src/HOL/Archimedean_Field.thy
author haftmann
Fri Nov 27 08:41:10 2009 +0100 (2009-11-27)
changeset 33963 977b94b64905
parent 30102 799b687e4aac
child 35028 108662d50512
permissions -rw-r--r--
renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
huffman@30096
     1
(* Title:      Archimedean_Field.thy
huffman@30096
     2
   Author:     Brian Huffman
huffman@30096
     3
*)
huffman@30096
     4
huffman@30096
     5
header {* Archimedean Fields, Floor and Ceiling Functions *}
huffman@30096
     6
huffman@30096
     7
theory Archimedean_Field
huffman@30096
     8
imports Main
huffman@30096
     9
begin
huffman@30096
    10
huffman@30096
    11
subsection {* Class of Archimedean fields *}
huffman@30096
    12
huffman@30096
    13
text {* Archimedean fields have no infinite elements. *}
huffman@30096
    14
huffman@30096
    15
class archimedean_field = ordered_field + number_ring +
huffman@30096
    16
  assumes ex_le_of_int: "\<exists>z. x \<le> of_int z"
huffman@30096
    17
huffman@30096
    18
lemma ex_less_of_int:
huffman@30096
    19
  fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z"
huffman@30096
    20
proof -
huffman@30096
    21
  from ex_le_of_int obtain z where "x \<le> of_int z" ..
huffman@30096
    22
  then have "x < of_int (z + 1)" by simp
huffman@30096
    23
  then show ?thesis ..
huffman@30096
    24
qed
huffman@30096
    25
huffman@30096
    26
lemma ex_of_int_less:
huffman@30096
    27
  fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x"
huffman@30096
    28
proof -
huffman@30096
    29
  from ex_less_of_int obtain z where "- x < of_int z" ..
huffman@30096
    30
  then have "of_int (- z) < x" by simp
huffman@30096
    31
  then show ?thesis ..
huffman@30096
    32
qed
huffman@30096
    33
huffman@30096
    34
lemma ex_less_of_nat:
huffman@30096
    35
  fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n"
huffman@30096
    36
proof -
huffman@30096
    37
  obtain z where "x < of_int z" using ex_less_of_int ..
huffman@30096
    38
  also have "\<dots> \<le> of_int (int (nat z))" by simp
huffman@30096
    39
  also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq)
huffman@30096
    40
  finally show ?thesis ..
huffman@30096
    41
qed
huffman@30096
    42
huffman@30096
    43
lemma ex_le_of_nat:
huffman@30096
    44
  fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n"
huffman@30096
    45
proof -
huffman@30096
    46
  obtain n where "x < of_nat n" using ex_less_of_nat ..
huffman@30096
    47
  then have "x \<le> of_nat n" by simp
huffman@30096
    48
  then show ?thesis ..
huffman@30096
    49
qed
huffman@30096
    50
huffman@30096
    51
text {* Archimedean fields have no infinitesimal elements. *}
huffman@30096
    52
huffman@30096
    53
lemma ex_inverse_of_nat_Suc_less:
huffman@30096
    54
  fixes x :: "'a::archimedean_field"
huffman@30096
    55
  assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x"
huffman@30096
    56
proof -
huffman@30096
    57
  from `0 < x` have "0 < inverse x"
huffman@30096
    58
    by (rule positive_imp_inverse_positive)
huffman@30096
    59
  obtain n where "inverse x < of_nat n"
huffman@30096
    60
    using ex_less_of_nat ..
huffman@30096
    61
  then obtain m where "inverse x < of_nat (Suc m)"
huffman@30096
    62
    using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc)
huffman@30096
    63
  then have "inverse (of_nat (Suc m)) < inverse (inverse x)"
huffman@30096
    64
    using `0 < inverse x` by (rule less_imp_inverse_less)
huffman@30096
    65
  then have "inverse (of_nat (Suc m)) < x"
huffman@30096
    66
    using `0 < x` by (simp add: nonzero_inverse_inverse_eq)
huffman@30096
    67
  then show ?thesis ..
