clasohm@1465
|
1 |
(* Title: HOL/List
|
clasohm@923
|
2 |
ID: $Id$
|
clasohm@1465
|
3 |
Author: Tobias Nipkow
|
clasohm@923
|
4 |
Copyright 1994 TU Muenchen
|
clasohm@923
|
5 |
|
clasohm@923
|
6 |
List lemmas
|
clasohm@923
|
7 |
*)
|
clasohm@923
|
8 |
|
clasohm@923
|
9 |
open List;
|
clasohm@923
|
10 |
|
clasohm@923
|
11 |
val [Nil_not_Cons,Cons_not_Nil] = list.distinct;
|
clasohm@923
|
12 |
|
clasohm@923
|
13 |
bind_thm("Cons_neq_Nil", Cons_not_Nil RS notE);
|
clasohm@923
|
14 |
bind_thm("Nil_neq_Cons", sym RS Cons_neq_Nil);
|
clasohm@923
|
15 |
|
clasohm@923
|
16 |
bind_thm("Cons_inject", (hd list.inject) RS iffD1 RS conjE);
|
clasohm@923
|
17 |
|
clasohm@923
|
18 |
goal List.thy "!x. xs ~= x#xs";
|
clasohm@923
|
19 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
20 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
21 |
qed "not_Cons_self";
|
clasohm@923
|
22 |
|
clasohm@923
|
23 |
goal List.thy "(xs ~= []) = (? y ys. xs = y#ys)";
|
clasohm@923
|
24 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
25 |
by (Simp_tac 1);
|
clasohm@1264
|
26 |
by (Asm_simp_tac 1);
|
lcp@1169
|
27 |
by (REPEAT(resolve_tac [exI,refl,conjI] 1));
|
clasohm@923
|
28 |
qed "neq_Nil_conv";
|
clasohm@923
|
29 |
|
clasohm@923
|
30 |
|
clasohm@923
|
31 |
(** @ - append **)
|
clasohm@923
|
32 |
|
clasohm@923
|
33 |
goal List.thy "(xs@ys)@zs = xs@(ys@zs)";
|
clasohm@923
|
34 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
35 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
36 |
qed "append_assoc";
|
clasohm@923
|
37 |
|
clasohm@923
|
38 |
goal List.thy "xs @ [] = xs";
|
clasohm@923
|
39 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
40 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
41 |
qed "append_Nil2";
|
clasohm@923
|
42 |
|
clasohm@923
|
43 |
goal List.thy "(xs@ys = []) = (xs=[] & ys=[])";
|
clasohm@923
|
44 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
45 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
46 |
qed "append_is_Nil";
|
clasohm@923
|
47 |
|
clasohm@923
|
48 |
goal List.thy "(xs @ ys = xs @ zs) = (ys=zs)";
|
clasohm@923
|
49 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
50 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
51 |
qed "same_append_eq";
|
clasohm@923
|
52 |
|
nipkow@1327
|
53 |
goal List.thy "hd(xs@ys) = (if xs=[] then hd ys else hd xs)";
|
nipkow@1327
|
54 |
by (list.induct_tac "xs" 1);
|
nipkow@1327
|
55 |
by (ALLGOALS Asm_simp_tac);
|
nipkow@1327
|
56 |
qed "hd_append";
|
clasohm@923
|
57 |
|
lcp@1169
|
58 |
(** rev **)
|
lcp@1169
|
59 |
|
lcp@1169
|
60 |
goal List.thy "rev(xs@ys) = rev(ys) @ rev(xs)";
|
lcp@1169
|
61 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
62 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [append_Nil2,append_assoc])));
|
lcp@1169
|
63 |
qed "rev_append";
|
lcp@1169
|
64 |
|
lcp@1169
|
65 |
goal List.thy "rev(rev l) = l";
|
lcp@1169
|
66 |
by (list.induct_tac "l" 1);
|
clasohm@1264
|
67 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [rev_append])));
|
lcp@1169
|
68 |
qed "rev_rev_ident";
|
lcp@1169
|
69 |
|
lcp@1169
|
70 |
|
clasohm@923
|
71 |
