haftmann@28952
|
1 |
(* Title: HOL/Rational.thy
|
paulson@14365
|
2 |
Author: Markus Wenzel, TU Muenchen
|
paulson@14365
|
3 |
*)
|
paulson@14365
|
4 |
|
wenzelm@14691
|
5 |
header {* Rational numbers *}
|
paulson@14365
|
6 |
|
nipkow@15131
|
7 |
theory Rational
|
huffman@30097
|
8 |
imports GCD Archimedean_Field
|
nipkow@15131
|
9 |
begin
|
paulson@14365
|
10 |
|
haftmann@27551
|
11 |
subsection {* Rational numbers as quotient *}
|
paulson@14365
|
12 |
|
haftmann@27551
|
13 |
subsubsection {* Construction of the type of rational numbers *}
|
huffman@18913
|
14 |
|
wenzelm@21404
|
15 |
definition
|
wenzelm@21404
|
16 |
ratrel :: "((int \<times> int) \<times> (int \<times> int)) set" where
|
haftmann@27551
|
17 |
"ratrel = {(x, y). snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x}"
|
paulson@14365
|
18 |
|
huffman@18913
|
19 |
lemma ratrel_iff [simp]:
|
haftmann@27551
|
20 |
"(x, y) \<in> ratrel \<longleftrightarrow> snd x \<noteq> 0 \<and> snd y \<noteq> 0 \<and> fst x * snd y = fst y * snd x"
|
haftmann@27551
|
21 |
by (simp add: ratrel_def)
|
paulson@14365
|
22 |
|
nipkow@30198
|
23 |
lemma refl_on_ratrel: "refl_on {x. snd x \<noteq> 0} ratrel"
|
nipkow@30198
|
24 |
by (auto simp add: refl_on_def ratrel_def)
|
huffman@18913
|
25 |
|
huffman@18913
|
26 |
lemma sym_ratrel: "sym ratrel"
|
haftmann@27551
|
27 |
by (simp add: ratrel_def sym_def)
|
paulson@14365
|
28 |
|
huffman@18913
|
29 |
lemma trans_ratrel: "trans ratrel"
|
haftmann@27551
|
30 |
proof (rule transI, unfold split_paired_all)
|
haftmann@27551
|
31 |
fix a b a' b' a'' b'' :: int
|
haftmann@27551
|
32 |
assume A: "((a, b), (a', b')) \<in> ratrel"
|
haftmann@27551
|
33 |
assume B: "((a', b'), (a'', b'')) \<in> ratrel"
|
haftmann@27551
|
34 |
have "b' * (a * b'') = b'' * (a * b')" by simp
|
haftmann@27551
|
35 |
also from A have "a * b' = a' * b" by auto
|
haftmann@27551
|
36 |
also have "b'' * (a' * b) = b * (a' * b'')" by simp
|
haftmann@27551
|
37 |
also from B have "a' * b'' = a'' * b'" by auto
|
haftmann@27551
|
38 |
also have "b * (a'' * b') = b' * (a'' * b)" by simp
|
haftmann@27551
|
39 |
finally have "b' * (a * b'') = b' * (a'' * b)" .
|
haftmann@27551
|
40 |
moreover from B have "b' \<noteq> 0" by auto
|
haftmann@27551
|
41 |
ultimately have "a * b'' = a'' * b" by simp
|
haftmann@27551
|
42 |
with A B show "((a, b), (a'', b'')) \<in> ratrel" by auto
|
paulson@14365
|
43 |
qed
|
haftmann@27551
|
44 |
|
haftmann@27551
|
45 |
lemma equiv_ratrel: "equiv {x. snd x \<noteq> 0} ratrel"
|
nipkow@30198
|
46 |
by (rule equiv.intro [OF refl_on_ratrel sym_ratrel trans_ratrel])
|
paulson@14365
|
47 |
|
huffman@18913
|
48 |
lemmas UN_ratrel = UN_equiv_class [OF equiv_ratrel]
|
huffman@18913
|
49 |
lemmas UN_ratrel2 = UN_equiv_class2 [OF equiv_ratrel equiv_ratrel]
|
paulson@14365
|
50 |
|
haftmann@27551
|
51 |
lemma equiv_ratrel_iff [iff]:
|
haftmann@27551
|
52 |
assumes "snd x \<noteq> 0" and "snd y \<noteq> 0"
|
haftmann@27551
|
53 |
shows "ratrel `` {x} = ratrel `` {y} \<longleftrightarrow> (x, y) \<in> ratrel"
|
haftmann@27551
|
54 |
by (rule eq_equiv_class_iff, rule equiv_ratrel) (auto simp add: assms)
|
paulson@14365
|
55 |
|
haftmann@27551
|
56 |
typedef (Rat) rat = "{x. snd x \<noteq> 0} // ratrel"
|
haftmann@27551
|
57 |
proof
|
haftmann@27551
|
58 |
have "(0::int, 1::int) \<in> {x. snd x \<noteq> 0}" by simp
|
haftmann@27551
|
59 |
then show "ratrel `` {(0, 1)} \<in> {x. snd x \<noteq> 0} // ratrel" by (rule quotientI)
|
haftmann@27551
|
60 |
qed
|
haftmann@27551
|
61 |
|
haftmann@27551
|
62 |
lemma ratrel_in_Rat [simp]: "snd x \<noteq> 0 \<Longrightarrow> ratrel `` {x} \<in> Rat"
|
haftmann@27551
|
63 |
by (simp add: Rat_def quotientI)
|
haftmann@27551
|
64 |
|
haftmann@27551
|
65 |
declare Abs_Rat_inject [simp] Abs_Rat_inverse [simp]
|
haftmann@27551
|
66 |
|
haftmann@27551
|
67 |
|
haftmann@27551
|
68 |
subsubsection {* Representation and basic operations *}
|
haftmann@27551
|
69 |
|
haftmann@27551
|
70 |
definition
|
haftmann@27551
|
71 |
Fract :: "int \<Rightarrow> int \<Rightarrow> rat" where
|
haftmann@28562
|
72 |
[code del]: "Fract a b = Abs_Rat (ratrel `` {if b = 0 then (0, 1) else (a, b)})"
|
paulson@14365
|
73 |
|
haftmann@27551
|
74 |
code_datatype Fract
|
haftmann@27551
|
75 |
|
haftmann@27551
|
76 |
lemma Rat_cases [case_names Fract, cases type: rat]:
|
haftmann@27551
|
77 |
assumes "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> C"
|
haftmann@27551
|
78 |
shows C
|
haftmann@27551
|
79 |
using assms by (cases q) (clarsimp simp add: Fract_def Rat_def quotient_def)
|
haftmann@27551
|
80 |
|
haftmann@27551
|
81 |
lemma Rat_induct [case_names Fract, induct type: rat]:
|
haftmann@27551
|
82 |
assumes "\<And>a b. b \<noteq> 0 \<Longrightarrow> P (Fract a b)"
|
haftmann@27551
|
83 |
shows "P q"
|
haftmann@27551
|
84 |
using assms by (cases q) simp
|
haftmann@27551
|
85 |
|
haftmann@27551
|
86 |
lemma eq_rat:
|
haftmann@27551
|
87 |
shows "\<And>a b c d. b \<noteq> 0 \<Longrightarrow> d \<noteq> 0 \<Longrightarrow> Fract a b = Fract c d \<longleftrightarrow> a * d = c * b"
|
haftmann@27652
|
88 |
and "\<And>a. Fract a 0 = Fract 0 1"
|
haftmann@27652
|
89 |
and "\<And>a c. Fract 0 a = Fract 0 c"
|
haftmann@27551
|
90 |
by (simp_all add: Fract_def)
|
haftmann@27551
|
91 |
|
haftmann@31017
|
92 |
instantiation rat :: comm_ring_1
|
haftmann@25571
|
93 |
begin
|
haftmann@25571
|
94 |
|
haftmann@25571
|
95 |
definition
|
haftmann@31998
|
96 |
Zero_rat_def [code, code_unfold]: "0 = Fract 0 1"
|
paulson@14365
|
97 |
|
haftmann@25571
|
98 |
definition
|
haftmann@31998
|
99 |
One_rat_def [code, code_unfold]: "1 = Fract 1 1"
|
huffman@18913
|
100 |
|
haftmann@25571
|
101 |
definition
|
haftmann@28562
|
102 |
add_rat_def [code del]:
|
haftmann@27551
|
103 |
"q + r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
|
haftmann@27551
|
104 |
ratrel `` {(fst x * snd y + fst y * snd x, snd x * snd y)})"
|
haftmann@27551
|
105 |
|
haftmann@27652
|
106 |
lemma add_rat [simp]:
|
haftmann@27551
|
107 |
assumes "b \<noteq> 0" and "d \<noteq> 0"
|
haftmann@27551
|
108 |
shows "Fract a b + Fract c d = Fract (a * d + c * b) (b * d)"
|
haftmann@27551
|
109 |
proof -
|
haftmann@27551
|
110 |
have "(\<lambda>x y. ratrel``{(fst x * snd y + fst y * snd x, snd x * snd y)})
|
haftmann@27551
|
111 |
respects2 ratrel"
|
haftmann@27551
|
112 |
by (rule equiv_ratrel [THEN congruent2_commuteI]) (simp_all add: left_distrib)
|
haftmann@27551
|
113 |
with assms show ?thesis by (simp add: Fract_def add_rat_def UN_ratrel2)
|
haftmann@27551
|
114 |
qed
|
huffman@18913
|
115 |
|
haftmann@25571
|
116 |
definition
|
haftmann@28562
|
117 |
minus_rat_def [code del]:
|
haftmann@27551
|
118 |
"- q = Abs_Rat (\<Union>x \<in> Rep_Rat q. ratrel `` {(- fst x, snd x)})"
|
haftmann@27551
|
119 |
|
haftmann@27652
|
120 |
lemma minus_rat [simp, code]: "- Fract a b = Fract (- a) b"
|
haftmann@27551
|
121 |
proof -
|
haftmann@27551
|
122 |
have "(\<lambda>x. ratrel `` {(- fst x, snd x)}) respects ratrel"
|
haftmann@27551
|
123 |
by (simp add: congruent_def)
|
haftmann@27551
|
124 |
then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel)
|
haftmann@27551
|
125 |
qed
|
haftmann@27551
|
126 |
|
haftmann@27652
|
127 |
lemma minus_rat_cancel [simp]: "Fract (- a) (- b) = Fract a b"
|
haftmann@27551
|
128 |
by (cases "b = 0") (simp_all add: eq_rat)
|
haftmann@25571
|
129 |
|
haftmann@25571
|
130 |
definition
|
haftmann@28562
|
131 |
diff_rat_def [code del]: "q - r = q + - (r::rat)"
|
huffman@18913
|
132 |
|
haftmann@27652
|
133 |
lemma diff_rat [simp]:
|
haftmann@27551
|
134 |
assumes "b \<noteq> 0" and "d \<noteq> 0"
|
haftmann@27551
|
135 |
shows "Fract a b - Fract c d = Fract (a * d - c * b) (b * d)"
|
haftmann@27652
|
136 |
using assms by (simp add: diff_rat_def)
|
haftmann@25571
|
137 |
|
haftmann@25571
|
138 |
definition
|
haftmann@28562
|
139 |
mult_rat_def [code del]:
|
haftmann@27551
|
140 |
"q * r = Abs_Rat (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
|
haftmann@27551
|
141 |
ratrel``{(fst x * fst y, snd x * snd y)})"
|
paulson@14365
|
142 |
|
haftmann@27652
|
143 |
lemma mult_rat [simp]: "Fract a b * Fract c d = Fract (a * c) (b * d)"
|
haftmann@27551
|
144 |
proof -
|
haftmann@27551
|
145 |
have "(\<lambda>x y. ratrel `` {(fst x * fst y, snd x * snd y)}) respects2 ratrel"
|
haftmann@27551
|
146 |
by (rule equiv_ratrel [THEN congruent2_commuteI]) simp_all
|
haftmann@27551
|
147 |
