clasohm@923
|
1 |
(* Title: HOL/Nat.thy
|
wenzelm@21243
|
2 |
Author: Tobias Nipkow and Lawrence C Paulson and Markus Wenzel
|
clasohm@923
|
3 |
|
wenzelm@9436
|
4 |
Type "nat" is a linear order, and a datatype; arithmetic operators + -
|
haftmann@30496
|
5 |
and * (for div and mod, see theory Divides).
|
clasohm@923
|
6 |
*)
|
clasohm@923
|
7 |
|
berghofe@13449
|
8 |
header {* Natural numbers *}
|
berghofe@13449
|
9 |
|
nipkow@15131
|
10 |
theory Nat
|
haftmann@35121
|
11 |
imports Inductive Typedef Fun Fields
|
nipkow@15131
|
12 |
begin
|
berghofe@13449
|
13 |
|
wenzelm@48891
|
14 |
ML_file "~~/src/Tools/rat.ML"
|
wenzelm@48891
|
15 |
ML_file "Tools/arith_data.ML"
|
wenzelm@48891
|
16 |
ML_file "~~/src/Provers/Arith/fast_lin_arith.ML"
|
wenzelm@48891
|
17 |
|
wenzelm@48891
|
18 |
|
berghofe@13449
|
19 |
subsection {* Type @{text ind} *}
|
berghofe@13449
|
20 |
|
berghofe@13449
|
21 |
typedecl ind
|
berghofe@13449
|
22 |
|
haftmann@44325
|
23 |
axiomatization Zero_Rep :: ind and Suc_Rep :: "ind => ind" where
|
berghofe@13449
|
24 |
-- {* the axiom of infinity in 2 parts *}
|
krauss@34208
|
25 |
Suc_Rep_inject: "Suc_Rep x = Suc_Rep y ==> x = y" and
|
paulson@14267
|
26 |
Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep"
|
wenzelm@19573
|
27 |
|
berghofe@13449
|
28 |
subsection {* Type nat *}
|
berghofe@13449
|
29 |
|
berghofe@13449
|
30 |
text {* Type definition *}
|
berghofe@13449
|
31 |
|
haftmann@44325
|
32 |
inductive Nat :: "ind \<Rightarrow> bool" where
|
haftmann@44325
|
33 |
Zero_RepI: "Nat Zero_Rep"
|
haftmann@44325
|
34 |
| Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)"
|
berghofe@13449
|
35 |
|
wenzelm@49834
|
36 |
typedef nat = "{n. Nat n}"
|
wenzelm@45696
|
37 |
morphisms Rep_Nat Abs_Nat
|
haftmann@44278
|
38 |
using Nat.Zero_RepI by auto
|
haftmann@44278
|
39 |
|
haftmann@44278
|
40 |
lemma Nat_Rep_Nat:
|
haftmann@44278
|
41 |
"Nat (Rep_Nat n)"
|
haftmann@44278
|
42 |
using Rep_Nat by simp
|
berghofe@13449
|
43 |
|
haftmann@44278
|
44 |
lemma Nat_Abs_Nat_inverse:
|
haftmann@44278
|
45 |
"Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n"
|
haftmann@44278
|
46 |
using Abs_Nat_inverse by simp
|
haftmann@44278
|
47 |
|
haftmann@44278
|
48 |
lemma Nat_Abs_Nat_inject:
|
haftmann@44278
|
49 |
"Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m"
|
haftmann@44278
|
50 |
using Abs_Nat_inject by simp
|
berghofe@13449
|
51 |
|
haftmann@25510
|
52 |
instantiation nat :: zero
|
haftmann@25510
|
53 |
begin
|
haftmann@25510
|
54 |
|
haftmann@37767
|
55 |
definition Zero_nat_def:
|
haftmann@25510
|
56 |
"0 = Abs_Nat Zero_Rep"
|
haftmann@25510
|
57 |
|
haftmann@25510
|
58 |
instance ..
|
haftmann@25510
|
59 |
|
haftmann@25510
|
60 |
end
|
haftmann@24995
|
61 |
|
haftmann@44278
|
62 |
definition Suc :: "nat \<Rightarrow> nat" where
|
haftmann@44278
|
63 |
"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
|
haftmann@44278
|
64 |
|
haftmann@27104
|
65 |
lemma Suc_not_Zero: "Suc m \<noteq> 0"
|
haftmann@44278
|
66 |
by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat)
|
berghofe@13449
|
67 |
|
haftmann@27104
|
68 |
lemma Zero_not_Suc: "0 \<noteq> Suc m"
|
berghofe@13449
|
69 |
by (rule not_sym, rule Suc_not_Zero not_sym)
|
berghofe@13449
|
70 |
|
krauss@34208
|
71 |
lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y"
|
krauss@34208
|
72 |
by (rule iffI, rule Suc_Rep_inject) simp_all
|
krauss@34208
|
73 |
|
haftmann@27104
|
74 |
rep_datatype "0 \<Colon> nat" Suc
|
wenzelm@27129
|
75 |
apply (unfold Zero_nat_def Suc_def)
|
haftmann@44278
|
76 |
apply (rule Rep_Nat_inverse [THEN subst]) -- {* types force good instantiation *}
|
haftmann@44278
|
77 |
apply (erule Nat_Rep_Nat [THEN Nat.induct])
|
haftmann@44278
|
78 |
apply (iprover elim: Nat_Abs_Nat_inverse [THEN subst])
|
haftmann@44278
|
79 |
apply (simp_all add: Nat_Abs_Nat_inject Nat_Rep_Nat
|
haftmann@44278
|
80 |
Suc_RepI Zero_RepI Suc_Rep_not_Zero_Rep
|
haftmann@44278
|
81 |
Suc_Rep_not_Zero_Rep [symmetric]
|
krauss@34208
|
82 |
Suc_Rep_inject' Rep_Nat_inject)
|
wenzelm@27129
|
83 |
done
|
berghofe@13449
|
84 |
|
haftmann@27104
|
85 |
lemma nat_induct [case_names 0 Suc, induct type: nat]:
|
haftmann@30686
|
86 |
-- {* for backward compatibility -- names of variables differ *}
|
haftmann@27104
|
87 |
fixes n
|
haftmann@27104
|
88 |
assumes "P 0"
|
haftmann@27104
|
89 |
and "\<And>n. P n \<Longrightarrow> P (Suc n)"
|
haftmann@27104
|
90 |
shows "P n"
|
haftmann@32772
|
91 |
using assms by (rule nat.induct)
|
haftmann@21411
|
92 |
|
haftmann@21411
|
93 |
declare nat.exhaust [case_names 0 Suc, cases type: nat]
|
berghofe@13449
|
94 |
|
wenzelm@21672
|
95 |
lemmas nat_rec_0 = nat.recs(1)
|
wenzelm@21672
|
96 |
and nat_rec_Suc = nat.recs(2)
|
wenzelm@21672
|
97 |
|
wenzelm@21672
|
98 |
lemmas nat_case_0 = nat.cases(1)
|
wenzelm@21672
|
99 |
and nat_case_Suc = nat.cases(2)
|
haftmann@27104
|
100 |
|
haftmann@24995
|
101 |
|
haftmann@24995
|
102 |
text {* Injectiveness and distinctness lemmas *}
|
haftmann@24995
|
103 |
|
haftmann@27104
|
104 |
lemma inj_Suc[simp]: "inj_on Suc N"
|
haftmann@27104
|
105 |
by (simp add: inj_on_def)
|
haftmann@27104
|
106 |
|
haftmann@26072
|
107 |
lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R"
|
nipkow@25162
|
108 |
by (rule notE, rule Suc_not_Zero)
|
haftmann@24995
|
109 |
|
haftmann@26072
|
110 |
lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R"
|
nipkow@25162
|
111 |
by (rule Suc_neq_Zero, erule sym)
|
haftmann@24995
|
112 |
|
haftmann@26072
|
113 |
lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y"
|
nipkow@25162
|
114 |
by (rule inj_Suc [THEN injD])
|
haftmann@24995
|
115 |
|
paulson@14267
|
116 |
lemma n_not_Suc_n: "n \<noteq> Suc n"
|
nipkow@25162
|
117 |
by (induct n) simp_all
|
berghofe@13449
|
118 |
|
haftmann@26072
|
119 |
lemma Suc_n_not_n: "Suc n \<noteq> n"
|
nipkow@25162
|
120 |
by (rule not_sym, rule n_not_Suc_n)
|
berghofe@13449
|
121 |
|
berghofe@13449
|
122 |
text {* A special form of induction for reasoning
|
berghofe@13449
|
123 |
about @{term "m < n"} and @{term "m - n"} *}
|
berghofe@13449
|
124 |
|
haftmann@26072
|
125 |
lemma diff_induct: "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
|
berghofe@13449
|
126 |
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
|
paulson@14208
|
127 |
apply (rule_tac x = m in spec)
|
paulson@15251
|
128 |
apply (induct n)
|
berghofe@13449
|
129 |
prefer 2
|
berghofe@13449
|
130 |
apply (rule allI)
|
nipkow@17589
|
131 |
apply (induct_tac x, iprover+)
