src/HOL/Old_Number_Theory/Chinese.thy
author haftmann
Fri Nov 27 08:41:10 2009 +0100 (2009-11-27)
changeset 33963 977b94b64905
parent 32479 521cc9bf2958
child 38159 e9b4835a54ee
permissions -rw-r--r--
renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
haftmann@32479
     1
(*  Author:     Thomas M. Rasmussen
wenzelm@11049
     2
    Copyright   2000  University of Cambridge
paulson@9508
     3
*)
paulson@9508
     4
wenzelm@11049
     5
header {* The Chinese Remainder Theorem *}
wenzelm@11049
     6
haftmann@27556
     7
theory Chinese 
haftmann@27556
     8
imports IntPrimes
haftmann@27556
     9
begin
wenzelm@11049
    10
wenzelm@11049
    11
text {*
wenzelm@11049
    12
  The Chinese Remainder Theorem for an arbitrary finite number of
wenzelm@11049
    13
  equations.  (The one-equation case is included in theory @{text
wenzelm@11049
    14
  IntPrimes}.  Uses functions for indexing.\footnote{Maybe @{term
wenzelm@11049
    15
  funprod} and @{term funsum} should be based on general @{term fold}
wenzelm@11049
    16
  on indices?}
wenzelm@11049
    17
*}
wenzelm@11049
    18
wenzelm@11049
    19
wenzelm@11049
    20
subsection {* Definitions *}
paulson@9508
    21
paulson@9508
    22
consts
wenzelm@11049
    23
  funprod :: "(nat => int) => nat => nat => int"
wenzelm@11049
    24
  funsum :: "(nat => int) => nat => nat => int"
paulson@9508
    25
paulson@9508
    26
primrec
wenzelm@11049
    27
  "funprod f i 0 = f i"
wenzelm@11049
    28
  "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n"
paulson@9508
    29
paulson@9508
    30
primrec
wenzelm@11049
    31
  "funsum f i 0 = f i"
wenzelm@11049
    32
  "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
paulson@9508
    33
wenzelm@19670
    34
definition
wenzelm@21404
    35
  m_cond :: "nat => (nat => int) => bool" where
wenzelm@19670
    36
  "m_cond n mf =
wenzelm@19670
    37
    ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
haftmann@27556
    38
      (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i) (mf j) = 1))"
wenzelm@19670
    39
wenzelm@21404
    40
definition
wenzelm@21404
    41
  km_cond :: "nat => (nat => int) => (nat => int) => bool" where
haftmann@27556
    42
  "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i) (mf i) = 1)"
wenzelm@19670
    43
wenzelm@21404
    44
definition
wenzelm@11049
    45
  lincong_sol ::
wenzelm@21404
    46
    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
wenzelm@19670
    47
  "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
paulson@9508
    48
wenzelm@21404
    49
definition
wenzelm@21404
    50
  mhf :: "(nat => int) => nat => nat => int" where
wenzelm@19670
    51
  "mhf mf n i =
wenzelm@19670
    52
    (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
wenzelm@19670
    53
     else if i = n then funprod mf 0 (n - Suc 0)
wenzelm@19670
    54
     else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
wenzelm@19670
    55
wenzelm@21404
    56
definition
wenzelm@11049
    57
  xilin_sol ::
wenzelm@21404
    58
    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
wenzelm@19670
    59
  "xilin_sol i n kf bf mf =
wenzelm@19670
    60
    (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
wenzelm@19670
    61
        (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