huffman@30096
    68
qed
huffman@30096
    69
huffman@30096
    70
lemma ex_inverse_of_nat_less:
huffman@30096
    71
  fixes x :: "'a::archimedean_field"
huffman@30096
    72
  assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x"
huffman@30096
    73
  using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto
huffman@30096
    74
huffman@30096
    75
lemma ex_less_of_nat_mult:
huffman@30096
    76
  fixes x :: "'a::archimedean_field"
huffman@30096
    77
  assumes "0 < x" shows "\<exists>n. y < of_nat n * x"
huffman@30096
    78
proof -
huffman@30096
    79
  obtain n where "y / x < of_nat n" using ex_less_of_nat ..
huffman@30096
    80
  with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq)
huffman@30096
    81
  then show ?thesis ..
huffman@30096
    82
qed
huffman@30096
    83
huffman@30096
    84
huffman@30096
    85
subsection {* Existence and uniqueness of floor function *}
huffman@30096
    86
huffman@30096
    87
lemma exists_least_lemma:
huffman@30096
    88
  assumes "\<not> P 0" and "\<exists>n. P n"
huffman@30096
    89
  shows "\<exists>n. \<not> P n \<and> P (Suc n)"
huffman@30096
    90
proof -
huffman@30096
    91
  from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex)
huffman@30096
    92
  with `\<not> P 0` obtain n where "Least P = Suc n"
huffman@30096
    93
    by (cases "Least P") auto
huffman@30096
    94
  then have "n < Least P" by simp
huffman@30096
    95
  then have "\<not> P n" by (rule not_less_Least)
huffman@30096
    96
  then have "\<not> P n \<and> P (Suc n)"
huffman@30096
    97
    using `P (Least P)` `Least P = Suc n` by simp
huffman@30096
    98
  then show ?thesis ..
huffman@30096
    99
qed
huffman@30096
   100
huffman@30096
   101
lemma floor_exists:
huffman@30096
   102
  fixes x :: "'a::archimedean_field"
huffman@30096
   103
  shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   104
proof (cases)
huffman@30096
   105
  assume "0 \<le> x"
huffman@30096
   106
  then have "\<not> x < of_nat 0" by simp
huffman@30096
   107
  then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)"
huffman@30096
   108
    using ex_less_of_nat by (rule exists_least_lemma)
huffman@30096
   109
  then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" ..
huffman@30096
   110
  then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp
huffman@30096
   111
  then show ?thesis ..
huffman@30096
   112
next
huffman@30096
   113
  assume "\<not> 0 \<le> x"
huffman@30096
   114
  then have "\<not> - x \<le> of_nat 0" by simp
huffman@30096
   115
  then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)"
huffman@30096
   116
    using ex_le_of_nat by (rule exists_least_lemma)
huffman@30096
   117
  then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" ..
huffman@30096
   118
  then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp
huffman@30096
   119
  then show ?thesis ..
huffman@30096
   120
qed
huffman@30096
   121
huffman@30096
   122
lemma floor_exists1:
huffman@30096
   123
  fixes x :: "'a::archimedean_field"
huffman@30096
   124
  shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   125
proof (rule ex_ex1I)
huffman@30096
   126
  show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   127
    by (rule floor_exists)
huffman@30096
   128
next
huffman@30096
   129
  fix y z assume
huffman@30096
   130
    "of_int y \<le> x \<and> x < of_int (y + 1)"
huffman@30096
   131
    "of_int z \<le> x \<and> x < of_int (z + 1)"
huffman@30096
   132
  then have
huffman@30096
   133
    "of_int y \<le> x" "x < of_int (y + 1)"
huffman@30096
   134
    "of_int z \<le> x" "x < of_int (z + 1)"
huffman@30096
   135
    by simp_all
huffman@30096
   136
  from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`]
huffman@30096
   137
       le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`]
huffman@30096
   138
  show "y = z" by (simp del: of_int_add)
huffman@30096
   139
qed
huffman@30096
   140
huffman@30096
   141
huffman@30096
   142
subsection {* Floor function *}
huffman@30096
   143
huffman@30096
   144
definition
huffman@30096
   145
  floor :: "'a::archimedean_field \<Rightarrow> int" where
huffman@30096
   146
  [code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
huffman@30096
   147
huffman@30096
   148
notation (xsymbols)
huffman@30096
   149
  floor  ("\<lfloor>_\<rfloor>")
huffman@30096
   150
huffman@30096
   151
notation (HTML output)
huffman@30096
   152
  floor  ("\<lfloor>_\<rfloor>")
huffman@30096
   153
huffman@30096
   154
lemma floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
huffman@30096
   155
  unfolding floor_def using floor_exists1 by (rule theI')
huffman@30096
   156
huffman@30096
   157
lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z"
huffman@30096
   158
  using floor_correct [of x] floor_exists1 [of x] by auto
huffman@30096
   159
huffman@30096
   160
lemma of_int_floor_le: "of_int (floor x) \<le> x"
huffman@30096
   161
  using floor_correct ..