|
berghofe@13449
|
132 |
done
|
berghofe@13449
|
133 |
|
haftmann@24995
|
134 |
|
haftmann@24995
|
135 |
subsection {* Arithmetic operators *}
|
haftmann@24995
|
136 |
|
haftmann@49388
|
137 |
instantiation nat :: comm_monoid_diff
|
haftmann@25571
|
138 |
begin
|
haftmann@24995
|
139 |
|
haftmann@44325
|
140 |
primrec plus_nat where
|
haftmann@25571
|
141 |
add_0: "0 + n = (n\<Colon>nat)"
|
haftmann@44325
|
142 |
| add_Suc: "Suc m + n = Suc (m + n)"
|
haftmann@24995
|
143 |
|
haftmann@26072
|
144 |
lemma add_0_right [simp]: "m + 0 = (m::nat)"
|
haftmann@26072
|
145 |
by (induct m) simp_all
|
haftmann@26072
|
146 |
|
haftmann@26072
|
147 |
lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)"
|
haftmann@26072
|
148 |
by (induct m) simp_all
|
haftmann@26072
|
149 |
|
haftmann@28514
|
150 |
declare add_0 [code]
|
haftmann@28514
|
151 |
|
haftmann@26072
|
152 |
lemma add_Suc_shift [code]: "Suc m + n = m + Suc n"
|
haftmann@26072
|
153 |
by simp
|
haftmann@26072
|
154 |
|
haftmann@44325
|
155 |
primrec minus_nat where
|
haftmann@39793
|
156 |
diff_0 [code]: "m - 0 = (m\<Colon>nat)"
|
haftmann@39793
|
157 |
| diff_Suc: "m - Suc n = (case m - n of 0 => 0 | Suc k => k)"
|
haftmann@24995
|
158 |
|
haftmann@28514
|
159 |
declare diff_Suc [simp del]
|
haftmann@26072
|
160 |
|
haftmann@26072
|
161 |
lemma diff_0_eq_0 [simp, code]: "0 - n = (0::nat)"
|
haftmann@26072
|
162 |
by (induct n) (simp_all add: diff_Suc)
|
haftmann@26072
|
163 |
|
haftmann@26072
|
164 |
lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n"
|
haftmann@26072
|
165 |
by (induct n) (simp_all add: diff_Suc)
|
haftmann@26072
|
166 |
|
haftmann@26072
|
167 |
instance proof
|
haftmann@26072
|
168 |
fix n m q :: nat
|
haftmann@26072
|
169 |
show "(n + m) + q = n + (m + q)" by (induct n) simp_all
|
haftmann@26072
|
170 |
show "n + m = m + n" by (induct n) simp_all
|
haftmann@26072
|
171 |
show "0 + n = n" by simp
|
haftmann@49388
|
172 |
show "n - 0 = n" by simp
|
haftmann@49388
|
173 |
show "0 - n = 0" by simp
|
haftmann@49388
|
174 |
show "(q + n) - (q + m) = n - m" by (induct q) simp_all
|
haftmann@49388
|
175 |
show "n - m - q = n - (m + q)" by (induct q) (simp_all add: diff_Suc)
|
haftmann@26072
|
176 |
qed
|
haftmann@26072
|
177 |
|
haftmann@26072
|
178 |
end
|
haftmann@26072
|
179 |
|
wenzelm@36176
|
180 |
hide_fact (open) add_0 add_0_right diff_0
|
haftmann@35047
|
181 |
|
haftmann@26072
|
182 |
instantiation nat :: comm_semiring_1_cancel
|
haftmann@26072
|
183 |
begin
|
haftmann@26072
|
184 |
|
haftmann@26072
|
185 |
definition
|
huffman@47108
|
186 |
One_nat_def [simp]: "1 = Suc 0"
|
haftmann@26072
|
187 |
|
haftmann@44325
|
188 |
primrec times_nat where
|
haftmann@25571
|
189 |
mult_0: "0 * n = (0\<Colon>nat)"
|
haftmann@44325
|
190 |
| mult_Suc: "Suc m * n = n + (m * n)"
|
haftmann@25571
|
191 |
|
haftmann@26072
|
192 |
lemma mult_0_right [simp]: "(m::nat) * 0 = 0"
|
haftmann@26072
|
193 |
by (induct m) simp_all
|
haftmann@26072
|
194 |
|
haftmann@26072
|
195 |
lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)"
|
haftmann@26072
|
196 |
by (induct m) (simp_all add: add_left_commute)
|
haftmann@26072
|
197 |
|
haftmann@26072
|
198 |
lemma add_mult_distrib: "(m + n) * k = (m * k) + ((n * k)::nat)"
|
haftmann@26072
|
199 |
by (induct m) (simp_all add: add_assoc)
|
haftmann@26072
|
200 |
|
haftmann@26072
|
201 |
instance proof
|
haftmann@26072
|
202 |
fix n m q :: nat
|
huffman@30079
|
203 |
show "0 \<noteq> (1::nat)" unfolding One_nat_def by simp
|
huffman@30079
|
204 |
show "1 * n = n" unfolding One_nat_def by simp
|
haftmann@26072
|
205 |
show "n * m = m * n" by (induct n) simp_all
|
haftmann@26072
|
206 |
show "(n * m) * q = n * (m * q)" by (induct n) (simp_all add: add_mult_distrib)
|
haftmann@26072
|
207 |
show "(n + m) * q = n * q + m * q" by (rule add_mult_distrib)
|
haftmann@26072
|
208 |
assume "n + m = n + q" thus "m = q" by (induct n) simp_all
|
haftmann@26072
|
209 |
qed
|
haftmann@25571
|
210 |
|
haftmann@25571
|
211 |
end
|
haftmann@24995
|
212 |
|
haftmann@26072
|
213 |
subsubsection {* Addition *}
|
haftmann@26072
|
214 |
|
haftmann@26072
|
215 |
lemma nat_add_assoc: "(m + n) + k = m + ((n + k)::nat)"
|
haftmann@26072
|
216 |
by (rule add_assoc)
|
haftmann@26072
|
217 |
|
haftmann@26072
|
218 |
lemma nat_add_commute: "m + n = n + (m::nat)"
|
haftmann@26072
|
219 |
by (rule add_commute)
|
haftmann@26072
|
220 |
|
haftmann@26072
|
221 |
lemma nat_add_left_commute: "x + (y + z) = y + ((x + z)::nat)"
|
haftmann@26072
|
222 |
by (rule add_left_commute)
|
haftmann@26072
|
223 |
|
haftmann@26072
|
224 |
lemma nat_add_left_cancel [simp]: "(k + m = k + n) = (m = (n::nat))"
|
haftmann@26072
|
225 |
by (rule add_left_cancel)
|
haftmann@26072
|
226 |
|
haftmann@26072
|
227 |
lemma nat_add_right_cancel [simp]: "(m + k = n + k) = (m=(n::nat))"
|
haftmann@26072
|
228 |
by (rule add_right_cancel)
|
haftmann@26072
|
229 |
|
haftmann@26072
|
230 |
text {* Reasoning about @{text "m + 0 = 0"}, etc. *}
|
haftmann@26072
|
231 |
|
haftmann@26072
|
232 |
lemma add_is_0 [iff]:
|
haftmann@26072
|
233 |
fixes m n :: nat
|
haftmann@26072
|
234 |
shows "(m + n = 0) = (m = 0 & n = 0)"
|
haftmann@26072
|
235 |
by (cases m) simp_all
|
haftmann@26072
|
236 |
|
haftmann@26072
|
237 |
lemma add_is_1:
|
haftmann@26072
|
238 |
"(m+n= Suc 0) = (m= Suc 0 & n=0 | m=0 & n= Suc 0)"
|
haftmann@26072
|
239 |
by (cases m) simp_all
|
haftmann@26072
|
240 |
|
haftmann@26072
|
241 |
lemma one_is_add:
|
haftmann@26072
|
242 |
"(Suc 0 = m + n) = (m = Suc 0 & n = 0 | m = 0 & n = Suc 0)"
|
haftmann@26072
|
243 |
by (rule trans, rule eq_commute, rule add_is_1)
|
haftmann@26072
|
244 |
|
haftmann@26072
|
245 |
lemma add_eq_self_zero:
|
haftmann@26072
|
246 |
fixes m n :: nat
|
haftmann@26072
|
247 |
shows "m + n = m \<Longrightarrow> n = 0"
|
haftmann@26072
|
248 |
by (induct m) simp_all
|
haftmann@26072
|
249 |
|
haftmann@26072
|
250 |
lemma inj_on_add_nat[simp]: "inj_on (%n::nat. n+k) N"
|
haftmann@26072
|
251 |
apply (induct k)
|
haftmann@26072
|
252 |
apply simp
|
haftmann@26072
|
253 |
apply(drule comp_inj_on[OF _ inj_Suc])
|
haftmann@26072
|
254 |
apply (simp add:o_def)
|
haftmann@26072
|
255 |
done
|
haftmann@26072
|
256 |
|
huffman@47208
|
257 |
lemma Suc_eq_plus1: "Suc n = n + 1"
|
huffman@47208
|
258 |
unfolding One_nat_def by simp
|
huffman@47208
|
259 |
|
huffman@47208
|
260 |
lemma Suc_eq_plus1_left: "Suc n = 1 + n"
|
huffman@47208
|
261 |
unfolding One_nat_def by simp
|
huffman@47208
|
262 |