wenzelm@19670
    62
     else 0)"
wenzelm@11049
    63
wenzelm@21404
    64
definition
wenzelm@21404
    65
  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
wenzelm@19670
    66
  "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
wenzelm@11049
    67
wenzelm@11049
    68
wenzelm@11049
    69
text {* \medskip @{term funprod} and @{term funsum} *}
wenzelm@11049
    70
paulson@11868
    71
lemma funprod_pos: "(\<forall>i. i \<le> n --> 0 < mf i) ==> 0 < funprod mf 0 n"
wenzelm@11049
    72
  apply (induct n)
wenzelm@11049
    73
   apply auto
paulson@14353
    74
  apply (simp add: zero_less_mult_iff)
wenzelm@11049
    75
  done
wenzelm@11049
    76
wenzelm@11049
    77
lemma funprod_zgcd [rule_format (no_asm)]:
haftmann@27556
    78
  "(\<forall>i. k \<le> i \<and> i \<le> k + l --> zgcd (mf i) (mf m) = 1) -->
haftmann@27556
    79
    zgcd (funprod mf k l) (mf m) = 1"
wenzelm@11049
    80
  apply (induct l)
wenzelm@11049
    81
   apply simp_all
wenzelm@11049
    82
  apply (rule impI)+
wenzelm@11049
    83
  apply (subst zgcd_zmult_cancel)
wenzelm@11049
    84
  apply auto
wenzelm@11049
    85
  done
paulson@9508
    86
wenzelm@11049
    87
lemma funprod_zdvd [rule_format]:
wenzelm@11049
    88
    "k \<le> i --> i \<le> k + l --> mf i dvd funprod mf k l"
wenzelm@11049
    89
  apply (induct l)
wenzelm@11049
    90
   apply auto
nipkow@30042
    91
  apply (subgoal_tac "i = Suc (k + l)")
nipkow@30042
    92
   apply (simp_all (no_asm_simp))
wenzelm@11049
    93
  done
wenzelm@11049
    94
wenzelm@11049
    95
lemma funsum_mod:
wenzelm@11049
    96
    "funsum f k l mod m = funsum (\<lambda>i. (f i) mod m) k l mod m"
wenzelm@11049
    97
  apply (induct l)
wenzelm@11049
    98
   apply auto
wenzelm@11049
    99
  apply (rule trans)
nipkow@29948
   100
   apply (rule mod_add_eq)
wenzelm@11049
   101
  apply simp
nipkow@30034
   102
  apply (rule mod_add_right_eq [symmetric])
wenzelm@11049
   103
  done
paulson@9508
   104
wenzelm@11049
   105
lemma funsum_zero [rule_format (no_asm)]:
paulson@11868
   106
    "(\<forall>i. k \<le> i \<and> i \<le> k + l --> f i = 0) --> (funsum f k l) = 0"
wenzelm@11049
   107
  apply (induct l)
wenzelm@11049
   108
   apply auto
wenzelm@11049
   109
  done
wenzelm@11049
   110
wenzelm@11049
   111
lemma funsum_oneelem [rule_format (no_asm)]:
wenzelm@11049
   112
  "k \<le> j --> j \<le> k + l -->
paulson@11868
   113
    (\<forall>i. k \<le> i \<and> i \<le> k + l \<and> i \<noteq> j --> f i = 0) -->
wenzelm@11049
   114
    funsum f k l = f j"
wenzelm@11049
   115
  apply (induct l)
wenzelm@11049
   116
   prefer 2
wenzelm@11049
   117
   apply clarify
wenzelm@11049
   118
   defer
wenzelm@11049
   119
   apply clarify
wenzelm@11049
   120
   apply (subgoal_tac "k = j")
wenzelm@11049
   121
    apply (simp_all (no_asm_simp))
nipkow@15236
   122
  apply (case_tac "Suc (k + l) = j")
nipkow@15236
   123
   apply (subgoal_tac "funsum f k l = 0")
wenzelm@11049
   124
    apply (rule_tac [2] funsum_zero)
nipkow@15236
   125
    apply (subgoal_tac [3] "f (Suc (k + l)) = 0")
nipkow@15236
   126
     apply (subgoal_tac [3] "j \<le> k + l")
wenzelm@11049
   127
      prefer 4
wenzelm@11049
   128
      apply arith
wenzelm@11049
   129
     apply auto
wenzelm@11049
   130