then show ?thesis by (simp add: Fract_def mult_rat_def UN_ratrel2)
|
paulson@14365
|
148 |
qed
|
paulson@14365
|
149 |
|
haftmann@27652
|
150 |
lemma mult_rat_cancel:
|
haftmann@27551
|
151 |
assumes "c \<noteq> 0"
|
haftmann@27551
|
152 |
shows "Fract (c * a) (c * b) = Fract a b"
|
haftmann@27551
|
153 |
proof -
|
haftmann@27551
|
154 |
from assms have "Fract c c = Fract 1 1" by (simp add: Fract_def)
|
haftmann@27652
|
155 |
then show ?thesis by (simp add: mult_rat [symmetric])
|
haftmann@27551
|
156 |
qed
|
huffman@27509
|
157 |
|
huffman@27509
|
158 |
instance proof
|
chaieb@27668
|
159 |
fix q r s :: rat show "(q * r) * s = q * (r * s)"
|
haftmann@27652
|
160 |
by (cases q, cases r, cases s) (simp add: eq_rat)
|
haftmann@27551
|
161 |
next
|
haftmann@27551
|
162 |
fix q r :: rat show "q * r = r * q"
|
haftmann@27652
|
163 |
by (cases q, cases r) (simp add: eq_rat)
|
haftmann@27551
|
164 |
next
|
haftmann@27551
|
165 |
fix q :: rat show "1 * q = q"
|
haftmann@27652
|
166 |
by (cases q) (simp add: One_rat_def eq_rat)
|
haftmann@27551
|
167 |
next
|
haftmann@27551
|
168 |
fix q r s :: rat show "(q + r) + s = q + (r + s)"
|
nipkow@29667
|
169 |
by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
|
haftmann@27551
|
170 |
next
|
haftmann@27551
|
171 |
fix q r :: rat show "q + r = r + q"
|
haftmann@27652
|
172 |
by (cases q, cases r) (simp add: eq_rat)
|
haftmann@27551
|
173 |
next
|
haftmann@27551
|
174 |
fix q :: rat show "0 + q = q"
|
haftmann@27652
|
175 |
by (cases q) (simp add: Zero_rat_def eq_rat)
|
haftmann@27551
|
176 |
next
|
haftmann@27551
|
177 |
fix q :: rat show "- q + q = 0"
|
haftmann@27652
|
178 |
by (cases q) (simp add: Zero_rat_def eq_rat)
|
haftmann@27551
|
179 |
next
|
haftmann@27551
|
180 |
fix q r :: rat show "q - r = q + - r"
|
haftmann@27652
|
181 |
by (cases q, cases r) (simp add: eq_rat)
|
haftmann@27551
|
182 |
next
|
haftmann@27551
|
183 |
fix q r s :: rat show "(q + r) * s = q * s + r * s"
|
nipkow@29667
|
184 |
by (cases q, cases r, cases s) (simp add: eq_rat algebra_simps)
|
haftmann@27551
|
185 |
next
|
haftmann@27551
|
186 |
show "(0::rat) \<noteq> 1" by (simp add: Zero_rat_def One_rat_def eq_rat)
|
huffman@27509
|
187 |
qed
|
huffman@27509
|
188 |
|
huffman@27509
|
189 |
end
|
huffman@27509
|
190 |
|
haftmann@27551
|
191 |
lemma of_nat_rat: "of_nat k = Fract (of_nat k) 1"
|
haftmann@27652
|
192 |
by (induct k) (simp_all add: Zero_rat_def One_rat_def)
|
haftmann@27551
|
193 |
|
haftmann@27551
|
194 |
lemma of_int_rat: "of_int k = Fract k 1"
|
haftmann@27652
|
195 |
by (cases k rule: int_diff_cases) (simp add: of_nat_rat)
|
haftmann@27551
|
196 |
|
haftmann@27551
|
197 |
lemma Fract_of_nat_eq: "Fract (of_nat k) 1 = of_nat k"
|
haftmann@27551
|
198 |
by (rule of_nat_rat [symmetric])
|
haftmann@27551
|
199 |
|
haftmann@27551
|
200 |
lemma Fract_of_int_eq: "Fract k 1 = of_int k"
|
haftmann@27551
|
201 |
by (rule of_int_rat [symmetric])
|
haftmann@27551
|
202 |
|
haftmann@27551
|
203 |
instantiation rat :: number_ring
|
haftmann@27551
|
204 |
begin
|
haftmann@27551
|
205 |
|
haftmann@27551
|
206 |
definition
|
haftmann@28562
|
207 |
rat_number_of_def [code del]: "number_of w = Fract w 1"
|
haftmann@27551
|
208 |
|
haftmann@30960
|
209 |
instance proof
|
haftmann@30960
|
210 |
qed (simp add: rat_number_of_def of_int_rat)
|
haftmann@27551
|
211 |
|
haftmann@27551
|
212 |
end
|
haftmann@27551
|
213 |
|
haftmann@31998
|
214 |
lemma rat_number_collapse [code_post]:
|
haftmann@27551
|
215 |
"Fract 0 k = 0"
|
haftmann@27551
|
216 |
"Fract 1 1 = 1"
|
haftmann@27551
|
217 |
"Fract (number_of k) 1 = number_of k"
|
haftmann@27551
|
218 |
"Fract k 0 = 0"
|
haftmann@27551
|
219 |
by (cases "k = 0")
|
haftmann@27551
|
220 |
(simp_all add: Zero_rat_def One_rat_def number_of_is_id number_of_eq of_int_rat eq_rat Fract_def)
|
haftmann@27551
|
221 |
|
haftmann@31998
|
222 |
lemma rat_number_expand [code_unfold]:
|
haftmann@27551
|
223 |
"0 = Fract 0 1"
|
haftmann@27551
|
224 |
"1 = Fract 1 1"
|
haftmann@27551
|
225 |
"number_of k = Fract (number_of k) 1"
|
haftmann@27551
|
226 |
by (simp_all add: rat_number_collapse)
|
haftmann@27551
|
227 |
|
haftmann@27551
|
228 |
lemma iszero_rat [simp]:
|
haftmann@27551
|
229 |
"iszero (number_of k :: rat) \<longleftrightarrow> iszero (number_of k :: int)"
|
haftmann@27551
|
230 |
by (simp add: iszero_def rat_number_expand number_of_is_id eq_rat)
|
haftmann@27551
|
231 |
|
haftmann@27551
|
232 |
lemma Rat_cases_nonzero [case_names Fract 0]:
|
haftmann@27551
|
233 |
assumes Fract: "\<And>a b. q = Fract a b \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> C"
|
haftmann@27551
|
234 |
assumes 0: "q = 0 \<Longrightarrow> C"
|
haftmann@27551
|
235 |
shows C
|
haftmann@27551
|
236 |
proof (cases "q = 0")
|
haftmann@27551
|
237 |
case True then show C using 0 by auto
|
haftmann@27551
|
238 |
next
|
haftmann@27551
|
239 |
case False
|
haftmann@27551
|
240 |
then obtain a b where "q = Fract a b" and "b \<noteq> 0" by (cases q) auto
|
haftmann@27551
|
241 |
moreover with False have "0 \<noteq> Fract a b" by simp
|
haftmann@27551
|
242 |
with `b \<noteq> 0` have "a \<noteq> 0" by (simp add: Zero_rat_def eq_rat)
|
haftmann@27551
|
243 |
with Fract `q = Fract a b` `b \<noteq> 0` show C by auto
|
haftmann@27551
|
244 |
qed
|
haftmann@27551
|
245 |
|
nipkow@33805
|
246 |
subsubsection {* Function @{text normalize} *}
|
nipkow@33805
|
247 |
|
nipkow@33805
|
248 |
text{*
|
nipkow@33805
|
249 |
Decompose a fraction into normalized, i.e. coprime numerator and denominator:
|
nipkow@33805
|
250 |
*}
|
nipkow@33805
|
251 |
|
nipkow@33805
|
252 |
definition normalize :: "rat \<Rightarrow> int \<times> int" where
|
nipkow@33805
|
253 |
"normalize x \<equiv> THE pair. x = Fract (fst pair) (snd pair) &
|
nipkow@33805
|
254 |
snd pair > 0 & gcd (fst pair) (snd pair) = 1"
|
nipkow@33805
|
255 |
|
nipkow@33805
|
256 |
declare normalize_def[code del]
|
nipkow@33805
|
257 |
|
nipkow@33805
|
258 |
lemma Fract_norm: "Fract (a div gcd a b) (b div gcd a b) = Fract a b"
|
nipkow@33805
|
259 |
proof (cases "a = 0 | b = 0")
|
nipkow@33805
|
260 |
case True then show ?thesis by (auto simp add: eq_rat)
|
nipkow@33805
|
261 |
next
|
nipkow@33805
|
262 |
let ?c = "gcd a b"
|
nipkow@33805
|
263 |
case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
|
nipkow@33805
|
264 |
then have "?c \<noteq> 0" by simp
|
nipkow@33805
|
265 |
then have "Fract ?c ?c = Fract 1 1" by (simp add: eq_rat)
|
nipkow@33805
|
266 |
moreover have "Fract (a div ?c * ?c + a mod ?c) (b div ?c * ?c + b mod ?c) = Fract a b"
|
nipkow@33805
|
267 |
by (simp add: semiring_div_class.mod_div_equality)
|
nipkow@33805
|
268 |
moreover have "a mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
|
nipkow@33805
|
269 |
moreover have "b mod ?c = 0" by (simp add: dvd_eq_mod_eq_0 [symmetric])
|
nipkow@33805
|
270 |
ultimately show ?thesis
|
nipkow@33805
|
271 |
by (simp add: mult_rat [symmetric])
|
nipkow@33805
|
272 |
qed
|
nipkow@33805
|
273 |
|
nipkow@33805
|
274 |
text{* Proof by Ren\'e Thiemann: *}
|
nipkow@33805
|
275 |
lemma normalize_code[code]:
|
nipkow@33805
|
276 |
"normalize (Fract a b) =
|
nipkow@33805
|
277 |
(if b > 0 then (let g = gcd a b in (a div g, b div g))
|
nipkow@33805
|
278 |
else if b = 0 then (0,1)
|
nipkow@33805
|
279 |
else (let g = - gcd a b in (a div g, b div g)))"
|
nipkow@33805
|
280 |
proof -
|
nipkow@33805
|
281 |
let ?cond = "% r p. r = Fract (fst p) (snd p) & snd p > 0 &
|
nipkow@33805
|
282 |
gcd (fst p) (snd p) = 1"
|
nipkow@33805
|
283 |
show ?thesis
|
nipkow@33805
|
284 |
proof (cases "b = 0")
|
nipkow@33805
|
285 |
case True
|
nipkow@33805
|
286 |
thus ?thesis
|
nipkow@33805
|
287 |
proof (simp add: normalize_def)
|
nipkow@33805
|
288 |
show "(THE pair. ?cond (Fract a 0) pair) = (0,1)"
|
nipkow@33805
|
289 |
proof
|
nipkow@33805
|
290 |
show "?cond (Fract a 0) (0,1)"
|
nipkow@33805
|
291 |
by (simp add: rat_number_collapse)
|
nipkow@33805
|
292 |
next
|
nipkow@33805
|
293 |
fix pair
|
nipkow@33805
|
294 |
assume cond: "?cond (Fract a 0) pair"
|
nipkow@33805
|
295 |
show "pair = (0,1)"
|
nipkow@33805
|
296 |
proof (cases pair)
|
nipkow@33805
|
297 |
case (Pair den num)
|
nipkow@33805
|
298 |
with cond have num: "num > 0" by auto
|
nipkow@33805
|
299 |
with Pair cond have den: "den = 0" by (simp add: eq_rat)
|
nipkow@33805
|
300 |
show ?thesis
|
nipkow@33805
|
301 |
proof (cases "num = 1", simp add: Pair den)
|
nipkow@33805
|
