
   183
(*Opposite inclusion: finite A ==> finite (Pow A) *)
paulson@3340
   184
by (etac finite_induct 1);
paulson@3340
   185
by (ALLGOALS 
paulson@3340
   186
    (asm_simp_tac
wenzelm@4089
   187
     (simpset() addsimps [finite_UnI, finite_imageI, Pow_insert])));
paulson@3368
   188
qed "finite_Pow_iff";
paulson@3368
   189
AddIffs [finite_Pow_iff];
paulson@3340
   190
nipkow@3439
   191
goal Finite.thy "finite(r^-1) = finite r";
paulson@3457
   192
by (subgoal_tac "r^-1 = (%(x,y).(y,x))``r" 1);
paulson@3457
   193
 by (Asm_simp_tac 1);
paulson@3457
   194
 by (rtac iffI 1);
paulson@3457
   195
  by (etac (rewrite_rule [inj_onto_def] finite_imageD) 1);
wenzelm@4089
   196
  by (simp_tac (simpset() addsplits [expand_split]) 1);
paulson@3457
   197
 by (etac finite_imageI 1);
wenzelm@4089
   198
by (simp_tac (simpset() addsimps [inverse_def,image_def]) 1);
paulson@3457
   199
by (Auto_tac());
paulson@3457
   200
 by (rtac bexI 1);
paulson@3457
   201
 by (assume_tac 2);
paulson@3457
   202
 by (Simp_tac 1);
paulson@3457
   203
by (split_all_tac 1);
paulson@3457
   204
by (Asm_full_simp_tac 1);
nipkow@3439
   205
qed "finite_inverse";
nipkow@3439
   206
AddIffs [finite_inverse];
nipkow@1531
   207
nipkow@1548
   208
section "Finite cardinality -- 'card'";
nipkow@1531
   209
nipkow@1531
   210
goal Set.thy "{f i |i. P i | i=n} = insert (f n) {f i|i. P i}";
paulson@2922
   211
by (Blast_tac 1);
nipkow@1531
   212
val Collect_conv_insert = result();
nipkow@1531
   213
nipkow@1531
   214
goalw Finite.thy [card_def] "card {} = 0";
paulson@1553
   215
by (rtac Least_equality 1);
paulson@1553
   216
by (ALLGOALS Asm_full_simp_tac);
nipkow@1531
   217
qed "card_empty";
nipkow@1531
   218
Addsimps [card_empty];
nipkow@1531
   219
nipkow@1531
   220
val [major] = goal Finite.thy
nipkow@1531
   221
  "finite A ==> ? (n::nat) f. A = {f i |i. i<n}";
paulson@1553
   222
by (rtac (major RS finite_induct) 1);
paulson@1553
   223
 by (res_inst_tac [("x","0")] exI 1);
paulson@1553
   224
 by (Simp_tac 1);
paulson@1553
   225
by (etac exE 1);
paulson@1553
   226
by (etac exE 1);
paulson@1553
   227
by (hyp_subst_tac 1);
paulson@1553
   228
by (res_inst_tac [("x","Suc n")] exI 1);
paulson@1553
   229
by (res_inst_tac [("x","%i. if i<n then f i else x")] exI 1);
wenzelm@4089
   230
by (asm_simp_tac (simpset() addsimps [Collect_conv_insert, less_Suc_eq]
nipkow@1548
   231
                          addcongs [rev_conj_cong]) 1);
nipkow@1531
   232
qed "finite_has_card";
nipkow@1531
   233
nipkow@1531
   234
goal Finite.thy
wenzelm@3842
   235
  "!!A.[| x ~: A; insert x A = {f i|i. i<n} |] ==> \
wenzelm@3842
   236
\  ? m::nat. m<n & (? g. A = {g i|i. i<m})";
paulson@1553
   237
by (res_inst_tac [("n","n")] natE 1);
paulson@1553
   238
 by (hyp_subst_tac 1);
paulson@1553
   239
 by (Asm_full_simp_tac 1);
paulson@1553
   240
by (rename_tac "m" 1);