|
haftmann@26072
|
263 |
|
haftmann@26072
|
264 |
subsubsection {* Difference *}
|
haftmann@26072
|
265 |
|
haftmann@26072
|
266 |
lemma diff_self_eq_0 [simp]: "(m\<Colon>nat) - m = 0"
|
haftmann@26072
|
267 |
by (induct m) simp_all
|
haftmann@26072
|
268 |
|
haftmann@26072
|
269 |
lemma diff_diff_left: "(i::nat) - j - k = i - (j + k)"
|
haftmann@26072
|
270 |
by (induct i j rule: diff_induct) simp_all
|
haftmann@26072
|
271 |
|
haftmann@26072
|
272 |
lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k"
|
haftmann@26072
|
273 |
by (simp add: diff_diff_left)
|
haftmann@26072
|
274 |
|
haftmann@26072
|
275 |
lemma diff_commute: "(i::nat) - j - k = i - k - j"
|
haftmann@26072
|
276 |
by (simp add: diff_diff_left add_commute)
|
haftmann@26072
|
277 |
|
haftmann@26072
|
278 |
lemma diff_add_inverse: "(n + m) - n = (m::nat)"
|
haftmann@26072
|
279 |
by (induct n) simp_all
|
haftmann@26072
|
280 |
|
haftmann@26072
|
281 |
lemma diff_add_inverse2: "(m + n) - n = (m::nat)"
|
haftmann@26072
|
282 |
by (simp add: diff_add_inverse add_commute [of m n])
|
haftmann@26072
|
283 |
|
haftmann@26072
|
284 |
lemma diff_cancel: "(k + m) - (k + n) = m - (n::nat)"
|
haftmann@26072
|
285 |
by (induct k) simp_all
|
haftmann@26072
|
286 |
|
haftmann@26072
|
287 |
lemma diff_cancel2: "(m + k) - (n + k) = m - (n::nat)"
|
haftmann@26072
|
288 |
by (simp add: diff_cancel add_commute)
|
haftmann@26072
|
289 |
|
haftmann@26072
|
290 |
lemma diff_add_0: "n - (n + m) = (0::nat)"
|
haftmann@26072
|
291 |
by (induct n) simp_all
|
haftmann@26072
|
292 |
|
huffman@30093
|
293 |
lemma diff_Suc_1 [simp]: "Suc n - 1 = n"
|
huffman@30093
|
294 |
unfolding One_nat_def by simp
|
huffman@30093
|
295 |
|
haftmann@26072
|
296 |
text {* Difference distributes over multiplication *}
|
haftmann@26072
|
297 |
|
haftmann@26072
|
298 |
lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"
|
haftmann@26072
|
299 |
by (induct m n rule: diff_induct) (simp_all add: diff_cancel)
|
haftmann@26072
|
300 |
|
haftmann@26072
|
301 |
lemma diff_mult_distrib2: "k * ((m::nat) - n) = (k * m) - (k * n)"
|
haftmann@26072
|
302 |
by (simp add: diff_mult_distrib mult_commute [of k])
|
haftmann@26072
|
303 |
-- {* NOT added as rewrites, since sometimes they are used from right-to-left *}
|
haftmann@26072
|
304 |
|
haftmann@26072
|
305 |
|
haftmann@26072
|
306 |
subsubsection {* Multiplication *}
|
haftmann@26072
|
307 |
|
haftmann@26072
|
308 |
lemma nat_mult_assoc: "(m * n) * k = m * ((n * k)::nat)"
|
haftmann@26072
|
309 |
by (rule mult_assoc)
|
haftmann@26072
|
310 |
|
haftmann@26072
|
311 |
lemma nat_mult_commute: "m * n = n * (m::nat)"
|
haftmann@26072
|
312 |
by (rule mult_commute)
|
haftmann@26072
|
313 |
|
haftmann@26072
|
314 |
lemma add_mult_distrib2: "k * (m + n) = (k * m) + ((k * n)::nat)"
|
webertj@49962
|
315 |
by (rule distrib_left)
|
haftmann@26072
|
316 |
|
haftmann@26072
|
317 |
lemma mult_is_0 [simp]: "((m::nat) * n = 0) = (m=0 | n=0)"
|
haftmann@26072
|
318 |
by (induct m) auto
|
haftmann@26072
|
319 |
|
haftmann@26072
|
320 |
lemmas nat_distrib =
|
haftmann@26072
|
321 |
add_mult_distrib add_mult_distrib2 diff_mult_distrib diff_mult_distrib2
|
haftmann@26072
|
322 |
|
huffman@30079
|
323 |
lemma mult_eq_1_iff [simp]: "(m * n = Suc 0) = (m = Suc 0 & n = Suc 0)"
|
haftmann@26072
|
324 |
apply (induct m)
|
haftmann@26072
|
325 |
apply simp
|
haftmann@26072
|
326 |
apply (induct n)
|
haftmann@26072
|
327 |
apply auto
|
haftmann@26072
|
328 |
done
|
haftmann@26072
|
329 |
|
blanchet@54147
|
330 |
lemma one_eq_mult_iff [simp]: "(Suc 0 = m * n) = (m = Suc 0 & n = Suc 0)"
|
haftmann@26072
|
331 |
apply (rule trans)
|
nipkow@44890
|
332 |
apply (rule_tac [2] mult_eq_1_iff, fastforce)
|
haftmann@26072
|
333 |
done
|
haftmann@26072
|
334 |
|
huffman@30079
|
335 |
lemma nat_mult_eq_1_iff [simp]: "m * n = (1::nat) \<longleftrightarrow> m = 1 \<and> n = 1"
|
huffman@30079
|
336 |
unfolding One_nat_def by (rule mult_eq_1_iff)
|
huffman@30079
|
337 |
|
huffman@30079
|
338 |
lemma nat_1_eq_mult_iff [simp]: "(1::nat) = m * n \<longleftrightarrow> m = 1 \<and> n = 1"
|
huffman@30079
|
339 |
unfolding One_nat_def by (rule one_eq_mult_iff)
|
huffman@30079
|
340 |
|
haftmann@26072
|
341 |
lemma mult_cancel1 [simp]: "(k * m = k * n) = (m = n | (k = (0::nat)))"
|
haftmann@26072
|
342 |
proof -
|
haftmann@26072
|
343 |
have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n"
|
haftmann@26072
|
344 |
proof (induct n arbitrary: m)
|
haftmann@26072
|
345 |
case 0 then show "m = 0" by simp
|
haftmann@26072
|
346 |
next
|
haftmann@26072
|
347 |
case (Suc n) then show "m = Suc n"
|
haftmann@26072
|
348 |
by (cases m) (simp_all add: eq_commute [of "0"])
|
haftmann@26072
|
349 |
qed
|
haftmann@26072
|
350 |
then show ?thesis by auto
|
haftmann@26072
|
351 |
qed
|
haftmann@26072
|
352 |
|
haftmann@26072
|
353 |
lemma mult_cancel2 [simp]: "(m * k = n * k) = (m = n | (k = (0::nat)))"
|
haftmann@26072
|
354 |
by (simp add: mult_commute)
|
haftmann@26072
|
355 |
|
haftmann@26072
|
356 |
lemma Suc_mult_cancel1: "(Suc k * m = Suc k * n) = (m = n)"
|
haftmann@26072
|
357 |
by (subst mult_cancel1) simp
|
haftmann@26072
|
358 |
|
haftmann@24995
|
359 |
|
haftmann@24995
|
360 |
subsection {* Orders on @{typ nat} *}
|
haftmann@24995
|
361 |
|
haftmann@26072
|
362 |
subsubsection {* Operation definition *}
|
haftmann@24995
|
363 |
|
haftmann@26072
|
364 |
instantiation nat :: linorder
|
haftmann@25510
|
365 |
begin
|
haftmann@25510
|
366 |
|
haftmann@26072
|
367 |
primrec less_eq_nat where
|
haftmann@26072
|
368 |
"(0\<Colon>nat) \<le> n \<longleftrightarrow> True"
|
haftmann@44325
|
369 |
| "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)"
|
haftmann@26072
|
370 |
|
haftmann@28514
|
371 |
declare less_eq_nat.simps [simp del]
|
haftmann@26072
|
372 |
lemma [code]: "(0\<Colon>nat) \<le> n \<longleftrightarrow> True" by (simp add: less_eq_nat.simps)
|
haftmann@26072
|
373 |
lemma le0 [iff]: "0 \<le> (n\<Colon>nat)" by (simp add: less_eq_nat.simps)
|
haftmann@26072
|
374 |
|
haftmann@26072
|
375 |
definition less_nat where
|
haftmann@28514
|
376 |
less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m"
|
haftmann@26072
|
377 |
|
haftmann@26072
|
378 |
lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m"
|
haftmann@26072
|
379 |
by (simp add: less_eq_nat.simps(2))
|
haftmann@26072
|
380 |
|
haftmann@26072
|
381 |
lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n"
|
haftmann@26072
|
382 |
unfolding less_eq_Suc_le ..