(** mem **)
|
clasohm@923
|
72 |
|
clasohm@923
|
73 |
goal List.thy "x mem (xs@ys) = (x mem xs | x mem ys)";
|
clasohm@923
|
74 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
75 |
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
|
clasohm@923
|
76 |
qed "mem_append";
|
clasohm@923
|
77 |
|
clasohm@923
|
78 |
goal List.thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
|
clasohm@923
|
79 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
80 |
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
|
clasohm@923
|
81 |
qed "mem_filter";
|
clasohm@923
|
82 |
|
paulson@1908
|
83 |
(** set_of_list **)
|
paulson@1812
|
84 |
|
paulson@1908
|
85 |
goal thy "set_of_list (xs@ys) = (set_of_list xs Un set_of_list ys)";
|
paulson@1812
|
86 |
by (list.induct_tac "xs" 1);
|
paulson@1812
|
87 |
by (ALLGOALS Asm_simp_tac);
|
paulson@1812
|
88 |
by (Fast_tac 1);
|
paulson@1908
|
89 |
qed "set_of_list_append";
|
paulson@1812
|
90 |
|
paulson@1908
|
91 |
goal thy "(x mem xs) = (x: set_of_list xs)";
|
paulson@1812
|
92 |
by (list.induct_tac "xs" 1);
|
paulson@1812
|
93 |
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
|
paulson@1812
|
94 |
by (Fast_tac 1);
|
paulson@1908
|
95 |
qed "set_of_list_mem_eq";
|
paulson@1812
|
96 |
|
paulson@1936
|
97 |
goal List.thy "set_of_list l <= set_of_list (x#l)";
|
paulson@1936
|
98 |
by (Simp_tac 1);
|
paulson@1936
|
99 |
by (Fast_tac 1);
|
paulson@1936
|
100 |
qed "set_of_list_subset_Cons";
|
paulson@1936
|
101 |
|
paulson@1812
|
102 |
|
clasohm@923
|
103 |
(** list_all **)
|
clasohm@923
|
104 |
|
clasohm@923
|
105 |
goal List.thy "(Alls x:xs.True) = True";
|
clasohm@923
|
106 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
107 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
108 |
qed "list_all_True";
|
clasohm@923
|
109 |
|
clasohm@923
|
110 |
goal List.thy "list_all p (xs@ys) = (list_all p xs & list_all p ys)";
|
clasohm@923
|
111 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
112 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
113 |
qed "list_all_conj";
|
clasohm@923
|
114 |
|
clasohm@923
|
115 |
goal List.thy "(Alls x:xs.P(x)) = (!x. x mem xs --> P(x))";
|
clasohm@923
|
116 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
117 |
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
|
berghofe@1760
|
118 |
by (Fast_tac 1);
|
clasohm@923
|
119 |
qed "list_all_mem_conv";
|
clasohm@923
|
120 |
|
clasohm@923
|
121 |
|
clasohm@923
|
122 |
(** list_case **)
|
clasohm@923
|
123 |
|
clasohm@923
|
124 |
goal List.thy
|
clasohm@923
|
125 |
"P(list_case a f xs) = ((xs=[] --> P(a)) & \
|
clasohm@923
|
126 |
\ (!y ys. xs=y#ys --> P(f y ys)))";
|
clasohm@923
|
127 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
128 |
by (ALLGOALS Asm_simp_tac);
|
berghofe@1760
|
129 |
by (Fast_tac 1);
|
clasohm@923
|
130 |
qed "expand_list_case";
|
clasohm@923
|
131 |
|
clasohm@923
|
132 |
goal List.thy "(xs=[] --> P([])) & (!y ys. xs=y#ys --> P(y#ys)) --> P(xs)";
|
lcp@1169
|
133 |
by (list.induct_tac "xs" 1);
|
berghofe@1760
|
134 |
by (Fast_tac 1);
|
berghofe@1760
|
135 |
by (Fast_tac 1);
|
clasohm@923
|
136 |