paulson@1553
   241
by (hyp_subst_tac 1);
paulson@1553
   242
by (case_tac "? a. a:A" 1);
paulson@1553
   243
 by (res_inst_tac [("x","0")] exI 2);
paulson@1553
   244
 by (Simp_tac 2);
paulson@2922
   245
 by (Blast_tac 2);
paulson@1553
   246
by (etac exE 1);
wenzelm@4089
   247
by (simp_tac (simpset() addsimps [less_Suc_eq]) 1);
paulson@1553
   248
by (rtac exI 1);
paulson@1782
   249
by (rtac (refl RS disjI2 RS conjI) 1);
paulson@1553
   250
by (etac equalityE 1);
paulson@1553
   251
by (asm_full_simp_tac
wenzelm@4089
   252
     (simpset() addsimps [subset_insert,Collect_conv_insert, less_Suc_eq]) 1);
wenzelm@4089
   253
by (safe_tac (claset()));
paulson@1553
   254
  by (Asm_full_simp_tac 1);
paulson@1553
   255
  by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
wenzelm@4089
   256
  by (SELECT_GOAL(safe_tac (claset()))1);
paulson@1553
   257
   by (subgoal_tac "x ~= f m" 1);
paulson@2922
   258
    by (Blast_tac 2);
paulson@1553
   259
   by (subgoal_tac "? k. f k = x & k<m" 1);
paulson@2922
   260
    by (Blast_tac 2);
wenzelm@4089
   261
   by (SELECT_GOAL(safe_tac (claset()))1);
paulson@1553
   262
   by (res_inst_tac [("x","k")] exI 1);
paulson@1553
   263
   by (Asm_simp_tac 1);
wenzelm@4089
   264
  by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@2922
   265
  by (Blast_tac 1);
paulson@3457
   266
 by (dtac sym 1);
paulson@1553
   267
 by (rotate_tac ~1 1);
paulson@1553
   268
 by (Asm_full_simp_tac 1);
paulson@1553
   269
 by (res_inst_tac [("x","%i. if f i = f m then a else f i")] exI 1);
wenzelm@4089
   270
 by (SELECT_GOAL(safe_tac (claset()))1);
paulson@1553
   271
  by (subgoal_tac "x ~= f m" 1);
paulson@2922
   272
   by (Blast_tac 2);
paulson@1553
   273
  by (subgoal_tac "? k. f k = x & k<m" 1);
paulson@2922
   274
   by (Blast_tac 2);
wenzelm@4089
   275
  by (SELECT_GOAL(safe_tac (claset()))1);
paulson@1553
   276
  by (res_inst_tac [("x","k")] exI 1);
paulson@1553
   277
  by (Asm_simp_tac 1);
wenzelm@4089
   278
 by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@2922
   279
 by (Blast_tac 1);
paulson@1553
   280
by (res_inst_tac [("x","%j. if f j = f i then f m else f j")] exI 1);
wenzelm@4089
   281
by (SELECT_GOAL(safe_tac (claset()))1);
paulson@1553
   282
 by (subgoal_tac "x ~= f i" 1);
paulson@2922
   283
  by (Blast_tac 2);
paulson@1553
   284
 by (case_tac "x = f m" 1);
paulson@1553
   285
  by (res_inst_tac [("x","i")] exI 1);
paulson@1553
   286
  by (Asm_simp_tac 1);
paulson@1553
   287
 by (subgoal_tac "? k. f k = x & k<m" 1);
paulson@2922
   288
  by (Blast_tac 2);
wenzelm@4089
   289
 by (SELECT_GOAL(safe_tac (claset()))1);
paulson@1553
   290
 by (res_inst_tac [("x","k")] exI 1);
paulson@1553
   291
 by (Asm_simp_tac 1);
wenzelm@4089
   292
by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@2922
   293
by (Blast_tac 1);
nipkow@1531
   294
val lemma = result();