302 |
case False
|
nipkow@33805
|
303 |
with num have gr: "num > 1" by auto
|
nipkow@33805
|
304 |
with den have "gcd den num = num" by auto
|
nipkow@33805
|
305 |
with Pair cond False gr show ?thesis by auto
|
nipkow@33805
|
306 |
qed
|
nipkow@33805
|
307 |
qed
|
nipkow@33805
|
308 |
qed
|
nipkow@33805
|
309 |
qed
|
nipkow@33805
|
310 |
next
|
nipkow@33805
|
311 |
{ fix a b :: int assume b: "b > 0"
|
nipkow@33805
|
312 |
hence b0: "b \<noteq> 0" and "b >= 0" by auto
|
nipkow@33805
|
313 |
let ?g = "gcd a b"
|
nipkow@33805
|
314 |
from b0 have g0: "?g \<noteq> 0" by auto
|
nipkow@33805
|
315 |
then have gp: "?g > 0" by simp
|
nipkow@33805
|
316 |
then have gs: "?g <= b" by (metis b gcd_le2_int)
|
nipkow@33805
|
317 |
from gcd_dvd1_int[of a b] obtain a' where a': "a = ?g * a'"
|
nipkow@33805
|
318 |
unfolding dvd_def by auto
|
nipkow@33805
|
319 |
from gcd_dvd2_int[of a b] obtain b' where b': "b = ?g * b'"
|
nipkow@33805
|
320 |
unfolding dvd_def by auto
|
nipkow@33805
|
321 |
hence b'2: "b' * ?g = b" by (simp add: ring_simps)
|
nipkow@33805
|
322 |
with b0 have b'0: "b' \<noteq> 0" by auto
|
nipkow@33805
|
323 |
from b b' zero_less_mult_iff[of ?g b'] gp have b'p: "b' > 0" by arith
|
nipkow@33805
|
324 |
have "normalize (Fract a b) = (a div ?g, b div ?g)"
|
nipkow@33805
|
325 |
proof (simp add: normalize_def)
|
nipkow@33805
|
326 |
show "(THE pair. ?cond (Fract a b) pair) = (a div ?g, b div ?g)"
|
nipkow@33805
|
327 |
proof
|
nipkow@33805
|
328 |
have "1 = b div b" using b0 by auto
|
nipkow@33805
|
329 |
also have "\<dots> <= b div ?g" by (rule zdiv_mono2[OF `b >= 0` gp gs])
|
nipkow@33805
|
330 |
finally have div0: "b div ?g > 0" by simp
|
nipkow@33805
|
331 |
show "?cond (Fract a b) (a div ?g, b div ?g)"
|
nipkow@33805
|
332 |
by (simp add: b0 Fract_norm div_gcd_coprime_int div0)
|
nipkow@33805
|
333 |
next
|
nipkow@33805
|
334 |
fix pair assume cond: "?cond (Fract a b) pair"
|
nipkow@33805
|
335 |
show "pair = (a div ?g, b div ?g)"
|
nipkow@33805
|
336 |
proof (cases pair)
|
nipkow@33805
|
337 |
case (Pair den num)
|
nipkow@33805
|
338 |
with cond
|
nipkow@33805
|
339 |
have num: "num > 0" and num0: "num \<noteq> 0" and gcd: "gcd den num = 1"
|
nipkow@33805
|
340 |
by auto
|
nipkow@33805
|
341 |
obtain g where g: "g = ?g" by auto
|
nipkow@33805
|
342 |
with gp have gg0: "g > 0" by auto
|
nipkow@33805
|
343 |
from cond Pair eq_rat(1)[OF b0 num0]
|
nipkow@33805
|
344 |
have eq: "a * num = den * b" by auto
|
nipkow@33805
|
345 |
hence "a' * g * num = den * g * b'"
|
nipkow@33805
|
346 |
using a'[simplified g[symmetric]] b'[simplified g[symmetric]]
|
nipkow@33805
|
347 |
by simp
|
nipkow@33805
|
348 |
hence "a' * num * g = b' * den * g" by (simp add: algebra_simps)
|
nipkow@33805
|
349 |
hence eq2: "a' * num = b' * den" using gg0 by auto
|
nipkow@33805
|
350 |
have "a div ?g = ?g * a' div ?g" using a' by force
|
nipkow@33805
|
351 |
hence adiv: "a div ?g = a'" using g0 by auto
|
nipkow@33805
|
352 |
have "b div ?g = ?g * b' div ?g" using b' by force
|
nipkow@33805
|
353 |
hence bdiv: "b div ?g = b'" using g0 by auto
|
nipkow@33805
|
354 |
from div_gcd_coprime_int[of a b] b0
|
nipkow@33805
|
355 |
have "gcd (a div ?g) (b div ?g) = 1" by auto
|
nipkow@33805
|
356 |
with adiv bdiv have gcd2: "gcd a' b' = 1" by auto
|
nipkow@33805
|
357 |
from gcd have gcd3: "gcd num den = 1"
|
nipkow@33805
|
358 |
by (simp add: gcd_commute_int[of den num])
|
nipkow@33805
|
359 |
from gcd2 have gcd4: "gcd b' a' = 1"
|
nipkow@33805
|
360 |
by (simp add: gcd_commute_int[of a' b'])
|
nipkow@33805
|
361 |
have one: "num dvd b'"
|
nipkow@33814
|
362 |
by (metis coprime_dvd_mult_int[OF gcd3] dvd_triv_right eq2)
|
nipkow@33814
|
363 |
have two: "b' dvd num"
|
nipkow@33814
|
364 |
by (metis coprime_dvd_mult_int[OF gcd4] dvd_triv_left eq2 zmult_commute)
|
nipkow@33814
|
365 |
from zdvd_antisym_abs[OF one two] b'p num
|
nipkow@33814
|
366 |
have numb': "num = b'" by auto
|
nipkow@33805
|
367 |
with eq2 b'0 have "a' = den" by auto
|
nipkow@33805
|
368 |
with numb' adiv bdiv Pair show ?thesis by simp
|
nipkow@33805
|
369 |
qed
|
nipkow@33805
|
370 |
qed
|
nipkow@33805
|
371 |
qed
|
nipkow@33805
|
372 |
}
|
nipkow@33805
|
373 |
note main = this
|
nipkow@33805
|
374 |
assume "b \<noteq> 0"
|
nipkow@33805
|
375 |
hence "b > 0 | b < 0" by arith
|
nipkow@33805
|
376 |
thus ?thesis
|
nipkow@33805
|
377 |
proof
|
nipkow@33805
|
378 |
assume b: "b > 0" thus ?thesis by (simp add: Let_def main[OF b])
|
nipkow@33805
|
379 |
next
|
nipkow@33805
|
380 |
assume b: "b < 0"
|
nipkow@33805
|
381 |
thus ?thesis
|
nipkow@33805
|
382 |
by(simp add:main Let_def minus_rat_cancel[of a b, symmetric]
|
nipkow@33805
|
383 |
zdiv_zminus2 del:minus_rat_cancel)
|
nipkow@33805
|
384 |
qed
|
nipkow@33805
|
385 |
qed
|
nipkow@33805
|
386 |
qed
|
nipkow@33805
|
387 |
|
nipkow@33805
|
388 |
lemma normalize_id: "normalize (Fract a b) = (p,q) \<Longrightarrow> Fract p q = Fract a b"
|
nipkow@33805
|
389 |
by(auto simp add: normalize_code Let_def Fract_norm dvd_div_neg rat_number_collapse
|
nipkow@33805
|
390 |
split:split_if_asm)
|
nipkow@33805
|
391 |
|
nipkow@33805
|
392 |
lemma normalize_denom_pos: "normalize (Fract a b) = (p,q) \<Longrightarrow> q > 0"
|
nipkow@33805
|
393 |
by(auto simp add: normalize_code Let_def dvd_div_neg pos_imp_zdiv_neg_iff nonneg1_imp_zdiv_pos_iff
|
nipkow@33805
|
394 |
split:split_if_asm)
|
nipkow@33805
|
395 |
|
nipkow@33805
|
396 |
lemma normalize_coprime: "normalize (Fract a b) = (p,q) \<Longrightarrow> coprime p q"
|
nipkow@33805
|
397 |
by(auto simp add: normalize_code Let_def dvd_div_neg div_gcd_coprime_int
|
nipkow@33805
|
398 |
split:split_if_asm)
|
nipkow@33805
|
399 |
|
haftmann@27551
|
400 |
|
haftmann@27551
|
401 |
subsubsection {* The field of rational numbers *}
|
haftmann@27551
|
402 |
|
haftmann@27551
|
403 |
instantiation rat :: "{field, division_by_zero}"
|
haftmann@27551
|
404 |
begin
|
haftmann@27551
|
405 |
|
haftmann@27551
|
406 |
definition
|
haftmann@28562
|
407 |
inverse_rat_def [code del]:
|
haftmann@27551
|
408 |
"inverse q = Abs_Rat (\<Union>x \<in> Rep_Rat q.
|
haftmann@27551
|
409 |
ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)})"
|
haftmann@27551
|
410 |
|
haftmann@27652
|
411 |
lemma inverse_rat [simp]: "inverse (Fract a b) = Fract b a"
|
haftmann@27551
|
412 |
proof -
|
haftmann@27551
|
413 |
have "(\<lambda>x. ratrel `` {if fst x = 0 then (0, 1) else (snd x, fst x)}) respects ratrel"
|
haftmann@27551
|
414 |
by (auto simp add: congruent_def mult_commute)
|
haftmann@27551
|
415 |
then show ?thesis by (simp add: Fract_def inverse_rat_def UN_ratrel)
|
huffman@27509
|
416 |
qed
|
huffman@27509
|
417 |
|
haftmann@27551
|
418 |
definition
|
haftmann@28562
|
419 |
divide_rat_def [code del]: "q / r = q * inverse (r::rat)"
|
haftmann@27551
|
420 |
|
haftmann@27652
|
421 |
lemma divide_rat [simp]: "Fract a b / Fract c d = Fract (a * d) (b * c)"
|
haftmann@27652
|
422 |
by (simp add: divide_rat_def)
|
haftmann@27551
|
423 |
|
haftmann@27551
|
424 |
instance proof
|
haftmann@27652
|
425 |
show "inverse 0 = (0::rat)" by (simp add: rat_number_expand)
|
haftmann@27551
|
426 |
(simp add: rat_number_collapse)
|
haftmann@27551
|
427 |
next
|
haftmann@27551
|
428 |
fix q :: rat
|
haftmann@27551
|
429 |
assume "q \<noteq> 0"
|
haftmann@27551
|
430 |
then show "inverse q * q = 1" by (cases q rule: Rat_cases_nonzero)
|
haftmann@27551
|
431 |
(simp_all add: mult_rat inverse_rat rat_number_expand eq_rat)
|
haftmann@27551
|
432 |
next
|
haftmann@27551
|
433 |
fix q r :: rat
|
haftmann@27551
|
434 |
show "q / r = q * inverse r" by (simp add: divide_rat_def)
|
haftmann@27551
|
435 |
qed
|
haftmann@27551
|
436 |
|
haftmann@27551
|
437 |
end
|
haftmann@27551
|
438 |
|
haftmann@27551
|
439 |
|
haftmann@27551
|
440 |
subsubsection {* Various *}
|
haftmann@27551
|
441 |
|
haftmann@27551
|
442 |
lemma Fract_add_one: "n \<noteq> 0 ==> Fract (m + n) n = Fract m n + 1"
|
haftmann@27652
|
443 |
by (simp add: rat_number_expand)
|
haftmann@27551
|
444 |
|
haftmann@27551
|
445 |
lemma Fract_of_int_quotient: "Fract k l = of_int k / of_int l"
|
haftmann@27652
|
446 |
by (simp add: Fract_of_int_eq [symmetric])
|
haftmann@27551
|
447 |
|
haftmann@31998
|
448 |
lemma Fract_number_of_quotient [code_post]:
|
haftmann@27551
|
449 |
"Fract (number_of k) (number_of l) = number_of k / number_of l"
|
haftmann@27551
|
450 |
unfolding Fract_of_int_quotient number_of_is_id number_of_eq ..