bind_thm("list_eq_cases",
|
clasohm@923
|
137 |
impI RSN (2,allI RSN (2,allI RSN (2,impI RS (conjI RS (result() RS mp))))));
|
clasohm@923
|
138 |
|
clasohm@923
|
139 |
(** flat **)
|
clasohm@923
|
140 |
|
clasohm@923
|
141 |
goal List.thy "flat(xs@ys) = flat(xs)@flat(ys)";
|
clasohm@923
|
142 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
143 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [append_assoc])));
|
clasohm@923
|
144 |
qed"flat_append";
|
clasohm@923
|
145 |
|
nipkow@962
|
146 |
(** length **)
|
nipkow@962
|
147 |
|
nipkow@962
|
148 |
goal List.thy "length(xs@ys) = length(xs)+length(ys)";
|
nipkow@962
|
149 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
150 |
by (ALLGOALS Asm_simp_tac);
|
nipkow@962
|
151 |
qed"length_append";
|
nipkow@1301
|
152 |
Addsimps [length_append];
|
nipkow@1301
|
153 |
|
nipkow@1301
|
154 |
goal List.thy "length (map f l) = length l";
|
nipkow@1301
|
155 |
by (list.induct_tac "l" 1);
|
nipkow@1301
|
156 |
by (ALLGOALS Simp_tac);
|
nipkow@1301
|
157 |
qed "length_map";
|
nipkow@1301
|
158 |
Addsimps [length_map];
|
nipkow@962
|
159 |
|
lcp@1169
|
160 |
goal List.thy "length(rev xs) = length(xs)";
|
lcp@1169
|
161 |
by (list.induct_tac "xs" 1);
|
nipkow@1301
|
162 |
by (ALLGOALS Asm_simp_tac);
|
lcp@1169
|
163 |
qed "length_rev";
|
nipkow@1301
|
164 |
Addsimps [length_rev];
|
lcp@1169
|
165 |
|
clasohm@923
|
166 |
(** nth **)
|
clasohm@923
|
167 |
|
clasohm@923
|
168 |
val [nth_0,nth_Suc] = nat_recs nth_def;
|
clasohm@923
|
169 |
store_thm("nth_0",nth_0);
|
clasohm@923
|
170 |
store_thm("nth_Suc",nth_Suc);
|
nipkow@1301
|
171 |
Addsimps [nth_0,nth_Suc];
|
nipkow@1301
|
172 |
|
nipkow@1301
|
173 |
goal List.thy "!n. n < length xs --> nth n (map f xs) = f (nth n xs)";
|
nipkow@1301
|
174 |
by (list.induct_tac "xs" 1);
|
nipkow@1301
|
175 |
(* case [] *)
|
nipkow@1301
|
176 |
by (Asm_full_simp_tac 1);
|
nipkow@1301
|
177 |
(* case x#xl *)
|
nipkow@1301
|
178 |
by (rtac allI 1);
|
nipkow@1301
|
179 |
by (nat_ind_tac "n" 1);
|
nipkow@1301
|
180 |
by (ALLGOALS Asm_full_simp_tac);
|
nipkow@1485
|
181 |
qed_spec_mp "nth_map";
|
nipkow@1301
|
182 |
Addsimps [nth_map];
|
nipkow@1301
|
183 |
|
nipkow@1301
|
184 |
goal List.thy "!n. n < length xs --> list_all P xs --> P(nth n xs)";
|
nipkow@1301
|
185 |
by (list.induct_tac "xs" 1);
|
nipkow@1301
|
186 |
(* case [] *)
|
nipkow@1301
|
187 |
by (Simp_tac 1);
|
nipkow@1301
|
188 |
(* case x#xl *)
|
nipkow@1301
|
189 |
by (rtac allI 1);
|
nipkow@1301
|
190 |
by (nat_ind_tac "n" 1);
|
nipkow@1301
|
191 |
by (ALLGOALS Asm_full_simp_tac);
|
nipkow@1485
|
192 |
qed_spec_mp "list_all_nth";
|
nipkow@1301
|
193 |
|
nipkow@1301
|
194 |
goal List.thy "!n. n < length xs --> (nth n xs) mem xs";
|
nipkow@1301
|
195 |
by (list.induct_tac "xs" 1);
|
nipkow@1301
|
196 |
(* case [] *)
|
nipkow@1301
|
197 |
by (Simp_tac 1);
|
nipkow@1301
|
198 |
(* case x#xl *)
|
nipkow@1301
|
199 |
by (rtac allI 1);
|
nipkow@1301
|
200 |
by (nat_ind_tac "n" 1);
|
nipkow@1301
|
201 |
(* case 0 *)
|
nipkow@1301
|
202 |
by (Asm_full_simp_tac 1);
|
nipkow@1301
|
203 |
(* case Suc x *)
|
nipkow@1301
|