nipkow@1531
   295
nipkow@1531
   296
goal Finite.thy "!!A. [| finite A; x ~: A |] ==> \
wenzelm@3842
   297
\ (LEAST n. ? f. insert x A = {f i|i. i<n}) = Suc(LEAST n. ? f. A={f i|i. i<n})";
paulson@1553
   298
by (rtac Least_equality 1);
paulson@3457
   299
 by (dtac finite_has_card 1);
paulson@3457
   300
 by (etac exE 1);
wenzelm@3842
   301
 by (dres_inst_tac [("P","%n.? f. A={f i|i. i<n}")] LeastI 1);
paulson@3457
   302
 by (etac exE 1);
paulson@1553
   303
 by (res_inst_tac
nipkow@1531
   304
   [("x","%i. if i<(LEAST n. ? f. A={f i |i. i < n}) then f i else x")] exI 1);
paulson@1553
   305
 by (simp_tac
wenzelm@4089
   306
    (simpset() addsimps [Collect_conv_insert, less_Suc_eq] 
paulson@2031
   307
              addcongs [rev_conj_cong]) 1);
paulson@3457
   308
 by (etac subst 1);
paulson@3457
   309
 by (rtac refl 1);
paulson@1553
   310
by (rtac notI 1);
paulson@1553
   311
by (etac exE 1);
paulson@1553
   312
by (dtac lemma 1);
paulson@3457
   313
 by (assume_tac 1);
paulson@1553
   314
by (etac exE 1);
paulson@1553
   315
by (etac conjE 1);
paulson@1553
   316
by (dres_inst_tac [("P","%x. ? g. A = {g i |i. i < x}")] Least_le 1);
paulson@1553
   317
by (dtac le_less_trans 1 THEN atac 1);
wenzelm@4089
   318
by (asm_full_simp_tac (simpset() addsimps [less_Suc_eq]) 1);
paulson@1553
   319
by (etac disjE 1);
paulson@1553
   320
by (etac less_asym 1 THEN atac 1);
paulson@1553
   321
by (hyp_subst_tac 1);
paulson@1553
   322
by (Asm_full_simp_tac 1);
nipkow@1531
   323
val lemma = result();
nipkow@1531
   324
nipkow@1531
   325
goalw Finite.thy [card_def]
nipkow@1531
   326
  "!!A. [| finite A; x ~: A |] ==> card(insert x A) = Suc(card A)";
paulson@1553
   327
by (etac lemma 1);
paulson@1553
   328
by (assume_tac 1);
nipkow@1531
   329
qed "card_insert_disjoint";
paulson@3352
   330
Addsimps [card_insert_disjoint];
paulson@3352
   331
paulson@3352
   332
goal Finite.thy  "!!A. finite A ==> !B. B <= A --> card(B) <= card(A)";
paulson@3352
   333
by (etac finite_induct 1);
paulson@3352
   334
by (Simp_tac 1);
paulson@3708
   335
by (Clarify_tac 1);
paulson@3352
   336
by (case_tac "x:B" 1);
nipkow@3413
   337
 by (dres_inst_tac [("A","B")] mk_disjoint_insert 1);
wenzelm@4089
   338
 by (SELECT_GOAL(safe_tac (claset()))1);
paulson@3352
   339
 by (rotate_tac ~1 1);
wenzelm@4089
   340
 by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
paulson@3352
   341
by (rotate_tac ~1 1);
wenzelm@4089
   342
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
paulson@3352
   343
qed_spec_mp "card_mono";
paulson@3352
   344
paulson@3352
   345
goal Finite.thy "!!A B. [| finite A; finite B |]\
paulson@3352
   346
\                       ==> A Int B = {} --> card(A Un B) = card A + card B";
paulson@3352
   347
by (etac finite_induct 1);
paulson@3352
   348
by (ALLGOALS 
wenzelm@4089
   349