  done
wenzelm@11049
   131
wenzelm@11049
   132
wenzelm@11049
   133
subsection {* Chinese: uniqueness *}
paulson@9508
   134
wenzelm@13524
   135
lemma zcong_funprod_aux:
wenzelm@11049
   136
  "m_cond n mf ==> km_cond n kf mf
wenzelm@11049
   137
    ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y
wenzelm@11049
   138
    ==> [x = y] (mod mf n)"
wenzelm@11049
   139
  apply (unfold m_cond_def km_cond_def lincong_sol_def)
wenzelm@11049
   140
  apply (rule iffD1)
wenzelm@11049
   141
   apply (rule_tac k = "kf n" in zcong_cancel2)
wenzelm@11049
   142
    apply (rule_tac [3] b = "bf n" in zcong_trans)
wenzelm@11049
   143
     prefer 4
wenzelm@11049
   144
     apply (subst zcong_sym)
wenzelm@11049
   145
     defer
wenzelm@11049
   146
     apply (rule order_less_imp_le)
wenzelm@11049
   147
     apply simp_all
wenzelm@11049
   148
  done
wenzelm@11049
   149
wenzelm@11049
   150
lemma zcong_funprod [rule_format]:
wenzelm@11049
   151
  "m_cond n mf --> km_cond n kf mf -->
wenzelm@11049
   152
    lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y -->
wenzelm@11049
   153
    [x = y] (mod funprod mf 0 n)"
wenzelm@11049
   154
  apply (induct n)
wenzelm@11049
   155
   apply (simp_all (no_asm))
wenzelm@13524
   156
   apply (blast intro: zcong_funprod_aux)
wenzelm@11049
   157
  apply (rule impI)+
wenzelm@11049
   158
  apply (rule zcong_zgcd_zmult_zmod)
wenzelm@13524
   159
    apply (blast intro: zcong_funprod_aux)
wenzelm@11049
   160
    prefer 2
wenzelm@11049
   161
    apply (subst zgcd_commute)
wenzelm@11049
   162
    apply (rule funprod_zgcd)
wenzelm@11049
   163
   apply (auto simp add: m_cond_def km_cond_def lincong_sol_def)
wenzelm@11049
   164
  done
wenzelm@11049
   165
wenzelm@11049
   166
wenzelm@11049
   167
subsection {* Chinese: existence *}
wenzelm@11049
   168
wenzelm@11049
   169
lemma unique_xi_sol:
wenzelm@11049
   170
  "0 < n ==> i \<le> n ==> m_cond n mf ==> km_cond n kf mf
paulson@11868
   171
    ==> \<exists>!x. 0 \<le> x \<and> x < mf i \<and> [kf i * mhf mf n i * x = bf i] (mod mf i)"
wenzelm@11049
   172
  apply (rule zcong_lineq_unique)
wenzelm@11049
   173
   apply (tactic {* stac (thm "zgcd_zmult_cancel") 2 *})
wenzelm@11049
   174
    apply (unfold m_cond_def km_cond_def mhf_def)
wenzelm@11049
   175
    apply (simp_all (no_asm_simp))
wenzelm@11049
   176
  apply safe
wenzelm@11049
   177
    apply (tactic {* stac (thm "zgcd_zmult_cancel") 3 *})
wenzelm@11049
   178
     apply (rule_tac [!] funprod_zgcd)
wenzelm@11049
   179
     apply safe
wenzelm@11049
   180
     apply simp_all
webertj@20432
   181
   apply (subgoal_tac "i<n")
webertj@20432
   182
    prefer 2
webertj@20432
   183
    apply arith
webertj@20432
   184
   apply (case_tac [2] i)
webertj@20432
   185
    apply simp_all
wenzelm@11049
   186
  done
paulson@9508
   187
wenzelm@13524
   188
lemma x_sol_lin_aux:
wenzelm@11049
   189
    "0 < n ==> i \<le> n ==> j \<le> n ==> j \<noteq> i ==> mf j dvd mhf mf n i"
wenzelm@11049
   190
  apply (unfold mhf_def)
wenzelm@11049
   191
  apply (case_tac "i = 0")
wenzelm@11049
   192
   apply (case_tac [2] "i = n")
wenzelm@11049
   193
    apply (simp_all (no_asm_simp))
wenzelm@11049
   194
    apply (case_tac [3] "j < i")
nipkow@30042
   195
     apply (rule_tac [3] dvd_mult2)