huffman@30096
   162
huffman@30096
   163
lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x"
huffman@30096
   164
proof
huffman@30096
   165
  assume "z \<le> floor x"
huffman@30096
   166
  then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp
huffman@30096
   167
  also have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
huffman@30096
   168
  finally show "of_int z \<le> x" .
huffman@30096
   169
next
huffman@30096
   170
  assume "of_int z \<le> x"
huffman@30096
   171
  also have "x < of_int (floor x + 1)" using floor_correct ..
huffman@30096
   172
  finally show "z \<le> floor x" by (simp del: of_int_add)
huffman@30096
   173
qed
huffman@30096
   174
huffman@30096
   175
lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z"
huffman@30096
   176
  by (simp add: not_le [symmetric] le_floor_iff)
huffman@30096
   177
huffman@30096
   178
lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x"
huffman@30096
   179
  using le_floor_iff [of "z + 1" x] by auto
huffman@30096
   180
huffman@30096
   181
lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1"
huffman@30096
   182
  by (simp add: not_less [symmetric] less_floor_iff)
huffman@30096
   183
huffman@30096
   184
lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y"
huffman@30096
   185
proof -
huffman@30096
   186
  have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
huffman@30096
   187
  also note `x \<le> y`
huffman@30096
   188
  finally show ?thesis by (simp add: le_floor_iff)
huffman@30096
   189
qed
huffman@30096
   190
huffman@30096
   191
lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y"
huffman@30096
   192
  by (auto simp add: not_le [symmetric] floor_mono)
huffman@30096
   193
huffman@30096
   194
lemma floor_of_int [simp]: "floor (of_int z) = z"
huffman@30096
   195
  by (rule floor_unique) simp_all
huffman@30096
   196
huffman@30096
   197
lemma floor_of_nat [simp]: "floor (of_nat n) = int n"
huffman@30096
   198
  using floor_of_int [of "of_nat n"] by simp
huffman@30096
   199
huffman@30096
   200
text {* Floor with numerals *}
huffman@30096
   201
huffman@30096
   202
lemma floor_zero [simp]: "floor 0 = 0"
huffman@30096
   203
  using floor_of_int [of 0] by simp
huffman@30096
   204
huffman@30096
   205
lemma floor_one [simp]: "floor 1 = 1"
huffman@30096
   206
  using floor_of_int [of 1] by simp
huffman@30096
   207
huffman@30096
   208
lemma floor_number_of [simp]: "floor (number_of v) = number_of v"
huffman@30096
   209
  using floor_of_int [of "number_of v"] by simp
huffman@30096
   210
huffman@30096
   211
lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x"
huffman@30096
   212
  by (simp add: le_floor_iff)
huffman@30096
   213
huffman@30096
   214
lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x"
huffman@30096
   215
  by (simp add: le_floor_iff)
huffman@30096
   216
huffman@30096
   217
lemma number_of_le_floor [simp]: "number_of v \<le> floor x \<longleftrightarrow> number_of v \<le> x"
huffman@30096
   218
  by (simp add: le_floor_iff)
huffman@30096
   219
huffman@30096
   220
lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x"
huffman@30096
   221
  by (simp add: less_floor_iff)
huffman@30096
   222
huffman@30096
   223
lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x"
huffman@30096
   224
  by (simp add: less_floor_iff)
huffman@30096
   225
huffman@30096
   226
lemma number_of_less_floor [simp]:
huffman@30096
   227
  "number_of v < floor x \<longleftrightarrow> number_of v + 1 \<le> x"
huffman@30096
   228
  by (simp add: less_floor_iff)
huffman@30096
   229
huffman@30096
   230
lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1"
huffman@30096
   231
  by (simp add: floor_le_iff)
huffman@30096
   232
huffman@30096
   233
lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2"
huffman@30096
   234
  by (simp add: floor_le_iff)
huffman@30096
   235
huffman@30096
   236
lemma floor_le_number_of [simp]:
huffman@30096
   237
  "floor x \<le> number_of v \<longleftrightarrow> x < number_of v + 1"
huffman@30096
   238
  by (simp add: floor_le_iff)
huffman@30096
   239
huffman@30096
   240
lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0"
huffman@30096