    (asm_simp_tac (simpset() addsimps [Int_insert_left]
nipkow@3919
   350
	                    addsplits [expand_if])));
paulson@3352
   351
qed_spec_mp "card_Un_disjoint";
paulson@3352
   352
paulson@3352
   353
goal Finite.thy "!!A. [| finite A; B<=A |] ==> card A - card B = card (A - B)";
paulson@3352
   354
by (subgoal_tac "(A-B) Un B = A" 1);
paulson@3352
   355
by (Blast_tac 2);
paulson@3457
   356
by (rtac (add_right_cancel RS iffD1) 1);
paulson@3457
   357
by (rtac (card_Un_disjoint RS subst) 1);
paulson@3457
   358
by (etac ssubst 4);
paulson@3352
   359
by (Blast_tac 3);
paulson@3352
   360
by (ALLGOALS 
paulson@3352
   361
    (asm_simp_tac
wenzelm@4089
   362
     (simpset() addsimps [add_commute, not_less_iff_le, 
paulson@3352
   363
			 add_diff_inverse, card_mono, finite_subset])));
paulson@3352
   364
qed "card_Diff_subset";
nipkow@1531
   365
paulson@1618
   366
goal Finite.thy "!!A. [| finite A; x: A |] ==> Suc(card(A-{x})) = card A";
paulson@1618
   367
by (res_inst_tac [("t", "A")] (insert_Diff RS subst) 1);
paulson@1618
   368
by (assume_tac 1);
paulson@3352
   369
by (Asm_simp_tac 1);
paulson@1618
   370
qed "card_Suc_Diff";
paulson@1618
   371
paulson@1618
   372
goal Finite.thy "!!A. [| finite A; x: A |] ==> card(A-{x}) < card A";
paulson@2031
   373
by (rtac Suc_less_SucD 1);
wenzelm@4089
   374
by (asm_simp_tac (simpset() addsimps [card_Suc_Diff]) 1);
paulson@1618
   375
qed "card_Diff";
paulson@1618
   376
paulson@3389
   377
paulson@3389
   378
(*** Cardinality of the Powerset ***)
paulson@3389
   379
nipkow@1531
   380
val [major] = goal Finite.thy
nipkow@1531
   381
  "finite A ==> card(insert x A) = Suc(card(A-{x}))";
paulson@1553
   382
by (case_tac "x:A" 1);
wenzelm@4089
   383
by (asm_simp_tac (simpset() addsimps [insert_absorb]) 1);
paulson@1553
   384
by (dtac mk_disjoint_insert 1);
paulson@1553
   385
by (etac exE 1);
paulson@1553
   386
by (Asm_simp_tac 1);
paulson@1553
   387
by (rtac card_insert_disjoint 1);
paulson@1553
   388
by (rtac (major RSN (2,finite_subset)) 1);
paulson@2922
   389
by (Blast_tac 1);
paulson@2922
   390
by (Blast_tac 1);
wenzelm@4089
   391
by (asm_simp_tac (simpset() addsimps [major RS card_insert_disjoint]) 1);
nipkow@1531
   392
qed "card_insert";
nipkow@1531
   393
Addsimps [card_insert];
nipkow@1531
   394
paulson@3340
   395
goal Finite.thy "!!A. finite(A) ==> inj_onto f A --> card (f `` A) = card A";
paulson@3340
   396
by (etac finite_induct 1);
paulson@3340
   397
by (ALLGOALS Asm_simp_tac);
paulson@3724
   398
by Safe_tac;
paulson@3457
   399
by (rewtac inj_onto_def);
paulson@3340
   400
by (Blast_tac 1);
paulson@3340
   401
by (stac card_insert_disjoint 1);
paulson@3340
   402
by (etac finite_imageI 1);
paulson@3340
   403
by (Blast_tac 1);
paulson@3340
   404
by (Blast_tac 1);
paulson@3340
   405
qed_spec_mp "card_image";
paulson@3340
   406
paulson@3389
   407