|
haftmann@26072
|
383 |
|
haftmann@26072
|
384 |
lemma le_0_eq [iff]: "(n\<Colon>nat) \<le> 0 \<longleftrightarrow> n = 0"
|
haftmann@26072
|
385 |
by (induct n) (simp_all add: less_eq_nat.simps(2))
|
haftmann@26072
|
386 |
|
haftmann@26072
|
387 |
lemma not_less0 [iff]: "\<not> n < (0\<Colon>nat)"
|
haftmann@26072
|
388 |
by (simp add: less_eq_Suc_le)
|
haftmann@26072
|
389 |
|
haftmann@26072
|
390 |
lemma less_nat_zero_code [code]: "n < (0\<Colon>nat) \<longleftrightarrow> False"
|
haftmann@26072
|
391 |
by simp
|
haftmann@26072
|
392 |
|
haftmann@26072
|
393 |
lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n"
|
haftmann@26072
|
394 |
by (simp add: less_eq_Suc_le)
|
haftmann@26072
|
395 |
|
haftmann@26072
|
396 |
lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n"
|
haftmann@26072
|
397 |
by (simp add: less_eq_Suc_le)
|
haftmann@26072
|
398 |
|
haftmann@26072
|
399 |
lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n"
|
haftmann@26072
|
400 |
by (induct m arbitrary: n)
|
haftmann@26072
|
401 |
(simp_all add: less_eq_nat.simps(2) split: nat.splits)
|
haftmann@26072
|
402 |
|
haftmann@26072
|
403 |
lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n"
|
haftmann@26072
|
404 |
by (cases n) (auto intro: le_SucI)
|
haftmann@26072
|
405 |
|
haftmann@26072
|
406 |
lemma less_SucI: "m < n \<Longrightarrow> m < Suc n"
|
haftmann@26072
|
407 |
by (simp add: less_eq_Suc_le) (erule Suc_leD)
|
haftmann@24995
|
408 |
|
haftmann@26072
|
409 |
lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n"
|
haftmann@26072
|
410 |
by (simp add: less_eq_Suc_le) (erule Suc_leD)
|
haftmann@25510
|
411 |
|
wenzelm@26315
|
412 |
instance
|
wenzelm@26315
|
413 |
proof
|
haftmann@26072
|
414 |
fix n m :: nat
|
haftmann@27679
|
415 |
show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n"
|
haftmann@26072
|
416 |
proof (induct n arbitrary: m)
|
haftmann@27679
|
417 |
case 0 then show ?case by (cases m) (simp_all add: less_eq_Suc_le)
|
haftmann@26072
|
418 |
next
|
haftmann@27679
|
419 |
case (Suc n) then show ?case by (cases m) (simp_all add: less_eq_Suc_le)
|
haftmann@26072
|
420 |
qed
|
haftmann@26072
|
421 |
next
|
haftmann@26072
|
422 |
fix n :: nat show "n \<le> n" by (induct n) simp_all
|
haftmann@26072
|
423 |
next
|
haftmann@26072
|
424 |
fix n m :: nat assume "n \<le> m" and "m \<le> n"
|
haftmann@26072
|
425 |
then show "n = m"
|
haftmann@26072
|
426 |
by (induct n arbitrary: m)
|
haftmann@26072
|
427 |
(simp_all add: less_eq_nat.simps(2) split: nat.splits)
|
haftmann@26072
|
428 |
next
|
haftmann@26072
|
429 |
fix n m q :: nat assume "n \<le> m" and "m \<le> q"
|
haftmann@26072
|
430 |
then show "n \<le> q"
|
haftmann@26072
|
431 |
proof (induct n arbitrary: m q)
|
haftmann@26072
|
432 |
case 0 show ?case by simp
|
haftmann@26072
|
433 |
next
|
haftmann@26072
|
434 |
case (Suc n) then show ?case
|
haftmann@26072
|
435 |
by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
|
haftmann@26072
|
436 |
simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify,
|
haftmann@26072
|
437 |
simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits)
|
haftmann@26072
|
438 |
qed
|
haftmann@26072
|
439 |
next
|
haftmann@26072
|
440 |
fix n m :: nat show "n \<le> m \<or> m \<le> n"
|
haftmann@26072
|
441 |
by (induct n arbitrary: m)
|
haftmann@26072
|
442 |
(simp_all add: less_eq_nat.simps(2) split: nat.splits)
|
haftmann@26072
|
443 |
qed
|
haftmann@25510
|
444 |
|
haftmann@25510
|
445 |
end
|
berghofe@13449
|
446 |
|
haftmann@52729
|
447 |
instantiation nat :: order_bot
|
haftmann@29652
|
448 |
begin
|
haftmann@29652
|
449 |
|
haftmann@29652
|
450 |
definition bot_nat :: nat where
|
haftmann@29652
|
451 |
"bot_nat = 0"
|
haftmann@29652
|
452 |
|
haftmann@29652
|
453 |
instance proof
|
haftmann@29652
|
454 |
qed (simp add: bot_nat_def)
|
haftmann@29652
|
455 |
|
haftmann@29652
|
456 |
end
|
haftmann@29652
|
457 |
|
hoelzl@51329
|
458 |
instance nat :: no_top
|
haftmann@52289
|
459 |
by default (auto intro: less_Suc_eq_le [THEN iffD2])
|
haftmann@52289
|
460 |
|
hoelzl@51329
|
461 |
|
haftmann@26072
|
462 |
subsubsection {* Introduction properties *}
|
berghofe@13449
|
463 |
|
haftmann@26072
|
464 |
lemma lessI [iff]: "n < Suc n"
|
haftmann@26072
|
465 |
by (simp add: less_Suc_eq_le)
|
berghofe@13449
|
466 |
|
haftmann@26072
|
467 |
lemma zero_less_Suc [iff]: "0 < Suc n"
|
haftmann@26072
|
468 |
by (simp add: less_Suc_eq_le)
|
berghofe@13449
|
469 |
|
berghofe@13449
|
470 |
|
berghofe@13449
|
471 |
subsubsection {* Elimination properties *}
|
berghofe@13449
|
472 |
|
berghofe@13449
|
473 |
lemma less_not_refl: "~ n < (n::nat)"
|
haftmann@26072
|
474 |
by (rule order_less_irrefl)
|
berghofe@13449
|
475 |
|
wenzelm@26335
|
476 |
lemma less_not_refl2: "n < m ==> m \<noteq> (n::nat)"
|
wenzelm@26335
|
477 |
by (rule not_sym) (rule less_imp_neq)
|
berghofe@13449
|
478 |
|
paulson@14267
|
479 |
lemma less_not_refl3: "(s::nat) < t ==> s \<noteq> t"
|
haftmann@26072
|
480 |
by (rule less_imp_neq)
|
berghofe@13449
|
481 |
|
wenzelm@26335
|
482 |
lemma less_irrefl_nat: "(n::nat) < n ==> R"
|
wenzelm@26335
|
483 |
by (rule notE, rule less_not_refl)
|
berghofe@13449
|
484 |
|
berghofe@13449
|
485 |
lemma less_zeroE: "(n::nat) < 0 ==> R"
|
haftmann@26072
|
486 |
by (rule notE) (rule not_less0)
|
berghofe@13449
|
487 |
|
berghofe@13449
|
488 |
lemma less_Suc_eq: "(m < Suc n) = (m < n | m = n)"
|
haftmann@26072
|
489 |
unfolding less_Suc_eq_le le_less ..
|
berghofe@13449
|
490 |
|
huffman@30079
|
491 |
lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)"
|
haftmann@26072
|
492 |
by (simp add: less_Suc_eq)
|
berghofe@13449
|
493 |
|
blanchet@54147
|
494 |
lemma less_one [iff]: "(n < (1::nat)) = (n = 0)"
|
huffman@30079
|
495 |
unfolding One_nat_def by (rule less_Suc0)
|
berghofe@13449
|
496 |
|
berghofe@13449
|
497 |
lemma Suc_mono: "m < n ==> Suc m < Suc n"
|
haftmann@26072
|
498 |
by simp
|
berghofe@13449
|
499 |
|
nipkow@14302
|
500 |
text {* "Less than" is antisymmetric, sort of *}
|
nipkow@14302
|
501 |
lemma less_antisym: "\<lbrakk> \<not> n < m; n < Suc m \<rbrakk> \<Longrightarrow> m = n"
|
haftmann@26072
|
502 |
unfolding not_less less_Suc_eq_le by (rule antisym)
|
nipkow@14302
|
503 |
|
paulson@14267
|
504 |
lemma nat_neq_iff: "((m::nat) \<noteq> n) = (m < n | n < m)"
|
haftmann@26072
|
505 |
by (rule linorder_neq_iff)
|
berghofe@13449
|
506 |
|
berghofe@13449
|
507 |
lemma nat_less_cases: assumes major: "(m::nat) < n ==> P n m"
|
berghofe@13449
|
508 |
and eqCase: "m = n ==> P n m" and lessCase: "n<m ==> P n m"
|
berghofe@13449
|
509 |
shows "P n m"
|
berghofe@13449
|
510 |
apply (rule less_linear [THEN disjE])
|
berghofe@13449
|
511 |
apply (erule_tac [2] disjE)
|
berghofe@13449
|
512 |
apply (erule lessCase)
|
berghofe@13449
|
513 |
apply (erule sym [THEN eqCase])
|
berghofe@13449
|
514 |
apply (erule major)
|
berghofe@13449
|
515 |
done
|
berghofe@13449
|
516 |
|
berghofe@13449
|
517 |
|
berghofe@13449
|
518 |
subsubsection {* Inductive (?) properties *}
|
berghofe@13449
|
519 |
|
paulson@14267
|
520 |
lemma Suc_lessI: "m < n ==> Suc m \<noteq> n ==> Suc m < n"
|
haftmann@26072
|
521 |
unfolding less_eq_Suc_le [of m] le_less by simp
|
berghofe@13449
|
522 |
|
haftmann@26072
|
523 |
lemma lessE:
|
haftmann@26072
|
524 |
assumes major: "i < k"
|
haftmann@26072
|
525 |
and p1: "k = Suc i ==> P" and p2: "!!j. i < j ==> k = Suc j ==> P"
|
haftmann@26072
|
526 |
shows P
|
haftmann@26072
|
527 |
proof -
|
haftmann@26072
|
528 |
from major have "\<exists>j. i \<le> j \<and> k = Suc j"
|
haftmann@26072
|
529 |
unfolding less_eq_Suc_le by (induct k) simp_all
|
haftmann@26072
|
530 |
then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i"
|
haftmann@26072
|
531 |
by (clarsimp simp add: less_le)
|
haftmann@26072
|
532 |
with p1 p2 show P by auto
|
haftmann@26072
|
533 |
qed
|
haftmann@26072
|
534 |
|
haftmann@26072
|
535 |
lemma less_SucE: assumes major: "m < Suc n"
|
haftmann@26072
|
536 |
and less: "m < n ==> P" and eq: "m = n ==> P" shows P
|
haftmann@26072
|
537 |
apply (rule major [THEN lessE])
|
haftmann@26072
|
538 |
apply (rule eq, blast)
|
haftmann@26072
|
539 |
apply (rule less, blast)
|
berghofe@13449
|
540 |
done
|
berghofe@13449
|
541 |
|
berghofe@13449
|
542 |
lemma Suc_lessE: assumes major: "Suc i < k"
|
berghofe@13449
|
543 |
and minor: "!!j. i < j ==> k = Suc j ==> P" shows P
|
berghofe@13449
|
544 |
apply (rule major [THEN lessE])
|
berghofe@13449
|
545 |
apply (erule lessI [THEN minor])
|
paulson@14208
|
546 |
apply (erule Suc_lessD [THEN minor], assumption)
|
berghofe@13449
|
547 |
done
|
berghofe@13449
|
548 |
|
berghofe@13449
|
549 |
lemma Suc_less_SucD: "Suc m < Suc n ==> m < n"
|
haftmann@26072
|
550 |
by simp
|
berghofe@13449
|
551 |
|
berghofe@13449
|
552 |
lemma less_trans_Suc:
|
berghofe@13449
|
553 |
assumes le: "i < j" shows "j < k ==> Suc i < k"
|
paulson@14208
|
554 |
apply (induct k, simp_all)
|
berghofe@13449
|
555 |
apply (insert le)
|
berghofe@13449
|
556 |
apply (simp add: less_Suc_eq)
|
berghofe@13449
|
557 |
apply (blast dest: Suc_lessD)
|
berghofe@13449
|
558 |
done
|
berghofe@13449
|
559 |
|
berghofe@13449
|
560 |
text {* Can be used with @{text less_Suc_eq} to get @{term "n = m | n < m"} *}
|
haftmann@26072
|
561 |
lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
|
haftmann@26072
|
562 |
unfolding not_less less_Suc_eq_le ..