   241
  by (simp add: floor_less_iff)
huffman@30096
   242
huffman@30096
   243
lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1"
huffman@30096
   244
  by (simp add: floor_less_iff)
huffman@30096
   245
huffman@30096
   246
lemma floor_less_number_of [simp]:
huffman@30096
   247
  "floor x < number_of v \<longleftrightarrow> x < number_of v"
huffman@30096
   248
  by (simp add: floor_less_iff)
huffman@30096
   249
huffman@30096
   250
text {* Addition and subtraction of integers *}
huffman@30096
   251
huffman@30096
   252
lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z"
huffman@30096
   253
  using floor_correct [of x] by (simp add: floor_unique)
huffman@30096
   254
huffman@30096
   255
lemma floor_add_number_of [simp]:
huffman@30096
   256
    "floor (x + number_of v) = floor x + number_of v"
huffman@30096
   257
  using floor_add_of_int [of x "number_of v"] by simp
huffman@30096
   258
huffman@30096
   259
lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
huffman@30096
   260
  using floor_add_of_int [of x 1] by simp
huffman@30096
   261
huffman@30096
   262
lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z"
huffman@30096
   263
  using floor_add_of_int [of x "- z"] by (simp add: algebra_simps)
huffman@30096
   264
huffman@30096
   265
lemma floor_diff_number_of [simp]:
huffman@30096
   266
  "floor (x - number_of v) = floor x - number_of v"
huffman@30096
   267
  using floor_diff_of_int [of x "number_of v"] by simp
huffman@30096
   268
huffman@30096
   269
lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1"
huffman@30096
   270
  using floor_diff_of_int [of x 1] by simp
huffman@30096
   271
huffman@30096
   272
huffman@30096
   273
subsection {* Ceiling function *}
huffman@30096
   274
huffman@30096
   275
definition
huffman@30096
   276
  ceiling :: "'a::archimedean_field \<Rightarrow> int" where
huffman@30096
   277
  [code del]: "ceiling x = - floor (- x)"
huffman@30096
   278
huffman@30096
   279
notation (xsymbols)
huffman@30096
   280
  ceiling  ("\<lceil>_\<rceil>")
huffman@30096
   281
huffman@30096
   282
notation (HTML output)
huffman@30096
   283
  ceiling  ("\<lceil>_\<rceil>")
huffman@30096
   284
huffman@30096
   285
lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)"
huffman@30096
   286
  unfolding ceiling_def using floor_correct [of "- x"] by simp
huffman@30096
   287
huffman@30096
   288
lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z"
huffman@30096
   289
  unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp
huffman@30096
   290
huffman@30096
   291
lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)"
huffman@30096
   292
  using ceiling_correct ..
huffman@30096
   293
huffman@30096
   294
lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z"
huffman@30096
   295
  unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto
huffman@30096
   296
huffman@30096
   297
lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x"
huffman@30096
   298
  by (simp add: not_le [symmetric] ceiling_le_iff)
huffman@30096
   299
huffman@30096
   300
lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1"
huffman@30096
   301
  using ceiling_le_iff [of x "z - 1"] by simp
huffman@30096
   302
huffman@30096
   303
lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x"
huffman@30096
   304
  by (simp add: not_less [symmetric] ceiling_less_iff)
huffman@30096
   305
huffman@30096
   306
lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y"
huffman@30096
   307
  unfolding ceiling_def by (simp add: floor_mono)
huffman@30096
   308
huffman@30096
   309
lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y"
huffman@30096
   310
  by (auto simp add: not_le [symmetric] ceiling_mono)
huffman@30096
   311
huffman@30096
   312
lemma ceiling_of_int [simp]: "ceiling (of_int z) = z"
huffman@30096
   313
  by (rule ceiling_unique) simp_all
huffman@30096
   314
huffman@30096
   315
lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n"
huffman@30096
   316
  using ceiling_of_int [of "of_nat n"] by simp
huffman@30096
   317
huffman@30096
   318
text {* Ceiling with numerals *}
huffman@30096
   319
huffman@30096
   320
lemma ceiling_zero [simp]: "ceiling 0 = 0"