|
haftmann@27551
|
451 |
|
haftmann@31998
|
452 |
lemma Fract_1_number_of [code_post]:
|
haftmann@27652
|
453 |
"Fract 1 (number_of k) = 1 / number_of k"
|
haftmann@27652
|
454 |
unfolding Fract_of_int_quotient number_of_eq by simp
|
haftmann@27551
|
455 |
|
haftmann@27551
|
456 |
subsubsection {* The ordered field of rational numbers *}
|
huffman@27509
|
457 |
|
huffman@27509
|
458 |
instantiation rat :: linorder
|
huffman@27509
|
459 |
begin
|
huffman@27509
|
460 |
|
huffman@27509
|
461 |
definition
|
haftmann@28562
|
462 |
le_rat_def [code del]:
|
huffman@27509
|
463 |
"q \<le> r \<longleftrightarrow> contents (\<Union>x \<in> Rep_Rat q. \<Union>y \<in> Rep_Rat r.
|
haftmann@27551
|
464 |
{(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})"
|
haftmann@27551
|
465 |
|
haftmann@27652
|
466 |
lemma le_rat [simp]:
|
haftmann@27551
|
467 |
assumes "b \<noteq> 0" and "d \<noteq> 0"
|
haftmann@27551
|
468 |
shows "Fract a b \<le> Fract c d \<longleftrightarrow> (a * d) * (b * d) \<le> (c * b) * (b * d)"
|
haftmann@27551
|
469 |
proof -
|
haftmann@27551
|
470 |
have "(\<lambda>x y. {(fst x * snd y) * (snd x * snd y) \<le> (fst y * snd x) * (snd x * snd y)})
|
haftmann@27551
|
471 |
respects2 ratrel"
|
haftmann@27551
|
472 |
proof (clarsimp simp add: congruent2_def)
|
haftmann@27551
|
473 |
fix a b a' b' c d c' d'::int
|
haftmann@27551
|
474 |
assume neq: "b \<noteq> 0" "b' \<noteq> 0" "d \<noteq> 0" "d' \<noteq> 0"
|
haftmann@27551
|
475 |
assume eq1: "a * b' = a' * b"
|
haftmann@27551
|
476 |
assume eq2: "c * d' = c' * d"
|
haftmann@27551
|
477 |
|
haftmann@27551
|
478 |
let ?le = "\<lambda>a b c d. ((a * d) * (b * d) \<le> (c * b) * (b * d))"
|
haftmann@27551
|
479 |
{
|
haftmann@27551
|
480 |
fix a b c d x :: int assume x: "x \<noteq> 0"
|
haftmann@27551
|
481 |
have "?le a b c d = ?le (a * x) (b * x) c d"
|
haftmann@27551
|
482 |
proof -
|
haftmann@27551
|
483 |
from x have "0 < x * x" by (auto simp add: zero_less_mult_iff)
|
haftmann@27551
|
484 |
hence "?le a b c d =
|
haftmann@27551
|
485 |
((a * d) * (b * d) * (x * x) \<le> (c * b) * (b * d) * (x * x))"
|
haftmann@27551
|
486 |
by (simp add: mult_le_cancel_right)
|
haftmann@27551
|
487 |
also have "... = ?le (a * x) (b * x) c d"
|
haftmann@27551
|
488 |
by (simp add: mult_ac)
|
haftmann@27551
|
489 |
finally show ?thesis .
|
haftmann@27551
|
490 |
qed
|
haftmann@27551
|
491 |
} note le_factor = this
|
haftmann@27551
|
492 |
|
haftmann@27551
|
493 |
let ?D = "b * d" and ?D' = "b' * d'"
|
haftmann@27551
|
494 |
from neq have D: "?D \<noteq> 0" by simp
|
haftmann@27551
|
495 |
from neq have "?D' \<noteq> 0" by simp
|
haftmann@27551
|
496 |
hence "?le a b c d = ?le (a * ?D') (b * ?D') c d"
|
haftmann@27551
|
497 |
by (rule le_factor)
|
chaieb@27668
|
498 |
also have "... = ((a * b') * ?D * ?D' * d * d' \<le> (c * d') * ?D * ?D' * b * b')"
|
haftmann@27551
|
499 |
by (simp add: mult_ac)
|
haftmann@27551
|
500 |
also have "... = ((a' * b) * ?D * ?D' * d * d' \<le> (c' * d) * ?D * ?D' * b * b')"
|
haftmann@27551
|
501 |
by (simp only: eq1 eq2)
|
haftmann@27551
|
502 |
also have "... = ?le (a' * ?D) (b' * ?D) c' d'"
|
haftmann@27551
|
503 |
by (simp add: mult_ac)
|
haftmann@27551
|
504 |
also from D have "... = ?le a' b' c' d'"
|
haftmann@27551
|
505 |
by (rule le_factor [symmetric])
|
haftmann@27551
|
506 |
finally show "?le a b c d = ?le a' b' c' d'" .
|
haftmann@27551
|
507 |
qed
|
haftmann@27551
|
508 |
with assms show ?thesis by (simp add: Fract_def le_rat_def UN_ratrel2)
|
haftmann@27551
|
509 |
qed
|
huffman@27509
|
510 |
|
huffman@27509
|
511 |
definition
|
haftmann@28562
|
512 |
less_rat_def [code del]: "z < (w::rat) \<longleftrightarrow> z \<le> w \<and> z \<noteq> w"
|
huffman@27509
|
513 |
|
haftmann@27652
|
514 |
lemma less_rat [simp]:
|
haftmann@27551
|
515 |
assumes "b \<noteq> 0" and "d \<noteq> 0"
|
haftmann@27551
|
516 |
shows "Fract a b < Fract c d \<longleftrightarrow> (a * d) * (b * d) < (c * b) * (b * d)"
|
haftmann@27652
|
517 |
using assms by (simp add: less_rat_def eq_rat order_less_le)
|
huffman@27509
|
518 |
|
huffman@27509
|
519 |
instance proof
|
paulson@14365
|
520 |
fix q r s :: rat
|
paulson@14365
|
521 |
{
|
paulson@14365
|
522 |
assume "q \<le> r" and "r \<le> s"
|
paulson@14365
|
523 |
show "q \<le> s"
|
paulson@14365
|
524 |
proof (insert prems, induct q, induct r, induct s)
|
paulson@14365
|
525 |
fix a b c d e f :: int
|
paulson@14365
|
526 |
assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
|
paulson@14365
|
527 |
assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract e f"
|
paulson@14365
|
528 |
show "Fract a b \<le> Fract e f"
|
paulson@14365
|
529 |
proof -
|
paulson@14365
|
530 |
from neq obtain bb: "0 < b * b" and dd: "0 < d * d" and ff: "0 < f * f"
|
paulson@14365
|
531 |
by (auto simp add: zero_less_mult_iff linorder_neq_iff)
|
paulson@14365
|
532 |
have "(a * d) * (b * d) * (f * f) \<le> (c * b) * (b * d) * (f * f)"
|
paulson@14365
|
533 |
proof -
|
paulson@14365
|
534 |
from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
|
haftmann@27652
|
535 |
by simp
|
paulson@14365
|
536 |
with ff show ?thesis by (simp add: mult_le_cancel_right)
|
paulson@14365
|
537 |
qed
|
chaieb@27668
|
538 |
also have "... = (c * f) * (d * f) * (b * b)" by algebra
|
paulson@14365
|
539 |
also have "... \<le> (e * d) * (d * f) * (b * b)"
|
paulson@14365
|
540 |
proof -
|
paulson@14365
|
541 |
from neq 2 have "(c * f) * (d * f) \<le> (e * d) * (d * f)"
|
haftmann@27652
|
542 |
by simp
|
paulson@14365
|
543 |
with bb show ?thesis by (simp add: mult_le_cancel_right)
|
paulson@14365
|
544 |
qed
|
paulson@14365
|
545 |
finally have "(a * f) * (b * f) * (d * d) \<le> e * b * (b * f) * (d * d)"
|
paulson@14365
|
546 |
by (simp only: mult_ac)
|
paulson@14365
|
547 |
with dd have "(a * f) * (b * f) \<le> (e * b) * (b * f)"
|
paulson@14365
|
548 |
by (simp add: mult_le_cancel_right)
|
haftmann@27652
|
549 |
with neq show ?thesis by simp
|
paulson@14365
|
550 |
qed
|
paulson@14365
|
551 |
qed
|
paulson@14365
|
552 |
next
|
paulson@14365
|
553 |
assume "q \<le> r" and "r \<le> q"
|
paulson@14365
|
554 |
show "q = r"
|
paulson@14365
|
555 |
proof (insert prems, induct q, induct r)
|
paulson@14365
|
556 |
fix a b c d :: int
|
paulson@14365
|
557 |
assume neq: "b \<noteq> 0" "d \<noteq> 0"
|
paulson@14365
|
558 |
assume 1: "Fract a b \<le> Fract c d" and 2: "Fract c d \<le> Fract a b"
|
paulson@14365
|
559 |
show "Fract a b = Fract c d"
|
paulson@14365
|
560 |
proof -
|
paulson@14365
|
561 |
from neq 1 have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
|
haftmann@27652
|
562 |
by simp
|
paulson@14365
|
563 |
also have "... \<le> (a * d) * (b * d)"
|
paulson@14365
|
564 |
proof -
|
paulson@14365
|
565 |
from neq 2 have "(c * b) * (d * b) \<le> (a * d) * (d * b)"
|
haftmann@27652
|
566 |
by simp
|
paulson@14365
|
567 |
thus ?thesis by (simp only: mult_ac)
|
paulson@14365
|
568 |
qed
|
paulson@14365
|
569 |
finally have "(a * d) * (b * d) = (c * b) * (b * d)" .