|
berghofe@13449
|
563 |
|
haftmann@26072
|
564 |
lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m"
|
haftmann@26072
|
565 |
unfolding not_le Suc_le_eq ..
|
wenzelm@21243
|
566 |
|
haftmann@24995
|
567 |
text {* Properties of "less than or equal" *}
|
berghofe@13449
|
568 |
|
paulson@14267
|
569 |
lemma le_imp_less_Suc: "m \<le> n ==> m < Suc n"
|
haftmann@26072
|
570 |
unfolding less_Suc_eq_le .
|
berghofe@13449
|
571 |
|
paulson@14267
|
572 |
lemma Suc_n_not_le_n: "~ Suc n \<le> n"
|
haftmann@26072
|
573 |
unfolding not_le less_Suc_eq_le ..
|
berghofe@13449
|
574 |
|
paulson@14267
|
575 |
lemma le_Suc_eq: "(m \<le> Suc n) = (m \<le> n | m = Suc n)"
|
haftmann@26072
|
576 |
by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq)
|
berghofe@13449
|
577 |
|
paulson@14267
|
578 |
lemma le_SucE: "m \<le> Suc n ==> (m \<le> n ==> R) ==> (m = Suc n ==> R) ==> R"
|
haftmann@26072
|
579 |
by (drule le_Suc_eq [THEN iffD1], iprover+)
|
berghofe@13449
|
580 |
|
paulson@14267
|
581 |
lemma Suc_leI: "m < n ==> Suc(m) \<le> n"
|
haftmann@26072
|
582 |
unfolding Suc_le_eq .
|
berghofe@13449
|
583 |
|
berghofe@13449
|
584 |
text {* Stronger version of @{text Suc_leD} *}
|
paulson@14267
|
585 |
lemma Suc_le_lessD: "Suc m \<le> n ==> m < n"
|
haftmann@26072
|
586 |
unfolding Suc_le_eq .
|
berghofe@13449
|
587 |
|
wenzelm@26315
|
588 |
lemma less_imp_le_nat: "m < n ==> m \<le> (n::nat)"
|
haftmann@26072
|
589 |
unfolding less_eq_Suc_le by (rule Suc_leD)
|
berghofe@13449
|
590 |
|
paulson@14267
|
591 |
text {* For instance, @{text "(Suc m < Suc n) = (Suc m \<le> n) = (m < n)"} *}
|
wenzelm@26315
|
592 |
lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq
|
berghofe@13449
|
593 |
|
berghofe@13449
|
594 |
|
paulson@14267
|
595 |
text {* Equivalence of @{term "m \<le> n"} and @{term "m < n | m = n"} *}
|
berghofe@13449
|
596 |
|
paulson@14267
|
597 |
lemma less_or_eq_imp_le: "m < n | m = n ==> m \<le> (n::nat)"
|
haftmann@26072
|
598 |
unfolding le_less .
|
berghofe@13449
|
599 |
|
paulson@14267
|
600 |
lemma le_eq_less_or_eq: "(m \<le> (n::nat)) = (m < n | m=n)"
|
haftmann@26072
|
601 |
by (rule le_less)
|
berghofe@13449
|
602 |
|
wenzelm@22718
|
603 |
text {* Useful with @{text blast}. *}
|
paulson@14267
|
604 |
lemma eq_imp_le: "(m::nat) = n ==> m \<le> n"
|
haftmann@26072
|
605 |
by auto
|
berghofe@13449
|
606 |
|
paulson@14267
|
607 |
lemma le_refl: "n \<le> (n::nat)"
|
haftmann@26072
|
608 |
by simp
|
berghofe@13449
|
609 |
|
paulson@14267
|
610 |
lemma le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::nat)"
|
haftmann@26072
|
611 |
by (rule order_trans)
|
berghofe@13449
|
612 |
|
nipkow@33657
|
613 |
lemma le_antisym: "[| m \<le> n; n \<le> m |] ==> m = (n::nat)"
|
haftmann@26072
|
614 |
by (rule antisym)
|
berghofe@13449
|
615 |
|
paulson@14267
|
616 |
lemma nat_less_le: "((m::nat) < n) = (m \<le> n & m \<noteq> n)"
|
haftmann@26072
|
617 |
by (rule less_le)
|
berghofe@13449
|
618 |
|
paulson@14267
|
619 |
lemma le_neq_implies_less: "(m::nat) \<le> n ==> m \<noteq> n ==> m < n"
|
haftmann@26072
|
620 |
unfolding less_le ..
|
berghofe@13449
|
621 |
|
haftmann@26072
|
622 |
lemma nat_le_linear: "(m::nat) \<le> n | n \<le> m"
|
haftmann@26072
|
623 |
by (rule linear)
|
paulson@14341
|
624 |
|
wenzelm@22718
|
625 |
lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat]
|
nipkow@15921
|
626 |
|
haftmann@26072
|
627 |
lemma le_less_Suc_eq: "m \<le> n ==> (n < Suc m) = (n = m)"
|
haftmann@26072
|
628 |
unfolding less_Suc_eq_le by auto
|
berghofe@13449
|
629 |
|
haftmann@26072
|
630 |
lemma not_less_less_Suc_eq: "~ n < m ==> (n < Suc m) = (n = m)"
|
haftmann@26072
|
631 |
unfolding not_less by (rule le_less_Suc_eq)
|
berghofe@13449
|
632 |
|
berghofe@13449
|
633 |
lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq
|
berghofe@13449
|
634 |
|
wenzelm@22718
|
635 |
text {* These two rules ease the use of primitive recursion.
|
paulson@14341
|
636 |
NOTE USE OF @{text "=="} *}
|
berghofe@13449
|
637 |
lemma def_nat_rec_0: "(!!n. f n == nat_rec c h n) ==> f 0 = c"
|
nipkow@25162
|
638 |
by simp
|
berghofe@13449
|
639 |
|
berghofe@13449
|
640 |
lemma def_nat_rec_Suc: "(!!n. f n == nat_rec c h n) ==> f (Suc n) = h n (f n)"
|
nipkow@25162
|
641 |
by simp
|
berghofe@13449
|
642 |
|
paulson@14267
|
643 |
lemma not0_implies_Suc: "n \<noteq> 0 ==> \<exists>m. n = Suc m"
|
nipkow@25162
|
644 |
by (cases n) simp_all
|
nipkow@25162
|
645 |
|
nipkow@25162
|
646 |
lemma gr0_implies_Suc: "n > 0 ==> \<exists>m. n = Suc m"
|
nipkow@25162
|
647 |
by (cases n) simp_all
|
berghofe@13449
|
648 |
|
wenzelm@22718
|
649 |
lemma gr_implies_not0: fixes n :: nat shows "m<n ==> n \<noteq> 0"
|
nipkow@25162
|
650 |
by (cases n) simp_all
|
berghofe@13449
|
651 |
|
nipkow@25162
|
652 |
lemma neq0_conv[iff]: fixes n :: nat shows "(n \<noteq> 0) = (0 < n)"
|
nipkow@25162
|
653 |
by (cases n) simp_all
|
nipkow@25140
|
654 |
|
berghofe@13449
|
655 |
text {* This theorem is useful with @{text blast} *}
|
berghofe@13449
|
656 |
lemma gr0I: "((n::nat) = 0 ==> False) ==> 0 < n"
|
nipkow@25162
|
657 |
by (rule neq0_conv[THEN iffD1], iprover)
|
berghofe@13449
|
658 |
|
paulson@14267
|
659 |
lemma gr0_conv_Suc: "(0 < n) = (\<exists>m. n = Suc m)"
|
nipkow@25162
|
660 |
by (fast intro: not0_implies_Suc)
|
berghofe@13449
|
661 |
|
blanchet@54147
|
662 |
lemma not_gr0 [iff]: "!!n::nat. (~ (0 < n)) = (n = 0)"
|
nipkow@25134
|
663 |
using neq0_conv by blast
|
berghofe@13449
|
664 |
|
paulson@14267
|
665 |
lemma Suc_le_D: "(Suc n \<le> m') ==> (? m. m' = Suc m)"
|
nipkow@25162
|
666 |
by (induct m') simp_all
|
berghofe@13449
|
667 |
|
berghofe@13449
|
668 |
text {* Useful in certain inductive arguments *}
|
paulson@14267
|
669 |
lemma less_Suc_eq_0_disj: "(m < Suc n) = (m = 0 | (\<exists>j. m = Suc j & j < n))"
|
nipkow@25162
|
670 |
by (cases m) simp_all
|
berghofe@13449
|
671 |
|
berghofe@13449
|
672 |
|
haftmann@26072
|
673 |
subsubsection {* Monotonicity of Addition *}
|
berghofe@13449
|
674 |
|
haftmann@26072
|
675 |
lemma Suc_pred [simp]: "n>0 ==> Suc (n - Suc 0) = n"
|
haftmann@26072
|
676 |
by (simp add: diff_Suc split: nat.split)
|
berghofe@13449
|
677 |
|
huffman@30128
|
678 |
lemma Suc_diff_1 [simp]: "0 < n ==> Suc (n - 1) = n"
|
huffman@30128
|
679 |
unfolding One_nat_def by (rule Suc_pred)
|
huffman@30128
|
680 |
|
paulson@14331
|
681 |
lemma nat_add_left_cancel_le [simp]: "(k + m \<le> k + n) = (m\<le>(n::nat))"
|
nipkow@25162
|
682 |
by (induct k) simp_all
|
berghofe@13449
|
683 |
|
paulson@14331
|
684 |
lemma nat_add_left_cancel_less [simp]: "(k + m < k + n) = (m<(n::nat))"
|
nipkow@25162
|
685 |
by (induct k) simp_all
|
berghofe@13449
|
686 |
|
nipkow@25162
|
687 |
lemma add_gr_0 [iff]: "!!m::nat. (m + n > 0) = (m>0 | n>0)"