huffman@30096
   321
  using ceiling_of_int [of 0] by simp
huffman@30096
   322
huffman@30096
   323
lemma ceiling_one [simp]: "ceiling 1 = 1"
huffman@30096
   324
  using ceiling_of_int [of 1] by simp
huffman@30096
   325
huffman@30096
   326
lemma ceiling_number_of [simp]: "ceiling (number_of v) = number_of v"
huffman@30096
   327
  using ceiling_of_int [of "number_of v"] by simp
huffman@30096
   328
huffman@30096
   329
lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0"
huffman@30096
   330
  by (simp add: ceiling_le_iff)
huffman@30096
   331
huffman@30096
   332
lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1"
huffman@30096
   333
  by (simp add: ceiling_le_iff)
huffman@30096
   334
huffman@30096
   335
lemma ceiling_le_number_of [simp]:
huffman@30096
   336
  "ceiling x \<le> number_of v \<longleftrightarrow> x \<le> number_of v"
huffman@30096
   337
  by (simp add: ceiling_le_iff)
huffman@30096
   338
huffman@30096
   339
lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1"
huffman@30096
   340
  by (simp add: ceiling_less_iff)
huffman@30096
   341
huffman@30096
   342
lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0"
huffman@30096
   343
  by (simp add: ceiling_less_iff)
huffman@30096
   344
huffman@30096
   345
lemma ceiling_less_number_of [simp]:
huffman@30096
   346
  "ceiling x < number_of v \<longleftrightarrow> x \<le> number_of v - 1"
huffman@30096
   347
  by (simp add: ceiling_less_iff)
huffman@30096
   348
huffman@30096
   349
lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x"
huffman@30096
   350
  by (simp add: le_ceiling_iff)
huffman@30096
   351
huffman@30096
   352
lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x"
huffman@30096
   353
  by (simp add: le_ceiling_iff)
huffman@30096
   354
huffman@30096
   355
lemma number_of_le_ceiling [simp]:
huffman@30096
   356
  "number_of v \<le> ceiling x\<longleftrightarrow> number_of v - 1 < x"
huffman@30096
   357
  by (simp add: le_ceiling_iff)
huffman@30096
   358
huffman@30096
   359
lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x"
huffman@30096
   360
  by (simp add: less_ceiling_iff)
huffman@30096
   361
huffman@30096
   362
lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x"
huffman@30096
   363
  by (simp add: less_ceiling_iff)
huffman@30096
   364
huffman@30096
   365
lemma number_of_less_ceiling [simp]:
huffman@30096
   366
  "number_of v < ceiling x \<longleftrightarrow> number_of v < x"
huffman@30096
   367
  by (simp add: less_ceiling_iff)
huffman@30096
   368
huffman@30096
   369
text {* Addition and subtraction of integers *}
huffman@30096
   370
huffman@30096
   371
lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z"
huffman@30096
   372
  using ceiling_correct [of x] by (simp add: ceiling_unique)
huffman@30096
   373
huffman@30096
   374
lemma ceiling_add_number_of [simp]:
huffman@30096
   375
    "ceiling (x + number_of v) = ceiling x + number_of v"
huffman@30096
   376
  using ceiling_add_of_int [of x "number_of v"] by simp
huffman@30096
   377
huffman@30096
   378
lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
huffman@30096
   379
  using ceiling_add_of_int [of x 1] by simp
huffman@30096
   380
huffman@30096
   381
lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z"
huffman@30096
   382
  using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps)
huffman@30096
   383
huffman@30096
   384
lemma ceiling_diff_number_of [simp]:
huffman@30096
   385
  "ceiling (x - number_of v) = ceiling x - number_of v"
huffman@30096
   386
  using ceiling_diff_of_int [of x "number_of v"] by simp
huffman@30096
   387
huffman@30096
   388
lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1"
huffman@30096
   389
  using ceiling_diff_of_int [of x 1] by simp
huffman@30096
   390
huffman@30096
   391
huffman@30096
   392
subsection {* Negation *}
huffman@30096
   393
huffman@30102
   394
lemma floor_minus: "floor (- x) = - ceiling x"
huffman@30096
   395
  unfolding ceiling_def by simp
huffman@30096
   396
huffman@30102
   397
lemma ceiling_minus: "ceiling (- x) = - floor x"
huffman@30096
   398
  unfolding ceiling_def by simp
huffman@30096
   399
huffman@30096
   400
end