|
paulson@14365
|
570 |
moreover from neq have "b * d \<noteq> 0" by simp
|
paulson@14365
|
571 |
ultimately have "a * d = c * b" by simp
|
paulson@14365
|
572 |
with neq show ?thesis by (simp add: eq_rat)
|
paulson@14365
|
573 |
qed
|
paulson@14365
|
574 |
qed
|
paulson@14365
|
575 |
next
|
paulson@14365
|
576 |
show "q \<le> q"
|
haftmann@27652
|
577 |
by (induct q) simp
|
haftmann@27682
|
578 |
show "(q < r) = (q \<le> r \<and> \<not> r \<le> q)"
|
haftmann@27682
|
579 |
by (induct q, induct r) (auto simp add: le_less mult_commute)
|
paulson@14365
|
580 |
show "q \<le> r \<or> r \<le> q"
|
huffman@18913
|
581 |
by (induct q, induct r)
|
haftmann@27652
|
582 |
(simp add: mult_commute, rule linorder_linear)
|
paulson@14365
|
583 |
}
|
paulson@14365
|
584 |
qed
|
paulson@14365
|
585 |
|
huffman@27509
|
586 |
end
|
huffman@27509
|
587 |
|
haftmann@27551
|
588 |
instantiation rat :: "{distrib_lattice, abs_if, sgn_if}"
|
haftmann@25571
|
589 |
begin
|
haftmann@25571
|
590 |
|
haftmann@25571
|
591 |
definition
|
haftmann@28562
|
592 |
abs_rat_def [code del]: "\<bar>q\<bar> = (if q < 0 then -q else (q::rat))"
|
haftmann@27551
|
593 |
|
haftmann@27652
|
594 |
lemma abs_rat [simp, code]: "\<bar>Fract a b\<bar> = Fract \<bar>a\<bar> \<bar>b\<bar>"
|
haftmann@27551
|
595 |
by (auto simp add: abs_rat_def zabs_def Zero_rat_def less_rat not_less le_less minus_rat eq_rat zero_compare_simps)
|
haftmann@27551
|
596 |
|
haftmann@27551
|
597 |
definition
|
haftmann@28562
|
598 |
sgn_rat_def [code del]: "sgn (q::rat) = (if q = 0 then 0 else if 0 < q then 1 else - 1)"
|
haftmann@27551
|
599 |
|
haftmann@27652
|
600 |
lemma sgn_rat [simp, code]: "sgn (Fract a b) = of_int (sgn a * sgn b)"
|
haftmann@27551
|
601 |
unfolding Fract_of_int_eq
|
haftmann@27652
|
602 |
by (auto simp: zsgn_def sgn_rat_def Zero_rat_def eq_rat)
|
haftmann@27551
|
603 |
(auto simp: rat_number_collapse not_less le_less zero_less_mult_iff)
|
haftmann@27551
|
604 |
|
haftmann@27551
|
605 |
definition
|
haftmann@25571
|
606 |
"(inf \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = min"
|
haftmann@25571
|
607 |
|
haftmann@25571
|
608 |
definition
|
haftmann@25571
|
609 |
"(sup \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat) = max"
|
haftmann@25571
|
610 |
|
haftmann@27551
|
611 |
instance by intro_classes
|
haftmann@27551
|
612 |
(auto simp add: abs_rat_def sgn_rat_def min_max.sup_inf_distrib1 inf_rat_def sup_rat_def)
|
haftmann@22456
|
613 |
|
haftmann@25571
|
614 |
end
|
haftmann@25571
|
615 |
|
haftmann@27551
|
616 |
instance rat :: ordered_field
|
haftmann@27551
|
617 |
proof
|
paulson@14365
|
618 |
fix q r s :: rat
|
paulson@14365
|
619 |
show "q \<le> r ==> s + q \<le> s + r"
|
paulson@14365
|
620 |
proof (induct q, induct r, induct s)
|
paulson@14365
|
621 |
fix a b c d e f :: int
|
paulson@14365
|
622 |
assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
|
paulson@14365
|
623 |
assume le: "Fract a b \<le> Fract c d"
|
paulson@14365
|
624 |
show "Fract e f + Fract a b \<le> Fract e f + Fract c d"
|
paulson@14365
|
625 |
proof -
|
paulson@14365
|
626 |
let ?F = "f * f" from neq have F: "0 < ?F"
|
paulson@14365
|
627 |
by (auto simp add: zero_less_mult_iff)
|
paulson@14365
|
628 |
from neq le have "(a * d) * (b * d) \<le> (c * b) * (b * d)"
|
haftmann@27652
|
629 |
by simp
|
paulson@14365
|
630 |
with F have "(a * d) * (b * d) * ?F * ?F \<le> (c * b) * (b * d) * ?F * ?F"
|
paulson@14365
|
631 |
by (simp add: mult_le_cancel_right)
|
haftmann@27652
|
632 |
with neq show ?thesis by (simp add: mult_ac int_distrib)
|
paulson@14365
|
633 |
qed
|
paulson@14365
|
634 |
qed
|
paulson@14365
|
635 |
show "q < r ==> 0 < s ==> s * q < s * r"
|
paulson@14365
|
636 |
proof (induct q, induct r, induct s)
|
paulson@14365
|
637 |
fix a b c d e f :: int
|
paulson@14365
|
638 |
assume neq: "b \<noteq> 0" "d \<noteq> 0" "f \<noteq> 0"
|
paulson@14365
|
639 |
assume le: "Fract a b < Fract c d"
|
paulson@14365
|
640 |
assume gt: "0 < Fract e f"
|
paulson@14365
|
641 |
show "Fract e f * Fract a b < Fract e f * Fract c d"
|
paulson@14365
|
642 |
proof -
|
paulson@14365
|
643 |
let ?E = "e * f" and ?F = "f * f"
|
paulson@14365
|
644 |
from neq gt have "0 < ?E"
|
haftmann@27652
|
645 |
by (auto simp add: Zero_rat_def order_less_le eq_rat)
|
paulson@14365
|
646 |
moreover from neq have "0 < ?F"
|
paulson@14365
|
647 |
by (auto simp add: zero_less_mult_iff)
|
paulson@14365
|
648 |
moreover from neq le have "(a * d) * (b * d) < (c * b) * (b * d)"
|
haftmann@27652
|
649 |
by simp
|
paulson@14365
|
650 |
ultimately have "(a * d) * (b * d) * ?E * ?F < (c * b) * (b * d) * ?E * ?F"
|
paulson@14365
|
651 |
by (simp add: mult_less_cancel_right)
|
paulson@14365
|
652 |
with neq show ?thesis
|
haftmann@27652
|
653 |
by (simp add: mult_ac)
|
paulson@14365
|
654 |
qed
|
paulson@14365
|
655 |
qed
|
haftmann@27551
|
656 |
qed auto
|
paulson@14365
|
657 |
|
haftmann@27551
|
658 |
lemma Rat_induct_pos [case_names Fract, induct type: rat]:
|
haftmann@27551
|
659 |
assumes step: "\<And>a b. 0 < b \<Longrightarrow> P (Fract a b)"
|
haftmann@27551
|
660 |
shows "P q"
|
paulson@14365
|
661 |
proof (cases q)
|
haftmann@27551
|
662 |
have step': "\<And>a b. b < 0 \<Longrightarrow> P (Fract a b)"
|
paulson@14365
|
663 |
proof -
|
paulson@14365
|
664 |
fix a::int and b::int
|
paulson@14365
|
665 |
assume b: "b < 0"
|
paulson@14365
|
666 |
hence "0 < -b" by simp
|
paulson@14365
|
667 |
hence "P (Fract (-a) (-b))" by (rule step)
|
paulson@14365
|
668 |
thus "P (Fract a b)" by (simp add: order_less_imp_not_eq [OF b])
|
paulson@14365
|
669 |
qed
|
paulson@14365
|
670 |
case (Fract a b)
|
paulson@14365
|
671 |
thus "P q" by (force simp add: linorder_neq_iff step step')
|
paulson@14365
|
672 |
qed
|
paulson@14365
|
673 |
|
paulson@14365
|
674 |
lemma zero_less_Fract_iff:
|
huffman@30095
|
675 |
"0 < b \<Longrightarrow> 0 < Fract a b \<longleftrightarrow> 0 < a"
|
huffman@30095
|
676 |
by (simp add: Zero_rat_def zero_less_mult_iff)
|
huffman@30095
|
677 |
|
huffman@30095
|
678 |
lemma Fract_less_zero_iff:
|
huffman@30095
|
679 |
"0 < b \<Longrightarrow> Fract a b < 0 \<longleftrightarrow> a < 0"
|
huffman@30095
|
680 |
by (simp add: Zero_rat_def mult_less_0_iff)
|
huffman@30095
|
681 |
|
huffman@30095
|
682 |
lemma zero_le_Fract_iff:
|
huffman@30095
|
683 |
"0 < b \<Longrightarrow> 0 \<le> Fract a b \<longleftrightarrow> 0 \<le> a"
|
huffman@30095
|
684 |
by (simp add: Zero_rat_def zero_le_mult_iff)
|
huffman@30095
|
685 |
|
huffman@30095
|
686 |
lemma Fract_le_zero_iff:
|
huffman@30095
|
687 |
"0 < b \<Longrightarrow> Fract a b \<le> 0 \<longleftrightarrow> a \<le> 0"
|
huffman@30095
|
688 |
by (simp add: Zero_rat_def mult_le_0_iff)
|
huffman@30095
|
689 |
|
huffman@30095
|
690 |
lemma one_less_Fract_iff:
|
huffman@30095
|
691 |
"0 < b \<Longrightarrow> 1 < Fract a b \<longleftrightarrow> b < a"
|
huffman@30095
|
692 |
by (simp add: One_rat_def mult_less_cancel_right_disj)
|
huffman@30095
|
693 |
|
huffman@30095
|
694 |
lemma Fract_less_one_iff:
|
huffman@30095
|
695 |
"0 < b \<Longrightarrow> Fract a b < 1 \<longleftrightarrow> a < b"
|
huffman@30095
|
696 |
by (simp add: One_rat_def mult_less_cancel_right_disj)
|
huffman@30095
|
697 |
|
huffman@30095
|
698 |
lemma one_le_Fract_iff:
|
huffman@30095
|
699 |
"0 < b \<Longrightarrow> 1 \<le> Fract a b \<longleftrightarrow> b \<le> a"
|
huffman@30095
|
700 |
by (simp add: One_rat_def mult_le_cancel_right)
|
huffman@30095
|
701 |
|
huffman@30095
|
702 |
lemma Fract_le_one_iff:
|
huffman@30095
|
703 |
"0 < b \<Longrightarrow> Fract a b \<le> 1 \<longleftrightarrow> a \<le> b"
|
huffman@30095
|
704 |
by (simp add: One_rat_def mult_le_cancel_right)
|
paulson@14365
|
705 |
|
paulson@14378
|
706 |
|
huffman@30097
|
707 |
subsubsection {* Rationals are an Archimedean field *}
|
huffman@30097
|
708 |
|
huffman@30097
|
709 |
lemma rat_floor_lemma:
|
huffman@30097
|
710 |
assumes "0 < b"
|
huffman@30097
|
711 |
shows "of_int (a div b) \<le> Fract a b \<and> Fract a b < of_int (a div b + 1)"
|
huffman@30097
|
712 |
proof -
|
huffman@30097
|
713 |
have "Fract a b = of_int (a div b) + Fract (a mod b) b"
|
huffman@30097
|
714 |
using `0 < b` by (simp add: of_int_rat)
|
huffman@30097
|
715 |
moreover have "0 \<le> Fract (a mod b) b \<and> Fract (a mod b) b < 1"
|
huffman@30097
|
716 |
using `0 < b` by (simp add: zero_le_Fract_iff Fract_less_one_iff)
|
huffman@30097
|
717 |
ultimately show ?thesis by simp
|
huffman@30097
|
718 |
qed
|
huffman@30097
|
719 |
|
huffman@30097
|
720 |
instance rat :: archimedean_field
|
huffman@30097
|
721 |
proof
|
huffman@30097
|
722 |
fix r :: rat
|
huffman@30097
|
723 |
show "\<exists>z. r \<le> of_int z"
|
huffman@30097
|
724 |
proof (induct r)
|
huffman@30097
|
725 |
case (Fract a b)
|
huffman@30097
|
726 |
then have "Fract a b \<le> of_int (a div b + 1)"
|
huffman@30097
|
727 |
using rat_floor_lemma [of b a] by simp
|
huffman@30097
|
728 |
then show "\<exists>z. Fract a b \<le> of_int z" ..
|
huffman@30097
|
729 |
qed
|
huffman@30097
|
730 |
qed
|
huffman@30097
|
731 |
|
huffman@30097
|
732 |
lemma floor_Fract:
|
huffman@30097
|
733 |
assumes "0 < b" shows "floor (Fract a b) = a div b"
|
huffman@30097
|
734 |
using rat_floor_lemma [OF `0 < b`, of a]
|
huffman@30097
|
735 |
by (simp add: floor_unique)
|
huffman@30097
|
736 |
|
huffman@30097
|
737 |
|
haftmann@31100
|
738 |
subsection {* Linear arithmetic setup *}
|
paulson@14387
|
739 |
|
haftmann@31100
|
740 |
declaration {*
|
haftmann@31100
|
741 |
K (Lin_Arith.add_inj_thms [@{thm of_nat_le_iff} RS iffD2, @{thm of_nat_eq_iff} RS iffD2]
|
haftmann@31100
|
742 |
(* not needed because x < (y::nat) can be rewritten as Suc x <= y: of_nat_less_iff RS iffD2 *)
|
haftmann@31100
|
743 |
#> Lin_Arith.add_inj_thms [@{thm of_int_le_iff} RS iffD2, @{thm of_int_eq_iff} RS iffD2]
|
haftmann@31100
|
744 |
(* not needed because x < (y::int) can be rewritten as x + 1 <= y: of_int_less_iff RS iffD2 *)
|
haftmann@31100
|
745 |
#> Lin_Arith.add_simps [@{thm neg_less_iff_less},
|
haftmann@31100
|
746 |
@{thm True_implies_equals},
|
haftmann@31100
|
747 |
read_instantiate @{context} [(("a", 0), "(number_of ?v)")] @{thm right_distrib},
|
haftmann@31100
|
748 |
@{thm divide_1}, @{thm divide_zero_left},
|
haftmann@31100
|
749 |
@{thm times_divide_eq_right}, @{thm times_divide_eq_left},
|
haftmann@31100
|
750 |
@{thm minus_divide_left} RS sym, @{thm minus_divide_right} RS sym,
|
haftmann@31100
|
751 |
@{thm of_int_minus}, @{thm of_int_diff},
|
haftmann@31100
|
752 |
@{thm of_int_of_nat_eq}]
|
haftmann@31100
|
753 |
#> Lin_Arith.add_simprocs Numeral_Simprocs.field_cancel_numeral_factors
|
haftmann@31100
|
754 |
#> Lin_Arith.add_inj_const (@{const_name of_nat}, @{typ "nat => rat"})
|
haftmann@31100
|
755 |
#> Lin_Arith.add_inj_const (@{const_name of_int}, @{typ "int => rat"}))
|
haftmann@31100
|
756 |
*}
|
paulson@14387
|
757 |
|
huffman@23342
|
758 |
|
huffman@23342
|
759 |
subsection {* Embedding from Rationals to other Fields *}
|
huffman@23342
|
760 |
|
haftmann@24198
|
761 |
class field_char_0 = field + ring_char_0
|
huffman@23342
|
762 |
|
haftmann@27551
|
763 |
subclass (in ordered_field) field_char_0 ..