|
nipkow@25162
|
688 |
by(auto dest:gr0_implies_Suc)
|
berghofe@13449
|
689 |
|
paulson@14341
|
690 |
text {* strict, in 1st argument *}
|
paulson@14341
|
691 |
lemma add_less_mono1: "i < j ==> i + k < j + (k::nat)"
|
nipkow@25162
|
692 |
by (induct k) simp_all
|
paulson@14341
|
693 |
|
paulson@14341
|
694 |
text {* strict, in both arguments *}
|
paulson@14341
|
695 |
lemma add_less_mono: "[|i < j; k < l|] ==> i + k < j + (l::nat)"
|
paulson@14341
|
696 |
apply (rule add_less_mono1 [THEN less_trans], assumption+)
|
paulson@15251
|
697 |
apply (induct j, simp_all)
|
paulson@14341
|
698 |
done
|
paulson@14341
|
699 |
|
paulson@14341
|
700 |
text {* Deleted @{text less_natE}; use @{text "less_imp_Suc_add RS exE"} *}
|
paulson@14341
|
701 |
lemma less_imp_Suc_add: "m < n ==> (\<exists>k. n = Suc (m + k))"
|
paulson@14341
|
702 |
apply (induct n)
|
paulson@14341
|
703 |
apply (simp_all add: order_le_less)
|
wenzelm@22718
|
704 |
apply (blast elim!: less_SucE
|
haftmann@35047
|
705 |
intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric])
|
paulson@14341
|
706 |
done
|
paulson@14341
|
707 |
|
paulson@14341
|
708 |
text {* strict, in 1st argument; proof is by induction on @{text "k > 0"} *}
|
nipkow@25134
|
709 |
lemma mult_less_mono2: "(i::nat) < j ==> 0<k ==> k * i < k * j"
|
nipkow@25134
|
710 |
apply(auto simp: gr0_conv_Suc)
|
nipkow@25134
|
711 |
apply (induct_tac m)
|
nipkow@25134
|
712 |
apply (simp_all add: add_less_mono)
|
nipkow@25134
|
713 |
done
|
paulson@14341
|
714 |
|
nipkow@14740
|
715 |
text{*The naturals form an ordered @{text comm_semiring_1_cancel}*}
|
haftmann@35028
|
716 |
instance nat :: linordered_semidom
|
paulson@14341
|
717 |
proof
|
paulson@14348
|
718 |
show "0 < (1::nat)" by simp
|
haftmann@52289
|
719 |
show "\<And>m n q :: nat. m \<le> n \<Longrightarrow> q + m \<le> q + n" by simp
|
haftmann@52289
|
720 |
show "\<And>m n q :: nat. m < n \<Longrightarrow> 0 < q \<Longrightarrow> q * m < q * n" by (simp add: mult_less_mono2)
|
paulson@14267
|
721 |
qed
|
paulson@14267
|
722 |
|
nipkow@30056
|
723 |
instance nat :: no_zero_divisors
|
nipkow@30056
|
724 |
proof
|
nipkow@30056
|
725 |
fix a::nat and b::nat show "a ~= 0 \<Longrightarrow> b ~= 0 \<Longrightarrow> a * b ~= 0" by auto
|
nipkow@30056
|
726 |
qed
|
nipkow@30056
|
727 |
|
haftmann@44817
|
728 |
|
haftmann@44817
|
729 |
subsubsection {* @{term min} and @{term max} *}
|
haftmann@44817
|
730 |
|
haftmann@44817
|
731 |
lemma mono_Suc: "mono Suc"
|
haftmann@44817
|
732 |
by (rule monoI) simp
|
haftmann@44817
|
733 |
|
haftmann@44817
|
734 |
lemma min_0L [simp]: "min 0 n = (0::nat)"
|
noschinl@45931
|
735 |
by (rule min_absorb1) simp
|
haftmann@44817
|
736 |
|
haftmann@44817
|
737 |
lemma min_0R [simp]: "min n 0 = (0::nat)"
|
noschinl@45931
|
738 |
by (rule min_absorb2) simp
|
haftmann@44817
|
739 |
|
haftmann@44817
|
740 |
lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)"
|
haftmann@44817
|
741 |
by (simp add: mono_Suc min_of_mono)
|
haftmann@44817
|
742 |
|
haftmann@44817
|
743 |
lemma min_Suc1:
|
haftmann@44817
|
744 |
"min (Suc n) m = (case m of 0 => 0 | Suc m' => Suc(min n m'))"
|
haftmann@44817
|
745 |
by (simp split: nat.split)
|
haftmann@44817
|
746 |
|
haftmann@44817
|
747 |
lemma min_Suc2:
|
haftmann@44817
|
748 |
"min m (Suc n) = (case m of 0 => 0 | Suc m' => Suc(min m' n))"
|
haftmann@44817
|
749 |
by (simp split: nat.split)
|
haftmann@44817
|
750 |
|
haftmann@44817
|
751 |
lemma max_0L [simp]: "max 0 n = (n::nat)"
|
noschinl@45931
|
752 |
by (rule max_absorb2) simp
|
haftmann@44817
|
753 |
|
haftmann@44817
|
754 |
lemma max_0R [simp]: "max n 0 = (n::nat)"
|
noschinl@45931
|
755 |
by (rule max_absorb1) simp
|
haftmann@44817
|
756 |
|
haftmann@44817
|
757 |
lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc(max m n)"
|
haftmann@44817
|
758 |
by (simp add: mono_Suc max_of_mono)
|
haftmann@44817
|
759 |
|
haftmann@44817
|
760 |
lemma max_Suc1:
|
haftmann@44817
|
761 |
"max (Suc n) m = (case m of 0 => Suc n | Suc m' => Suc(max n m'))"
|
haftmann@44817
|
762 |
by (simp split: nat.split)
|
haftmann@44817
|
763 |
|
haftmann@44817
|
764 |
lemma max_Suc2:
|
haftmann@44817
|
765 |
"max m (Suc n) = (case m of 0 => Suc n | Suc m' => Suc(max m' n))"
|
haftmann@44817
|
766 |
by (simp split: nat.split)
|
paulson@14267
|
767 |
|
haftmann@44817
|
768 |
lemma nat_mult_min_left:
|
haftmann@44817
|
769 |
fixes m n q :: nat
|
haftmann@44817
|
770 |
shows "min m n * q = min (m * q) (n * q)"
|
haftmann@44817
|
771 |
by (simp add: min_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)
|
haftmann@44817
|
772 |
|
haftmann@44817
|
773 |
lemma nat_mult_min_right:
|
haftmann@44817
|
774 |
fixes m n q :: nat
|
haftmann@44817
|
775 |
shows "m * min n q = min (m * n) (m * q)"
|
haftmann@44817
|
776 |
by (simp add: min_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
|
haftmann@44817
|
777 |
|
haftmann@44817
|
778 |
lemma nat_add_max_left:
|
haftmann@44817
|
779 |
fixes m n q :: nat
|
haftmann@44817
|
780 |
shows "max m n + q = max (m + q) (n + q)"
|
haftmann@44817
|
781 |
by (simp add: max_def)
|
haftmann@44817
|
782 |
|
haftmann@44817
|
783 |
lemma nat_add_max_right:
|
haftmann@44817
|
784 |
fixes m n q :: nat
|
haftmann@44817
|
785 |
shows "m + max n q = max (m + n) (m + q)"
|
haftmann@44817
|
786 |
by (simp add: max_def)
|
haftmann@44817
|
787 |
|
haftmann@44817
|
788 |
lemma nat_mult_max_left:
|
haftmann@44817
|
789 |
fixes m n q :: nat
|
haftmann@44817
|
790 |
shows "max m n * q = max (m * q) (n * q)"
|
haftmann@44817
|
791 |
by (simp add: max_def not_le) (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans)
|
haftmann@44817
|
792 |
|
haftmann@44817
|
793 |
lemma nat_mult_max_right:
|
haftmann@44817
|
794 |
fixes m n q :: nat
|
haftmann@44817
|
795 |
shows "m * max n q = max (m * n) (m * q)"
|
haftmann@44817
|
796 |
by (simp add: max_def not_le) (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
|
paulson@14267
|
797 |
|
paulson@14267
|
798 |
|
krauss@26748
|
799 |
subsubsection {* Additional theorems about @{term "op \<le>"} *}
|
krauss@26748
|
800 |
|
krauss@26748
|
801 |
text {* Complete induction, aka course-of-values induction *}
|
krauss@26748
|
802 |
|
haftmann@27823
|
803 |
instance nat :: wellorder proof
|
haftmann@27823
|
804 |
fix P and n :: nat
|
haftmann@27823
|
805 |
assume step: "\<And>n::nat. (\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n"
|
haftmann@27823
|
806 |
have "\<And>q. q \<le> n \<Longrightarrow> P q"
|
haftmann@27823
|
807 |
proof (induct n)
|
haftmann@27823
|
808 |
case (0 n)
|
krauss@26748
|
809 |
have "P 0" by (rule step) auto
|
krauss@26748
|
810 |
thus ?case using 0 by auto
|
krauss@26748
|
811 |
next
|
haftmann@27823
|