nipkow@30042
   196
     apply (rule_tac [4] dvd_mult)
wenzelm@11049
   197
     apply (rule_tac [!] funprod_zdvd)
chaieb@23315
   198
     apply arith
chaieb@23315
   199
     apply arith
chaieb@23315
   200
     apply arith
chaieb@23315
   201
     apply arith
chaieb@23315
   202
     apply arith
chaieb@23315
   203
     apply arith
chaieb@23315
   204
     apply arith
chaieb@23315
   205
     apply arith
wenzelm@11049
   206
  done
wenzelm@11049
   207
wenzelm@11049
   208
lemma x_sol_lin:
wenzelm@11049
   209
  "0 < n ==> i \<le> n
wenzelm@11049
   210
    ==> x_sol n kf bf mf mod mf i =
wenzelm@11049
   211
      xilin_sol i n kf bf mf * mhf mf n i mod mf i"
wenzelm@11049
   212
  apply (unfold x_sol_def)
wenzelm@11049
   213
  apply (subst funsum_mod)
wenzelm@11049
   214
  apply (subst funsum_oneelem)
wenzelm@11049
   215
     apply auto
nipkow@30042
   216
  apply (subst dvd_eq_mod_eq_0 [symmetric])
nipkow@30042
   217
  apply (rule dvd_mult)
wenzelm@13524
   218
  apply (rule x_sol_lin_aux)
wenzelm@11049
   219
  apply auto
wenzelm@11049
   220
  done
wenzelm@11049
   221
wenzelm@11049
   222
wenzelm@11049
   223
subsection {* Chinese *}
paulson@9508
   224
wenzelm@11049
   225
lemma chinese_remainder:
wenzelm@11049
   226
  "0 < n ==> m_cond n mf ==> km_cond n kf mf
paulson@11868
   227
    ==> \<exists>!x. 0 \<le> x \<and> x < funprod mf 0 n \<and> lincong_sol n kf bf mf x"
wenzelm@11049
   228
  apply safe
wenzelm@11049
   229
   apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq)
wenzelm@11049
   230
       apply (rule_tac [6] zcong_funprod)
wenzelm@11049
   231
          apply auto
wenzelm@11049
   232
  apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI)
wenzelm@11049
   233
  apply (unfold lincong_sol_def)
wenzelm@11049
   234
  apply safe
wenzelm@11049
   235
    apply (tactic {* stac (thm "zcong_zmod") 3 *})
nipkow@29948
   236
    apply (tactic {* stac (thm "mod_mult_eq") 3 *})
nipkow@30034
   237
    apply (tactic {* stac (thm "mod_mod_cancel") 3 *})
nipkow@30034
   238
      apply (tactic {* stac (thm "x_sol_lin") 4 *})
nipkow@30034
   239
        apply (tactic {* stac (thm "mod_mult_eq" RS sym) 6 *})
nipkow@30034
   240
        apply (tactic {* stac (thm "zcong_zmod" RS sym) 6 *})
nipkow@30034
   241
        apply (subgoal_tac [6]
paulson@11868
   242
          "0 \<le> xilin_sol i n kf bf mf \<and> xilin_sol i n kf bf mf < mf i
wenzelm@11049
   243
          \<and> [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)")
nipkow@30034
   244
         prefer 6
wenzelm@11049
   245
         apply (simp add: zmult_ac)
wenzelm@11049
   246
        apply (unfold xilin_sol_def)
nipkow@30034
   247
        apply (tactic {* asm_simp_tac @{simpset} 6 *})
nipkow@30034
   248
        apply (rule_tac [6] ex1_implies_ex [THEN someI_ex])
nipkow@30034
   249
        apply (rule_tac [6] unique_xi_sol)
nipkow@30034
   250
           apply (rule_tac [3] funprod_zdvd)
wenzelm@11049
   251
            apply (unfold m_cond_def)
wenzelm@11049
   252
            apply (rule funprod_pos [THEN pos_mod_sign])
wenzelm@11049
   253
            apply (rule_tac [2] funprod_pos [THEN pos_mod_bound])
wenzelm@11049
   254
            apply auto
wenzelm@11049
   255
  done
paulson@9508
   256
paulson@9508
   257
end