|
huffman@23342
|
764 |
|
haftmann@27551
|
765 |
context field_char_0
|
haftmann@27551
|
766 |
begin
|
haftmann@27551
|
767 |
|
haftmann@27551
|
768 |
definition of_rat :: "rat \<Rightarrow> 'a" where
|
haftmann@28562
|
769 |
[code del]: "of_rat q = contents (\<Union>(a,b) \<in> Rep_Rat q. {of_int a / of_int b})"
|
huffman@23342
|
770 |
|
haftmann@27551
|
771 |
end
|
haftmann@27551
|
772 |
|
huffman@23342
|
773 |
lemma of_rat_congruent:
|
haftmann@27551
|
774 |
"(\<lambda>(a, b). {of_int a / of_int b :: 'a::field_char_0}) respects ratrel"
|
huffman@23342
|
775 |
apply (rule congruent.intro)
|
huffman@23342
|
776 |
apply (clarsimp simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
|
huffman@23342
|
777 |
apply (simp only: of_int_mult [symmetric])
|
huffman@23342
|
778 |
done
|
huffman@23342
|
779 |
|
haftmann@27551
|
780 |
lemma of_rat_rat: "b \<noteq> 0 \<Longrightarrow> of_rat (Fract a b) = of_int a / of_int b"
|
haftmann@27551
|
781 |
unfolding Fract_def of_rat_def by (simp add: UN_ratrel of_rat_congruent)
|
huffman@23342
|
782 |
|
huffman@23342
|
783 |
lemma of_rat_0 [simp]: "of_rat 0 = 0"
|
huffman@23342
|
784 |
by (simp add: Zero_rat_def of_rat_rat)
|
huffman@23342
|
785 |
|
huffman@23342
|
786 |
lemma of_rat_1 [simp]: "of_rat 1 = 1"
|
huffman@23342
|
787 |
by (simp add: One_rat_def of_rat_rat)
|
huffman@23342
|
788 |
|
huffman@23342
|
789 |
lemma of_rat_add: "of_rat (a + b) = of_rat a + of_rat b"
|
haftmann@27652
|
790 |
by (induct a, induct b, simp add: of_rat_rat add_frac_eq)
|
huffman@23342
|
791 |
|
huffman@23343
|
792 |
lemma of_rat_minus: "of_rat (- a) = - of_rat a"
|
haftmann@27652
|
793 |
by (induct a, simp add: of_rat_rat)
|
huffman@23343
|
794 |
|
huffman@23343
|
795 |
lemma of_rat_diff: "of_rat (a - b) = of_rat a - of_rat b"
|
huffman@23343
|
796 |
by (simp only: diff_minus of_rat_add of_rat_minus)
|
huffman@23343
|
797 |
|
huffman@23342
|
798 |
lemma of_rat_mult: "of_rat (a * b) = of_rat a * of_rat b"
|
haftmann@27652
|
799 |
apply (induct a, induct b, simp add: of_rat_rat)
|
huffman@23342
|
800 |
apply (simp add: divide_inverse nonzero_inverse_mult_distrib mult_ac)
|
huffman@23342
|
801 |
done
|
huffman@23342
|
802 |
|
huffman@23342
|
803 |
lemma nonzero_of_rat_inverse:
|
huffman@23342
|
804 |
"a \<noteq> 0 \<Longrightarrow> of_rat (inverse a) = inverse (of_rat a)"
|
huffman@23343
|
805 |
apply (rule inverse_unique [symmetric])
|
huffman@23343
|
806 |
apply (simp add: of_rat_mult [symmetric])
|
huffman@23342
|
807 |
done
|
huffman@23342
|
808 |
|
huffman@23342
|
809 |
lemma of_rat_inverse:
|
huffman@23342
|
810 |
"(of_rat (inverse a)::'a::{field_char_0,division_by_zero}) =
|
huffman@23342
|
811 |
inverse (of_rat a)"
|
huffman@23342
|
812 |
by (cases "a = 0", simp_all add: nonzero_of_rat_inverse)
|
huffman@23342
|
813 |
|
huffman@23342
|
814 |
lemma nonzero_of_rat_divide:
|
huffman@23342
|
815 |
"b \<noteq> 0 \<Longrightarrow> of_rat (a / b) = of_rat a / of_rat b"
|
huffman@23342
|
816 |
by (simp add: divide_inverse of_rat_mult nonzero_of_rat_inverse)
|
huffman@23342
|
817 |
|
huffman@23342
|
818 |
lemma of_rat_divide:
|
huffman@23342
|
819 |
"(of_rat (a / b)::'a::{field_char_0,division_by_zero})
|
huffman@23342
|
820 |
= of_rat a / of_rat b"
|
haftmann@27652
|
821 |
by (cases "b = 0") (simp_all add: nonzero_of_rat_divide)
|
huffman@23342
|
822 |
|
huffman@23343
|
823 |
lemma of_rat_power:
|
haftmann@31017
|
824 |
"(of_rat (a ^ n)::'a::field_char_0) = of_rat a ^ n"
|
huffman@30273
|
825 |
by (induct n) (simp_all add: of_rat_mult)
|
huffman@23343
|
826 |
|
huffman@23343
|
827 |
lemma of_rat_eq_iff [simp]: "(of_rat a = of_rat b) = (a = b)"
|
huffman@23343
|
828 |
apply (induct a, induct b)
|
huffman@23343
|
829 |
apply (simp add: of_rat_rat eq_rat)
|
huffman@23343
|
830 |
apply (simp add: nonzero_divide_eq_eq nonzero_eq_divide_eq)
|
huffman@23343
|
831 |
apply (simp only: of_int_mult [symmetric] of_int_eq_iff)
|
huffman@23343
|
832 |
done
|
huffman@23343
|
833 |
|
haftmann@27652
|
834 |
lemma of_rat_less:
|
haftmann@27652
|
835 |
"(of_rat r :: 'a::ordered_field) < of_rat s \<longleftrightarrow> r < s"
|
haftmann@27652
|
836 |
proof (induct r, induct s)
|
haftmann@27652
|
837 |
fix a b c d :: int
|
haftmann@27652
|
838 |
assume not_zero: "b > 0" "d > 0"
|
haftmann@27652
|
839 |
then have "b * d > 0" by (rule mult_pos_pos)
|
haftmann@27652
|
840 |
have of_int_divide_less_eq:
|
haftmann@27652
|
841 |
"(of_int a :: 'a) / of_int b < of_int c / of_int d
|
haftmann@27652
|
842 |
\<longleftrightarrow> (of_int a :: 'a) * of_int d < of_int c * of_int b"
|
haftmann@27652
|
843 |
using not_zero by (simp add: pos_less_divide_eq pos_divide_less_eq)
|
haftmann@27652
|
844 |
show "(of_rat (Fract a b) :: 'a::ordered_field) < of_rat (Fract c d)
|
haftmann@27652
|
845 |
\<longleftrightarrow> Fract a b < Fract c d"
|
haftmann@27652
|
846 |
using not_zero `b * d > 0`
|
haftmann@27652
|
847 |
by (simp add: of_rat_rat of_int_divide_less_eq of_int_mult [symmetric] del: of_int_mult)
|
haftmann@27652
|
848 |
qed
|
haftmann@27652
|
849 |
|
haftmann@27652
|
850 |
lemma of_rat_less_eq:
|
haftmann@27652
|
851 |
"(of_rat r :: 'a::ordered_field) \<le> of_rat s \<longleftrightarrow> r \<le> s"
|
haftmann@27652
|
852 |
unfolding le_less by (auto simp add: of_rat_less)
|
haftmann@27652
|
853 |
|
huffman@23343
|
854 |
lemmas of_rat_eq_0_iff [simp] = of_rat_eq_iff [of _ 0, simplified]
|
huffman@23343
|
855 |
|
haftmann@27652
|
856 |
lemma of_rat_eq_id [simp]: "of_rat = id"
|
huffman@23343
|
857 |
proof
|
huffman@23343
|
858 |
fix a
|
huffman@23343
|
859 |
show "of_rat a = id a"
|
huffman@23343
|
860 |
by (induct a)
|
haftmann@27652
|
861 |
(simp add: of_rat_rat Fract_of_int_eq [symmetric])
|
huffman@23343
|
862 |
qed
|
huffman@23343
|
863 |
|
huffman@23343
|
864 |
text{*Collapse nested embeddings*}
|
huffman@23343
|
865 |
lemma of_rat_of_nat_eq [simp]: "of_rat (of_nat n) = of_nat n"
|
huffman@23343
|
866 |
by (induct n) (simp_all add: of_rat_add)
|
huffman@23343
|
867 |
|
huffman@23343
|
868 |
lemma of_rat_of_int_eq [simp]: "of_rat (of_int z) = of_int z"
|
haftmann@27652
|
869 |
by (cases z rule: int_diff_cases) (simp add: of_rat_diff)
|
huffman@23343
|
870 |
|
huffman@23343
|
871 |
lemma of_rat_number_of_eq [simp]:
|
huffman@23343
|
872 |
"of_rat (number_of w) = (number_of w :: 'a::{number_ring,field_char_0})"
|
huffman@23343
|
873 |
by (simp add: number_of_eq)
|
huffman@23343
|
874 |
|
haftmann@23879
|
875 |
lemmas zero_rat = Zero_rat_def
|
haftmann@23879
|
876 |
lemmas one_rat = One_rat_def
|
haftmann@23879
|
877 |
|
haftmann@24198
|
878 |
abbreviation
|
haftmann@24198
|
879 |
rat_of_nat :: "nat \<Rightarrow> rat"
|
haftmann@24198
|
880 |
where
|
haftmann@24198
|
881 |
"rat_of_nat \<equiv> of_nat"
|
haftmann@24198
|
882 |
|
haftmann@24198
|
883 |
abbreviation
|
haftmann@24198
|
884 |
rat_of_int :: "int \<Rightarrow> rat"
|
haftmann@24198
|
885 |
where
|
haftmann@24198
|
886 |
"rat_of_int \<equiv> of_int"
|
haftmann@24198
|
887 |
|
huffman@28010
|
888 |
subsection {* The Set of Rational Numbers *}
|
berghofe@24533
|
889 |
|
nipkow@28001
|
890 |
context field_char_0
|
nipkow@28001
|
891 |
begin
|
nipkow@28001
|
892 |
|
nipkow@28001
|
893 |
definition
|
nipkow@28001
|
894 |
Rats :: "'a set" where
|
haftmann@28562
|
895 |
[code del]: "Rats = range of_rat"
|
nipkow@28001
|
896 |
|
nipkow@28001
|
897 |
notation (xsymbols)
|
nipkow@28001
|
898 |
Rats ("\<rat>")
|
nipkow@28001
|
899 |
|
nipkow@28001
|
900 |
end
|
nipkow@28001
|
901 |
|
huffman@28010
|
902 |
lemma Rats_of_rat [simp]: "of_rat r \<in> Rats"
|
huffman@28010
|
903 |
by (simp add: Rats_def)
|
huffman@28010
|
904 |
|
huffman@28010
|
905 |
lemma Rats_of_int [simp]: "of_int z \<in> Rats"
|
huffman@28010
|
906 |
by (subst of_rat_of_int_eq [symmetric], rule Rats_of_rat)
|
huffman@28010
|
907 |
|
huffman@28010
|
908 |
lemma Rats_of_nat [simp]: "of_nat n \<in> Rats"
|
huffman@28010
|
909 |
by (subst of_rat_of_nat_eq [symmetric], rule Rats_of_rat)
|
huffman@28010
|
910 |
|
huffman@28010
|
911 |
lemma Rats_number_of [simp]:
|
huffman@28010
|
912 |
"(number_of w::'a::{number_ring,field_char_0}) \<in> Rats"
|
huffman@28010
|
913 |
by (subst of_rat_number_of_eq [symmetric], rule Rats_of_rat)
|
huffman@28010
|
914 |
|
huffman@28010
|
915 |
lemma Rats_0 [simp]: "0 \<in> Rats"
|
huffman@28010
|
916 |
apply (unfold Rats_def)
|
huffman@28010
|
917 |
apply (rule range_eqI)
|
huffman@28010
|
918 |
apply (rule of_rat_0 [symmetric])
|
huffman@28010
|
919 |
done
|
huffman@28010
|
920 |
|
huffman@28010
|
921 |
lemma Rats_1 [simp]: "1 \<in> Rats"
|
huffman@28010
|
922 |
apply (unfold Rats_def)
|