goal thy "!!A. finite A ==> card (Pow A) = 2 ^ card A";
paulson@3389
   408
by (etac finite_induct 1);
wenzelm@4089
   409
by (ALLGOALS (asm_simp_tac (simpset() addsimps [Pow_insert])));
paulson@3389
   410
by (stac card_Un_disjoint 1);
wenzelm@4089
   411
by (EVERY (map (blast_tac (claset() addIs [finite_imageI])) [3,2,1]));
paulson@3389
   412
by (subgoal_tac "inj_onto (insert x) (Pow F)" 1);
wenzelm@4089
   413
by (asm_simp_tac (simpset() addsimps [card_image, Pow_insert]) 1);
paulson@3457
   414
by (rewtac inj_onto_def);
wenzelm@4089
   415
by (blast_tac (claset() addSEs [equalityE]) 1);
paulson@3389
   416
qed "card_Pow";
paulson@3389
   417
Addsimps [card_Pow];
paulson@3340
   418
paulson@3389
   419
paulson@3389
   420
(*Proper subsets*)
nipkow@3222
   421
goalw Finite.thy [psubset_def]
nipkow@3222
   422
"!!B. finite B ==> !A. A < B --> card(A) < card(B)";
nipkow@3222
   423
by (etac finite_induct 1);
nipkow@3222
   424
by (Simp_tac 1);
paulson@3708
   425
by (Clarify_tac 1);
nipkow@3222
   426
by (case_tac "x:A" 1);
nipkow@3222
   427
(*1*)
nipkow@3413
   428
by (dres_inst_tac [("A","A")]mk_disjoint_insert 1);
nipkow@3222
   429
by (etac exE 1);
nipkow@3222
   430
by (etac conjE 1);
nipkow@3222
   431
by (hyp_subst_tac 1);
nipkow@3222
   432
by (rotate_tac ~1 1);
wenzelm@4089
   433
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
paulson@3708
   434
by (Blast_tac 1);
nipkow@3222
   435
(*2*)
nipkow@3222
   436
by (rotate_tac ~1 1);
paulson@3708
   437
by (eres_inst_tac [("P","?a<?b")] notE 1);
wenzelm@4089
   438
by (asm_full_simp_tac (simpset() addsimps [subset_insert_iff,finite_subset]) 1);
nipkow@3222
   439
by (case_tac "A=F" 1);
paulson@3708
   440
by (ALLGOALS Asm_simp_tac);
nipkow@3222
   441
qed_spec_mp "psubset_card" ;
paulson@3368
   442
paulson@3368
   443
wenzelm@3430
   444
(*Relates to equivalence classes.   Based on a theorem of F. Kammueller's.
paulson@3368
   445
  The "finite C" premise is redundant*)
paulson@3368
   446
goal thy "!!C. finite C ==> finite (Union C) --> \
paulson@3368
   447
\          (! c : C. k dvd card c) -->  \
paulson@3368
   448
\          (! c1: C. ! c2: C. c1 ~= c2 --> c1 Int c2 = {}) \
paulson@3368
   449
\          --> k dvd card(Union C)";
paulson@3368
   450
by (etac finite_induct 1);
paulson@3368
   451
by (ALLGOALS Asm_simp_tac);
paulson@3708
   452
by (Clarify_tac 1);
paulson@3368
   453
by (stac card_Un_disjoint 1);
paulson@3368
   454
by (ALLGOALS
wenzelm@4089
   455
    (asm_full_simp_tac (simpset()
paulson@3368
   456
			 addsimps [dvd_add, disjoint_eq_subset_Compl])));
paulson@3368
   457
by (thin_tac "!c:F. ?PP(c)" 1);
paulson@3368
   458
by (thin_tac "!c:F. ?PP(c) & ?QQ(c)" 1);
paulson@3708
   459
by (Clarify_tac 1);
paulson@3368
   460
by (ball_tac 1);
paulson@3368
   461
by (Blast_tac 1);
paulson@3368
   462
qed_spec_mp "dvd_partition";
paulson@3368
   463