812 |
case (Suc m n)
|
haftmann@27823
|
813 |
then have "n \<le> m \<or> n = Suc m" by (simp add: le_Suc_eq)
|
krauss@26748
|
814 |
thus ?case
|
krauss@26748
|
815 |
proof
|
haftmann@27823
|
816 |
assume "n \<le> m" thus "P n" by (rule Suc(1))
|
krauss@26748
|
817 |
next
|
haftmann@27823
|
818 |
assume n: "n = Suc m"
|
haftmann@27823
|
819 |
show "P n"
|
haftmann@27823
|
820 |
by (rule step) (rule Suc(1), simp add: n le_simps)
|
krauss@26748
|
821 |
qed
|
krauss@26748
|
822 |
qed
|
haftmann@27823
|
823 |
then show "P n" by auto
|
krauss@26748
|
824 |
qed
|
krauss@26748
|
825 |
|
haftmann@27823
|
826 |
lemma Least_Suc:
|
haftmann@27823
|
827 |
"[| P n; ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))"
|
wenzelm@47988
|
828 |
apply (cases n, auto)
|
haftmann@27823
|
829 |
apply (frule LeastI)
|
haftmann@27823
|
830 |
apply (drule_tac P = "%x. P (Suc x) " in LeastI)
|
haftmann@27823
|
831 |
apply (subgoal_tac " (LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))")
|
haftmann@27823
|
832 |
apply (erule_tac [2] Least_le)
|
wenzelm@47988
|
833 |
apply (cases "LEAST x. P x", auto)
|
haftmann@27823
|
834 |
apply (drule_tac P = "%x. P (Suc x) " in Least_le)
|
haftmann@27823
|
835 |
apply (blast intro: order_antisym)
|
haftmann@27823
|
836 |
done
|
haftmann@27823
|
837 |
|
haftmann@27823
|
838 |
lemma Least_Suc2:
|
haftmann@27823
|
839 |
"[|P n; Q m; ~P 0; !k. P (Suc k) = Q k|] ==> Least P = Suc (Least Q)"
|
haftmann@27823
|
840 |
apply (erule (1) Least_Suc [THEN ssubst])
|
haftmann@27823
|
841 |
apply simp
|
haftmann@27823
|
842 |
done
|
haftmann@27823
|
843 |
|
haftmann@27823
|
844 |
lemma ex_least_nat_le: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k\<le>n. (\<forall>i<k. \<not>P i) & P(k)"
|
haftmann@27823
|
845 |
apply (cases n)
|
haftmann@27823
|
846 |
apply blast
|
haftmann@27823
|
847 |
apply (rule_tac x="LEAST k. P(k)" in exI)
|
haftmann@27823
|
848 |
apply (blast intro: Least_le dest: not_less_Least intro: LeastI_ex)
|
haftmann@27823
|
849 |
done
|
haftmann@27823
|
850 |
|
haftmann@27823
|
851 |
lemma ex_least_nat_less: "\<not>P(0) \<Longrightarrow> P(n::nat) \<Longrightarrow> \<exists>k<n. (\<forall>i\<le>k. \<not>P i) & P(k+1)"
|
huffman@30079
|
852 |
unfolding One_nat_def
|
haftmann@27823
|
853 |
apply (cases n)
|
haftmann@27823
|
854 |
apply blast
|
haftmann@27823
|
855 |
apply (frule (1) ex_least_nat_le)
|
haftmann@27823
|
856 |
apply (erule exE)
|
haftmann@27823
|
857 |
apply (case_tac k)
|
haftmann@27823
|
858 |
apply simp
|
haftmann@27823
|
859 |
apply (rename_tac k1)
|
haftmann@27823
|
860 |
apply (rule_tac x=k1 in exI)
|
haftmann@27823
|
861 |
apply (auto simp add: less_eq_Suc_le)
|
haftmann@27823
|
862 |
done
|
haftmann@27823
|
863 |
|
krauss@26748
|
864 |
lemma nat_less_induct:
|
krauss@26748
|
865 |
assumes "!!n. \<forall>m::nat. m < n --> P m ==> P n" shows "P n"
|
krauss@26748
|
866 |
using assms less_induct by blast
|
krauss@26748
|
867 |
|
krauss@26748
|
868 |
lemma measure_induct_rule [case_names less]:
|
krauss@26748
|
869 |
fixes f :: "'a \<Rightarrow> nat"
|
krauss@26748
|
870 |
assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x"
|
krauss@26748
|
871 |
shows "P a"
|
krauss@26748
|
872 |
by (induct m\<equiv>"f a" arbitrary: a rule: less_induct) (auto intro: step)
|
krauss@26748
|
873 |
|
krauss@26748
|
874 |
text {* old style induction rules: *}
|
krauss@26748
|
875 |
lemma measure_induct:
|
krauss@26748
|
876 |
fixes f :: "'a \<Rightarrow> nat"
|
krauss@26748
|
877 |
shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a"
|
krauss@26748
|
878 |
by (rule measure_induct_rule [of f P a]) iprover
|
krauss@26748
|
879 |
|
krauss@26748
|
880 |
lemma full_nat_induct:
|
krauss@26748
|
881 |
assumes step: "(!!n. (ALL m. Suc m <= n --> P m) ==> P n)"
|
krauss@26748
|
882 |
shows "P n"
|
krauss@26748
|
883 |
by (rule less_induct) (auto intro: step simp:le_simps)
|
paulson@14267
|
884 |
|
paulson@19870
|
885 |
text{*An induction rule for estabilishing binary relations*}
|
wenzelm@22718
|
886 |
lemma less_Suc_induct:
|
paulson@19870
|
887 |
assumes less: "i < j"
|
paulson@19870
|
888 |
and step: "!!i. P i (Suc i)"
|
krauss@31714
|
889 |
and trans: "!!i j k. i < j ==> j < k ==> P i j ==> P j k ==> P i k"
|
paulson@19870
|
890 |
shows "P i j"
|
paulson@19870
|
891 |
proof -
|
krauss@31714
|
892 |
from less obtain k where j: "j = Suc (i + k)" by (auto dest: less_imp_Suc_add)
|
wenzelm@22718
|
893 |
have "P i (Suc (i + k))"
|
paulson@19870
|
894 |
proof (induct k)
|
wenzelm@22718
|
895 |
case 0
|
wenzelm@22718
|
896 |
show ?case by (simp add: step)
|
paulson@19870
|
897 |
next
|
paulson@19870
|
898 |
case (Suc k)
|
krauss@31714
|
899 |
have "0 + i < Suc k + i" by (rule add_less_mono1) simp
|
krauss@31714
|
900 |
hence "i < Suc (i + k)" by (simp add: add_commute)
|
krauss@31714
|
901 |
from trans[OF this lessI Suc step]
|
krauss@31714
|
902 |
show ?case by simp
|
paulson@19870
|
903 |
qed
|
wenzelm@22718
|
904 |
thus "P i j" by (simp add: j)
|
paulson@19870
|
905 |
qed
|
paulson@19870
|
906 |
|
krauss@26748
|
907 |
text {* The method of infinite descent, frequently used in number theory.
|
krauss@26748
|
908 |
Provided by Roelof Oosterhuis.
|
krauss@26748
|
909 |
$P(n)$ is true for all $n\in\mathbb{N}$ if
|
krauss@26748
|
910 |
\begin{itemize}
|
krauss@26748
|
911 |
\item case ``0'': given $n=0$ prove $P(n)$,
|
krauss@26748
|
912 |
\item case ``smaller'': given $n>0$ and $\neg P(n)$ prove there exists
|
krauss@26748
|
913 |
a smaller integer $m$ such that $\neg P(m)$.
|
krauss@26748
|
914 |
\end{itemize} *}
|
krauss@26748
|
915 |
|
krauss@26748
|
916 |
text{* A compact version without explicit base case: *}
|
krauss@26748
|
917 |
lemma infinite_descent:
|
krauss@26748
|
918 |
"\<lbrakk> !!n::nat. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m \<rbrakk> \<Longrightarrow> P n"
|
wenzelm@47988
|
919 |
by (induct n rule: less_induct) auto
|
krauss@26748
|
920 |
|
krauss@26748
|
921 |
lemma infinite_descent0[case_names 0 smaller]:
|
krauss@26748
|
922 |
"\<lbrakk> P 0; !!n. n>0 \<Longrightarrow> \<not> P n \<Longrightarrow> (\<exists>m::nat. m < n \<and> \<not>P m) \<rbrakk> \<Longrightarrow> P n"
|
krauss@26748
|
923 |
by (rule infinite_descent) (case_tac "n>0", auto)
|
krauss@26748
|
924 |
|
krauss@26748
|
925 |
text {*
|
krauss@26748
|
926 |
Infinite descent using a mapping to $\mathbb{N}$:
|
krauss@26748
|
927 |
$P(x)$ is true for all $x\in D$ if there exists a $V: D \to \mathbb{N}$ and
|
krauss@26748
|
928 |
\begin{itemize}
|
krauss@26748
|
929 |
\item case ``0'': given $V(x)=0$ prove $P(x)$,
|
krauss@26748
|
930 |
\item case ``smaller'': given $V(x)>0$ and $\neg P(x)$ prove there exists a $y \in D$ such that $V(y)<V(x)$ and $~\neg P(y)$.