204 |
by (asm_full_simp_tac (!simpset setloop (split_tac [expand_if])) 1);
|
nipkow@1485
|
205 |
qed_spec_mp "nth_mem";
|
nipkow@1301
|
206 |
Addsimps [nth_mem];
|
nipkow@1301
|
207 |
|
nipkow@1327
|
208 |
(** drop **)
|
nipkow@1327
|
209 |
|
nipkow@1419
|
210 |
goal thy "drop 0 xs = xs";
|
nipkow@1419
|
211 |
by (list.induct_tac "xs" 1);
|
nipkow@1419
|
212 |
by (ALLGOALS Asm_simp_tac);
|
nipkow@1327
|
213 |
qed "drop_0";
|
nipkow@1327
|
214 |
|
nipkow@1419
|
215 |
goal thy "drop (Suc n) (x#xs) = drop n xs";
|
paulson@1552
|
216 |
by (Simp_tac 1);
|
nipkow@1419
|
217 |
qed "drop_Suc_Cons";
|
nipkow@1327
|
218 |
|
nipkow@1419
|
219 |
Delsimps [drop_Cons];
|
nipkow@1419
|
220 |
Addsimps [drop_0,drop_Suc_Cons];
|
nipkow@1327
|
221 |
|
nipkow@1327
|
222 |
(** take **)
|
nipkow@1327
|
223 |
|
nipkow@1419
|
224 |
goal thy "take 0 xs = []";
|
nipkow@1419
|
225 |
by (list.induct_tac "xs" 1);
|
nipkow@1419
|
226 |
by (ALLGOALS Asm_simp_tac);
|
nipkow@1327
|
227 |
qed "take_0";
|
nipkow@1327
|
228 |
|
nipkow@1419
|
229 |
goal thy "take (Suc n) (x#xs) = x # take n xs";
|
paulson@1552
|
230 |
by (Simp_tac 1);
|
nipkow@1419
|
231 |
qed "take_Suc_Cons";
|
nipkow@1327
|
232 |
|
nipkow@1419
|
233 |
Delsimps [take_Cons];
|
nipkow@1419
|
234 |
Addsimps [take_0,take_Suc_Cons];
|
clasohm@923
|
235 |
|
clasohm@923
|
236 |
(** Additional mapping lemmas **)
|
clasohm@923
|
237 |
|
nipkow@995
|
238 |
goal List.thy "map (%x.x) = (%xs.xs)";
|
nipkow@995
|
239 |
by (rtac ext 1);
|
clasohm@923
|
240 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
241 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
242 |
qed "map_ident";
|
clasohm@923
|
243 |
|
clasohm@923
|
244 |
goal List.thy "map f (xs@ys) = map f xs @ map f ys";
|
clasohm@923
|
245 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
246 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
247 |
qed "map_append";
|
clasohm@923
|
248 |
|
clasohm@923
|
249 |
goalw List.thy [o_def] "map (f o g) xs = map f (map g xs)";
|
clasohm@923
|
250 |
by (list.induct_tac "xs" 1);
|
clasohm@1264
|
251 |
by (ALLGOALS Asm_simp_tac);
|
clasohm@923
|
252 |
qed "map_compose";
|
clasohm@923
|
253 |
|
lcp@1169
|
254 |
goal List.thy "rev(map f l) = map f (rev l)";
|
lcp@1169
|
255 |
by (list.induct_tac "l" 1);
|
clasohm@1264
|
256 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps [map_append])));
|
lcp@1169
|
257 |
qed "rev_map_distrib";
|
lcp@1169
|
258 |
|
lcp@1169
|
259 |
goal List.thy "rev(flat ls) = flat (map rev (rev ls))";
|
lcp@1169
|
260 |
by (list.induct_tac "ls" 1);
|
clasohm@1264
|
261 |
by (ALLGOALS (asm_simp_tac (!simpset addsimps
|
lcp@1169
|
262 |
[map_append, flat_append, rev_append, append_Nil2])));
|
lcp@1169
|
263 |
qed "rev_flat";
|
lcp@1169
|
264 |
|
clasohm@1264
|
265 |
Addsimps
|
clasohm@923
|
266 |
[not_Cons_self, append_assoc, append_Nil2, append_is_Nil, same_append_eq,
|
clasohm@923
|
267 |
mem_append, mem_filter,
|
nipkow@1202
|
268 |
rev_append, rev_rev_ident,
|
clasohm@923
|
269 |
map_ident, map_append, map_compose,
|
nipkow@1301
|
270 |
flat_append, list_all_True, list_all_conj];
|
clasohm@923
|
271 |
|