huffman@28010
|
923 |
apply (rule range_eqI)
|
huffman@28010
|
924 |
apply (rule of_rat_1 [symmetric])
|
huffman@28010
|
925 |
done
|
huffman@28010
|
926 |
|
huffman@28010
|
927 |
lemma Rats_add [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a + b \<in> Rats"
|
huffman@28010
|
928 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
929 |
apply (rule range_eqI)
|
huffman@28010
|
930 |
apply (rule of_rat_add [symmetric])
|
huffman@28010
|
931 |
done
|
huffman@28010
|
932 |
|
huffman@28010
|
933 |
lemma Rats_minus [simp]: "a \<in> Rats \<Longrightarrow> - a \<in> Rats"
|
huffman@28010
|
934 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
935 |
apply (rule range_eqI)
|
huffman@28010
|
936 |
apply (rule of_rat_minus [symmetric])
|
huffman@28010
|
937 |
done
|
huffman@28010
|
938 |
|
huffman@28010
|
939 |
lemma Rats_diff [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a - b \<in> Rats"
|
huffman@28010
|
940 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
941 |
apply (rule range_eqI)
|
huffman@28010
|
942 |
apply (rule of_rat_diff [symmetric])
|
huffman@28010
|
943 |
done
|
huffman@28010
|
944 |
|
huffman@28010
|
945 |
lemma Rats_mult [simp]: "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a * b \<in> Rats"
|
huffman@28010
|
946 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
947 |
apply (rule range_eqI)
|
huffman@28010
|
948 |
apply (rule of_rat_mult [symmetric])
|
huffman@28010
|
949 |
done
|
huffman@28010
|
950 |
|
huffman@28010
|
951 |
lemma nonzero_Rats_inverse:
|
huffman@28010
|
952 |
fixes a :: "'a::field_char_0"
|
huffman@28010
|
953 |
shows "\<lbrakk>a \<in> Rats; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Rats"
|
huffman@28010
|
954 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
955 |
apply (rule range_eqI)
|
huffman@28010
|
956 |
apply (erule nonzero_of_rat_inverse [symmetric])
|
huffman@28010
|
957 |
done
|
huffman@28010
|
958 |
|
huffman@28010
|
959 |
lemma Rats_inverse [simp]:
|
huffman@28010
|
960 |
fixes a :: "'a::{field_char_0,division_by_zero}"
|
huffman@28010
|
961 |
shows "a \<in> Rats \<Longrightarrow> inverse a \<in> Rats"
|
huffman@28010
|
962 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
963 |
apply (rule range_eqI)
|
huffman@28010
|
964 |
apply (rule of_rat_inverse [symmetric])
|
huffman@28010
|
965 |
done
|
huffman@28010
|
966 |
|
huffman@28010
|
967 |
lemma nonzero_Rats_divide:
|
huffman@28010
|
968 |
fixes a b :: "'a::field_char_0"
|
huffman@28010
|
969 |
shows "\<lbrakk>a \<in> Rats; b \<in> Rats; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
|
huffman@28010
|
970 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
971 |
apply (rule range_eqI)
|
huffman@28010
|
972 |
apply (erule nonzero_of_rat_divide [symmetric])
|
huffman@28010
|
973 |
done
|
huffman@28010
|
974 |
|
huffman@28010
|
975 |
lemma Rats_divide [simp]:
|
huffman@28010
|
976 |
fixes a b :: "'a::{field_char_0,division_by_zero}"
|
huffman@28010
|
977 |
shows "\<lbrakk>a \<in> Rats; b \<in> Rats\<rbrakk> \<Longrightarrow> a / b \<in> Rats"
|
huffman@28010
|
978 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
979 |
apply (rule range_eqI)
|
huffman@28010
|
980 |
apply (rule of_rat_divide [symmetric])
|
huffman@28010
|
981 |
done
|
huffman@28010
|
982 |
|
huffman@28010
|
983 |
lemma Rats_power [simp]:
|
haftmann@31017
|
984 |
fixes a :: "'a::field_char_0"
|
huffman@28010
|
985 |
shows "a \<in> Rats \<Longrightarrow> a ^ n \<in> Rats"
|
huffman@28010
|
986 |
apply (auto simp add: Rats_def)
|
huffman@28010
|
987 |
apply (rule range_eqI)
|
huffman@28010
|
988 |
apply (rule of_rat_power [symmetric])
|
huffman@28010
|
989 |
done
|
huffman@28010
|
990 |
|
huffman@28010
|
991 |
lemma Rats_cases [cases set: Rats]:
|
huffman@28010
|
992 |
assumes "q \<in> \<rat>"
|
huffman@28010
|
993 |
obtains (of_rat) r where "q = of_rat r"
|
huffman@28010
|
994 |
unfolding Rats_def
|
huffman@28010
|
995 |
proof -
|
huffman@28010
|
996 |
from `q \<in> \<rat>` have "q \<in> range of_rat" unfolding Rats_def .
|
huffman@28010
|
997 |
then obtain r where "q = of_rat r" ..
|
huffman@28010
|
998 |
then show thesis ..
|
huffman@28010
|
999 |
qed
|
huffman@28010
|
1000 |
|
huffman@28010
|
1001 |
lemma Rats_induct [case_names of_rat, induct set: Rats]:
|
huffman@28010
|
1002 |
"q \<in> \<rat> \<Longrightarrow> (\<And>r. P (of_rat r)) \<Longrightarrow> P q"
|
huffman@28010
|
1003 |
by (rule Rats_cases) auto
|
huffman@28010
|
1004 |
|
nipkow@28001
|
1005 |
|
berghofe@24533
|
1006 |
subsection {* Implementation of rational numbers as pairs of integers *}
|
berghofe@24533
|
1007 |
|
haftmann@27652
|
1008 |
definition Fract_norm :: "int \<Rightarrow> int \<Rightarrow> rat" where
|
haftmann@28562
|
1009 |
[simp, code del]: "Fract_norm a b = Fract a b"
|
haftmann@27652
|
1010 |
|
huffman@31706
|
1011 |
lemma Fract_norm_code [code]: "Fract_norm a b = (if a = 0 \<or> b = 0 then 0 else let c = gcd a b in
|
haftmann@27652
|
1012 |
if b > 0 then Fract (a div c) (b div c) else Fract (- (a div c)) (- (b div c)))"
|
haftmann@27652
|
1013 |
by (simp add: eq_rat Zero_rat_def Let_def Fract_norm)
|
berghofe@24533
|
1014 |
|
berghofe@24533
|
1015 |
lemma [code]:
|
haftmann@27652
|
1016 |
"of_rat (Fract a b) = (if b \<noteq> 0 then of_int a / of_int b else 0)"
|
haftmann@27652
|
1017 |
by (cases "b = 0") (simp_all add: rat_number_collapse of_rat_rat)
|
berghofe@24533
|
1018 |
|
haftmann@26513
|
1019 |
instantiation rat :: eq
|
haftmann@26513
|
1020 |
begin
|
haftmann@26513
|
1021 |
|
haftmann@28562
|
1022 |
definition [code del]: "eq_class.eq (a\<Colon>rat) b \<longleftrightarrow> a - b = 0"
|
berghofe@24533
|
1023 |
|
haftmann@26513
|
1024 |
instance by default (simp add: eq_rat_def)
|
haftmann@26513
|
1025 |
|
haftmann@27652
|
1026 |
lemma rat_eq_code [code]:
|
haftmann@27652
|
1027 |
"eq_class.eq (Fract a b) (Fract c d) \<longleftrightarrow> (if b = 0
|
haftmann@27652
|
1028 |
then c = 0 \<or> d = 0
|
haftmann@27652
|
1029 |
else if d = 0
|
haftmann@27652
|
1030 |
then a = 0 \<or> b = 0
|
haftmann@29332
|
1031 |
else a * d = b * c)"
|
haftmann@27652
|
1032 |
by (auto simp add: eq eq_rat)
|
haftmann@26513
|
1033 |
|
haftmann@28351
|
1034 |
lemma rat_eq_refl [code nbe]:
|
haftmann@28351
|
1035 |
"eq_class.eq (r::rat) r \<longleftrightarrow> True"
|
haftmann@28351
|
1036 |
by (rule HOL.eq_refl)
|
haftmann@28351
|
1037 |
|
haftmann@26513
|
1038 |
end
|
berghofe@24533
|
1039 |
|
haftmann@27652
|
1040 |
lemma le_rat':
|
haftmann@27652
|
1041 |
assumes "b \<noteq> 0"
|
haftmann@27652
|
1042 |
and "d \<noteq> 0"
|
haftmann@27652
|
1043 |
shows "Fract a b \<le> Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
|
berghofe@24533
|
1044 |
proof -
|
haftmann@27652
|
1045 |
have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
|
haftmann@27652
|
1046 |
have "a * d * (b * d) \<le> c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) \<le> c * b * (sgn b * sgn d)"
|
haftmann@27652
|
1047 |
proof (cases "b * d > 0")
|
haftmann@27652
|
1048 |
case True
|
haftmann@27652
|
1049 |
moreover from True have "sgn b * sgn d = 1"
|
haftmann@27652
|
1050 |
by (simp add: sgn_times [symmetric] sgn_1_pos)
|
haftmann@27652
|
1051 |
ultimately show ?thesis by (simp add: mult_le_cancel_right)
|
haftmann@27652
|
1052 |
next
|
haftmann@27652
|
1053 |
case False with assms have "b * d < 0" by (simp add: less_le)
|
haftmann@27652
|
1054 |
moreover from this have "sgn b * sgn d = - 1"
|
haftmann@27652
|
1055 |
by (simp only: sgn_times [symmetric] sgn_1_neg)
|
haftmann@27652
|
1056 |
ultimately show ?thesis by (simp add: mult_le_cancel_right)
|
haftmann@27652
|
1057 |
qed
|
haftmann@27652
|
1058 |
also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d"
|
haftmann@27652
|
1059 |
by (simp add: abs_sgn mult_ac)
|
haftmann@27652
|
1060 |
finally show ?thesis using assms by simp
|
berghofe@24533
|
1061 |
qed
|
berghofe@24533
|
1062 |
|
haftmann@27652
|
1063 |
lemma less_rat':
|
haftmann@27652
|
1064 |
assumes "b \<noteq> 0"
|
haftmann@27652
|
1065 |
and "d \<noteq> 0"
|
haftmann@27652
|
1066 |
shows "Fract a b < Fract c d \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
|
berghofe@24533
|
1067 |
proof -
|
haftmann@27652
|
1068 |
have abs_sgn: "\<And>k::int. \<bar>k\<bar> = k * sgn k" unfolding abs_if sgn_if by simp
|
haftmann@27652
|
1069 |
have "a * d * (b * d) < c * b * (b * d) \<longleftrightarrow> a * d * (sgn b * sgn d) < c * b * (sgn b * sgn d)"
|
haftmann@27652
|
1070 |
proof (cases "b * d > 0")
|
haftmann@27652
|
1071 |
case True
|
haftmann@27652
|
1072 |
moreover from True have "sgn b * sgn d = 1"
|
haftmann@27652
|
1073 |
by (simp add: sgn_times [symmetric] sgn_1_pos)
|
haftmann@27652
|
1074 |
ultimately show ?thesis by (simp add: mult_less_cancel_right)
|
haftmann@27652
|
1075 |
next
|
haftmann@27652
|
1076 |
case False with assms have "b * d < 0" by (simp add: less_le)
|
haftmann@27652
|
1077 |
moreover from this have "sgn b * sgn d = - 1"
|
haftmann@27652
|
1078 |
by (simp only: sgn_times [symmetric] sgn_1_neg)
|
haftmann@27652
|
1079 |
ultimately show ?thesis by (simp add: mult_less_cancel_right)
|
haftmann@27652
|
1080 |
qed
|
haftmann@27652
|
1081 |
also have "\<dots> \<longleftrightarrow> a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d"
|
haftmann@27652
|
1082 |
by (simp add: abs_sgn mult_ac)
|
haftmann@27652
|
1083 |
finally show ?thesis using assms by simp
|
berghofe@24533
|
1084 |
qed
|
berghofe@24533
|
1085 |
|
haftmann@29940
|
1086 |
lemma (in ordered_idom) sgn_greater [simp]:
|
haftmann@29940
|
1087 |
"0 < sgn a \<longleftrightarrow> 0 < a"
|
haftmann@29940
|
1088 |
unfolding sgn_if by auto
|
haftmann@29940
|
1089 |
|
haftmann@29940
|
1090 |
lemma (in ordered_idom) sgn_less [simp]:
|
haftmann@29940
|
1091 |
"sgn a < 0 \<longleftrightarrow> a < 0"
|
haftmann@29940
|
1092 |
unfolding sgn_if by auto
|
berghofe@24533
|
1093 |
|
haftmann@27652
|
1094 |
lemma rat_le_eq_code [code]:
|
haftmann@27652
|
1095 |
"Fract a b < Fract c d \<longleftrightarrow> (if b = 0
|
haftmann@27652
|
1096 |
then sgn c * sgn d > 0
|
haftmann@27652
|
1097 |
else if d = 0
|
haftmann@27652
|
1098 |
then sgn a * sgn b < 0
|
haftmann@27652
|
1099 |
else a * \<bar>d\<bar> * sgn b < c * \<bar>b\<bar> * sgn d)"
|
haftmann@29940
|
1100 |
by (auto simp add: sgn_times mult_less_0_iff zero_less_mult_iff less_rat' eq_rat simp del: less_rat)
|
haftmann@29940
|
1101 |
|
haftmann@29940
|
1102 |
lemma rat_less_eq_code [code]:
|
haftmann@29940
|
1103 |
"Fract a b \<le> Fract c d \<longleftrightarrow> (if b = 0
|
haftmann@29940
|
1104 |
then sgn c * sgn d \<ge> 0
|
haftmann@29940
|
1105 |
else if d = 0
|
haftmann@29940
|
1106 |
then sgn a * sgn b \<le> 0
|
haftmann@29940
|
1107 |
else a * \<bar>d\<bar> * sgn b \<le> c * \<bar>b\<bar> * sgn d)"
|
haftmann@29940
|
1108 |
by (auto simp add: sgn_times mult_le_0_iff zero_le_mult_iff le_rat' eq_rat simp del: le_rat)
|
haftmann@29940
|
1109 |
(auto simp add: le_less not_less sgn_0_0)
|
haftmann@29940
|
1110 |
|
berghofe@24533
|
1111 |
|
haftmann@27652
|
1112 |
lemma rat_plus_code [code]:
|
haftmann@27652
|
1113 |
"Fract a b + Fract c d = (if b = 0
|
haftmann@27652
|
1114 |
then Fract c d
|
haftmann@27652
|
1115 |
else if d = 0
|
haftmann@27652
|
1116 |
then Fract a b
|
haftmann@27652
|
1117 |
else Fract_norm (a * d + c * b) (b * d))"
|
haftmann@27652
|
1118 |
by (simp add: eq_rat, simp add: Zero_rat_def)
|
haftmann@27652
|
1119 |
|
haftmann@27652
|
1120 |
lemma rat_times_code [code]:
|
haftmann@27652
|
1121 |
"Fract a b * Fract c d = Fract_norm (a * c) (b * d)"
|
haftmann@27652
|
1122 |
by simp
|
berghofe@24533
|
1123 |
|
haftmann@27652
|
1124 |
lemma rat_minus_code [code]:
|
haftmann@27652
|
1125 |
"Fract a b - Fract c d = (if b = 0
|
haftmann@27652
|
1126 |
then Fract (- c) d
|
haftmann@27652
|
1127 |
else if d = 0
|
haftmann@27652
|
1128 |
then Fract a b
|
haftmann@27652
|
1129 |
else Fract_norm (a * d - c * b) (b * d))"
|
haftmann@27652
|
1130 |
by (simp add: eq_rat, simp add: Zero_rat_def)
|
berghofe@24533
|
1131 |
|
haftmann@27652
|
1132 |
lemma rat_inverse_code [code]:
|
haftmann@27652
|
1133 |
"inverse (Fract a b) = (if b = 0 then Fract 1 0
|
haftmann@27652
|
1134 |
else if a < 0 then Fract (- b) (- a)
|
haftmann@27652
|
1135 |
else Fract b a)"
|
haftmann@27652
|
1136 |
by (simp add: eq_rat)
|
haftmann@27652
|
1137 |
|
haftmann@27652
|
1138 |
lemma rat_divide_code [code]:
|
haftmann@27652
|
1139 |
"Fract a b / Fract c d = Fract_norm (a * d) (b * c)"
|
haftmann@27652
|
1140 |
by simp
|
haftmann@27652
|
1141 |
|
haftmann@31203
|
1142 |
definition (in term_syntax)
|
haftmann@32657
|
1143 |
valterm_fract :: "int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> int \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> rat \<times> (unit \<Rightarrow> Code_Evaluation.term)" where
|
haftmann@32657
|
1144 |
[code_unfold]: "valterm_fract k l = Code_Evaluation.valtermify Fract {\<cdot>} k {\<cdot>} l"
|
haftmann@31203
|
1145 |
|
haftmann@31203
|
1146 |
notation fcomp (infixl "o>" 60)
|
haftmann@31203
|
1147 |
notation scomp (infixl "o\<rightarrow>" 60)
|
haftmann@31203
|
1148 |
|
haftmann@31203
|
1149 |
instantiation rat :: random
|
haftmann@31203
|
1150 |
begin
|
haftmann@31203
|
1151 |
|
haftmann@31203
|
1152 |
definition
|
haftmann@31641
|
1153 |
"Quickcheck.random i = Quickcheck.random i o\<rightarrow> (\<lambda>num. Random.range i o\<rightarrow> (\<lambda>denom. Pair (
|
haftmann@31205
|
1154 |
let j = Code_Numeral.int_of (denom + 1)
|
haftmann@32657
|
1155 |
in valterm_fract num (j, \<lambda>u. Code_Evaluation.term_of j))))"
|
haftmann@31203
|
1156 |
|
haftmann@31203
|
1157 |
instance ..
|
haftmann@31203
|
1158 |
|
haftmann@31203
|
1159 |
end
|
haftmann@31203
|
1160 |
|
haftmann@31203
|
1161 |
no_notation fcomp (infixl "o>" 60)
|
haftmann@31203
|
1162 |
no_notation scomp (infixl "o\<rightarrow>" 60)
|
haftmann@31203
|
1163 |
|
haftmann@27652
|
1164 |
hide (open) const Fract_norm
|
berghofe@24533
|
1165 |
|
haftmann@24622
|
1166 |
text {* Setup for SML code generator *}
|
berghofe@24533
|
1167 |
|
berghofe@24533
|
1168 |
types_code
|
berghofe@24533
|
1169 |
rat ("(int */ int)")
|
berghofe@24533
|
1170 |
attach (term_of) {*
|
berghofe@24533
|
1171 |
fun term_of_rat (p, q) =
|
haftmann@24622
|
1172 |
let
|
haftmann@24661
|
1173 |
val rT = Type ("Rational.rat", [])
|
berghofe@24533
|
1174 |
in
|
berghofe@24533
|
1175 |
if q = 1 orelse p = 0 then HOLogic.mk_number rT p
|
berghofe@25885
|
1176 |
else @{term "op / \<Colon> rat \<Rightarrow> rat \<Rightarrow> rat"} $
|
berghofe@24533
|
1177 |
HOLogic.mk_number rT p $ HOLogic.mk_number rT q
|
berghofe@24533
|
1178 |
end;
|
berghofe@24533
|
1179 |
*}
|
berghofe@24533
|
1180 |
attach (test) {*
|
berghofe@24533
|
1181 |
fun gen_rat i =
|
berghofe@24533
|
1182 |
let
|
berghofe@24533
|
1183 |
val p = random_range 0 i;
|
berghofe@24533
|
1184 |
val q = random_range 1 (i + 1);
|
berghofe@24533
|
1185 |
val g = Integer.gcd p q;
|
wenzelm@24630
|
1186 |
val p' = p div g;
|
wenzelm@24630
|
1187 |
val q' = q div g;
|
berghofe@25885
|
1188 |
val r = (if one_of [true, false] then p' else ~ p',
|
haftmann@31666
|
1189 |
if p' = 0 then 1 else q')
|
berghofe@24533
|
1190 |
in
|
berghofe@25885
|
1191 |
(r, fn () => term_of_rat r)
|
berghofe@24533
|
1192 |
end;
|
berghofe@24533
|
1193 |
*}
|
berghofe@24533
|
1194 |
|
berghofe@24533
|
1195 |
consts_code
|
haftmann@27551
|
1196 |
Fract ("(_,/ _)")
|
berghofe@24533
|
1197 |
|
berghofe@24533
|
1198 |
consts_code
|
berghofe@24533
|
1199 |
"of_int :: int \<Rightarrow> rat" ("\<module>rat'_of'_int")
|
berghofe@24533
|
1200 |
attach {*
|
haftmann@31674
|
1201 |
fun rat_of_int i = (i, 1);
|
berghofe@24533
|
1202 |
*}
|
berghofe@24533
|
1203 |
|
blanchet@33197
|
1204 |
setup {*
|
wenzelm@33209
|
1205 |
Nitpick.register_frac_type @{type_name rat}
|
wenzelm@33209
|
1206 |
[(@{const_name zero_rat_inst.zero_rat}, @{const_name Nitpick.zero_frac}),
|
wenzelm@33209
|
1207 |
(@{const_name one_rat_inst.one_rat}, @{const_name Nitpick.one_frac}),
|
wenzelm@33209
|
1208 |
(@{const_name plus_rat_inst.plus_rat}, @{const_name Nitpick.plus_frac}),
|
wenzelm@33209
|
1209 |
(@{const_name times_rat_inst.times_rat}, @{const_name Nitpick.times_frac}),
|
wenzelm@33209
|
1210 |
(@{const_name uminus_rat_inst.uminus_rat}, @{const_name Nitpick.uminus_frac}),
|
wenzelm@33209
|
1211 |
(@{const_name number_rat_inst.number_of_rat}, @{const_name Nitpick.number_of_frac}),
|
wenzelm@33209
|
1212 |
(@{const_name inverse_rat_inst.inverse_rat}, @{const_name Nitpick.inverse_frac}),
|
wenzelm@33209
|
1213 |
(@{const_name ord_rat_inst.less_eq_rat}, @{const_name Nitpick.less_eq_frac}),
|
wenzelm@33209
|
1214 |
(@{const_name field_char_0_class.of_rat}, @{const_name Nitpick.of_frac}),
|
wenzelm@33209
|
1215 |
(@{const_name field_char_0_class.Rats}, @{const_name UNIV})]
|
blanchet@33197
|
1216 |
*}
|
blanchet@33197
|
1217 |
|
blanchet@33197
|
1218 |
lemmas [nitpick_def] = inverse_rat_inst.inverse_rat
|
wenzelm@33209
|
1219 |
number_rat_inst.number_of_rat one_rat_inst.one_rat ord_rat_inst.less_eq_rat
|
wenzelm@33209
|
1220 |
plus_rat_inst.plus_rat times_rat_inst.times_rat uminus_rat_inst.uminus_rat
|
wenzelm@33209
|
1221 |
zero_rat_inst.zero_rat
|
blanchet@33197
|
1222 |
|
huffman@29880
|
1223 |
end
|