|
krauss@26748
|
931 |
\end{itemize}
|
krauss@26748
|
932 |
NB: the proof also shows how to use the previous lemma. *}
|
krauss@26748
|
933 |
|
krauss@26748
|
934 |
corollary infinite_descent0_measure [case_names 0 smaller]:
|
krauss@26748
|
935 |
assumes A0: "!!x. V x = (0::nat) \<Longrightarrow> P x"
|
krauss@26748
|
936 |
and A1: "!!x. V x > 0 \<Longrightarrow> \<not>P x \<Longrightarrow> (\<exists>y. V y < V x \<and> \<not>P y)"
|
krauss@26748
|
937 |
shows "P x"
|
krauss@26748
|
938 |
proof -
|
krauss@26748
|
939 |
obtain n where "n = V x" by auto
|
krauss@26748
|
940 |
moreover have "\<And>x. V x = n \<Longrightarrow> P x"
|
krauss@26748
|
941 |
proof (induct n rule: infinite_descent0)
|
krauss@26748
|
942 |
case 0 -- "i.e. $V(x) = 0$"
|
krauss@26748
|
943 |
with A0 show "P x" by auto
|
krauss@26748
|
944 |
next -- "now $n>0$ and $P(x)$ does not hold for some $x$ with $V(x)=n$"
|
krauss@26748
|
945 |
case (smaller n)
|
krauss@26748
|
946 |
then obtain x where vxn: "V x = n " and "V x > 0 \<and> \<not> P x" by auto
|
krauss@26748
|
947 |
with A1 obtain y where "V y < V x \<and> \<not> P y" by auto
|
krauss@26748
|
948 |
with vxn obtain m where "m = V y \<and> m<n \<and> \<not> P y" by auto
|
krauss@26748
|
949 |
then show ?case by auto
|
krauss@26748
|
950 |
qed
|
krauss@26748
|
951 |
ultimately show "P x" by auto
|
krauss@26748
|
952 |
qed
|
krauss@26748
|
953 |
|
krauss@26748
|
954 |
text{* Again, without explicit base case: *}
|
krauss@26748
|
955 |
lemma infinite_descent_measure:
|
krauss@26748
|
956 |
assumes "!!x. \<not> P x \<Longrightarrow> \<exists>y. (V::'a\<Rightarrow>nat) y < V x \<and> \<not> P y" shows "P x"
|
krauss@26748
|
957 |
proof -
|
krauss@26748
|
958 |
from assms obtain n where "n = V x" by auto
|
krauss@26748
|
959 |
moreover have "!!x. V x = n \<Longrightarrow> P x"
|
krauss@26748
|
960 |
proof (induct n rule: infinite_descent, auto)
|
krauss@26748
|
961 |
fix x assume "\<not> P x"
|
krauss@26748
|
962 |
with assms show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" by auto
|
krauss@26748
|
963 |
qed
|
krauss@26748
|
964 |
ultimately show "P x" by auto
|
krauss@26748
|
965 |
qed
|
krauss@26748
|
966 |
|
paulson@14267
|
967 |
text {* A [clumsy] way of lifting @{text "<"}
|
paulson@14267
|
968 |
monotonicity to @{text "\<le>"} monotonicity *}
|
paulson@14267
|
969 |
lemma less_mono_imp_le_mono:
|
nipkow@24438
|
970 |
"\<lbrakk> !!i j::nat. i < j \<Longrightarrow> f i < f j; i \<le> j \<rbrakk> \<Longrightarrow> f i \<le> ((f j)::nat)"
|
nipkow@24438
|
971 |
by (simp add: order_le_less) (blast)
|
nipkow@24438
|
972 |
|
paulson@14267
|
973 |
|
paulson@14267
|
974 |
text {* non-strict, in 1st argument *}
|
paulson@14267
|
975 |
lemma add_le_mono1: "i \<le> j ==> i + k \<le> j + (k::nat)"
|
nipkow@24438
|
976 |
by (rule add_right_mono)
|
paulson@14267
|
977 |
|
paulson@14267
|
978 |
text {* non-strict, in both arguments *}
|
paulson@14267
|
979 |
lemma add_le_mono: "[| i \<le> j; k \<le> l |] ==> i + k \<le> j + (l::nat)"
|
nipkow@24438
|
980 |
by (rule add_mono)
|
paulson@14267
|
981 |
|
paulson@14267
|
982 |
lemma le_add2: "n \<le> ((m + n)::nat)"
|
nipkow@24438
|
983 |
by (insert add_right_mono [of 0 m n], simp)
|
berghofe@13449
|
984 |
|
paulson@14267
|
985 |
lemma le_add1: "n \<le> ((n + m)::nat)"
|
nipkow@24438
|
986 |
by (simp add: add_commute, rule le_add2)
|
berghofe@13449
|
987 |
|
berghofe@13449
|
988 |
lemma less_add_Suc1: "i < Suc (i + m)"
|
nipkow@24438
|
989 |
by (rule le_less_trans, rule le_add1, rule lessI)
|
berghofe@13449
|
990 |
|
berghofe@13449
|
991 |
lemma less_add_Suc2: "i < Suc (m + i)"
|
nipkow@24438
|
992 |
by (rule le_less_trans, rule le_add2, rule lessI)
|
berghofe@13449
|
993 |
|
paulson@14267
|
994 |
lemma less_iff_Suc_add: "(m < n) = (\<exists>k. n = Suc (m + k))"
|
nipkow@24438
|
995 |
by (iprover intro!: less_add_Suc1 less_imp_Suc_add)
|
berghofe@13449
|
996 |
|
paulson@14267
|
997 |
lemma trans_le_add1: "(i::nat) \<le> j ==> i \<le> j + m"
|
nipkow@24438
|
998 |
by (rule le_trans, assumption, rule le_add1)
|
berghofe@13449
|
999 |
|
paulson@14267
|
1000 |
lemma trans_le_add2: "(i::nat) \<le> j ==> i \<le> m + j"
|
nipkow@24438
|
1001 |
by (rule le_trans, assumption, rule le_add2)
|
berghofe@13449
|
1002 |
|
berghofe@13449
|
1003 |
lemma trans_less_add1: "(i::nat) < j ==> i < j + m"
|
nipkow@24438
|
1004 |
by (rule less_le_trans, assumption, rule le_add1)
|
berghofe@13449
|
1005 |
|
berghofe@13449
|
1006 |
lemma trans_less_add2: "(i::nat) < j ==> i < m + j"
|
nipkow@24438
|
1007 |
by (rule less_le_trans, assumption, rule le_add2)
|
berghofe@13449
|
1008 |
|
berghofe@13449
|
1009 |
lemma add_lessD1: "i + j < (k::nat) ==> i < k"
|
nipkow@24438
|
1010 |
apply (rule le_less_trans [of _ "i+j"])
|
nipkow@24438
|
1011 |
apply (simp_all add: le_add1)
|
nipkow@24438
|
1012 |
done
|
berghofe@13449
|
1013 |
|
berghofe@13449
|
1014 |
lemma not_add_less1 [iff]: "~ (i + j < (i::nat))"
|
nipkow@24438
|
1015 |
apply (rule notI)
|
wenzelm@26335
|
1016 |
apply (drule add_lessD1)
|
wenzelm@26335
|
1017 |
apply (erule less_irrefl [THEN notE])
|
nipkow@24438
|
1018 |
done
|
berghofe@13449
|
1019 |
|
berghofe@13449
|
1020 |
lemma not_add_less2 [iff]: "~ (j + i < (i::nat))"
|
krauss@26748
|
1021 |
by (simp add: add_commute)
|
berghofe@13449
|
1022 |
|
paulson@14267
|
1023 |
lemma add_leD1: "m + k \<le> n ==> m \<le> (n::nat)"
|
nipkow@24438
|
1024 |
apply (rule order_trans [of _ "m+k"])
|
nipkow@24438
|
1025 |
apply (simp_all add: le_add1)
|
nipkow@24438
|
1026 |
done
|
berghofe@13449
|
1027 |
|
paulson@14267
|
1028 |
lemma add_leD2: "m + k \<le> n ==> k \<le> (n::nat)"
|
nipkow@24438
|
1029 |
apply (simp add: add_commute)
|
nipkow@24438
|
1030 |
apply (erule add_leD1)
|
nipkow@24438
|
1031 |
done
|
berghofe@13449
|
1032 |
|
paulson@14267
|
1033 |
lemma add_leE: "(m::nat) + k \<le> n ==> (m \<le> n ==> k \<le> n ==> R) ==> R"
|
nipkow@24438
|
1034 |
by (blast dest: add_leD1 add_leD2)
|
berghofe@13449
|
1035 |
|
berghofe@13449
|
1036 |
text {* needs @{text "!!k"} for @{text add_ac} to work *}
|
berghofe@13449
|
1037 |
lemma less_add_eq_less: "!!k::nat. k < l ==> m + l = k + n ==> m < n"
|
nipkow@24438
|
1038 |
by (force simp del: add_Suc_right
|
berghofe@13449
|
1039 |
simp add: less_iff_Suc_add add_Suc_right [symmetric] add_ac)
|
berghofe@13449
|
1040 |
|
berghofe@13449
|
1041 |
|
haftmann@26072
|
1042 |
subsubsection {* More results about difference *}
|
berghofe@13449
|
1043 |
|
berghofe@13449
|
1044 |
text {* Addition is the inverse of subtraction:
|
paulson@14267
|
1045 |
if @{term "n \<le> m"} then @{term "n + (m - n) = m"}. *}
|
berghofe@13449
|
1046 |
lemma add_diff_inverse: "~ m < n ==> n + (m - n) = (m::nat)"
|
nipkow@24438
|
1047 |
by (induct m n rule: diff_induct) simp_all
|
berghofe@13449
|
1048 |
|
paulson@14267
|
1049 |
lemma le_add_diff_inverse [simp]: "n \<le> m ==> n + (m - n) = (m::nat)"
|
nipkow@24438
|
1050 |
by (simp add: add_diff_inverse linorder_not_less)
|
berghofe@13449
|
1051 |
|
paulson@14267
|
1052 |
lemma le_add_diff_inverse2 [simp]: "n \<le> m ==> (m - n) + n = (m::nat)"
|
krauss@26748
|
1053 |
by (simp add: add_commute)
|
berghofe@13449
|
1054 |
|
paulson@14267
|
1055 |
lemma Suc_diff_le: "n \<le> m ==> Suc m - n = Suc (m - n)"
|
nipkow@24438
|
1056 |
by (induct m n rule: diff_induct) simp_all
|
berghofe@13449
|
1057 |
|
berghofe@13449
|
1058 |
lemma diff_less_Suc: "m - n < Suc m"
|
nipkow@24438
|
1059 |
apply (induct m n rule: diff_induct)
|
nipkow@24438
|
1060 |
apply (erule_tac [3] less_SucE)
|
nipkow@24438
|
1061 |
apply (simp_all add: less_Suc_eq)
|
nipkow@24438
|
1062 |
done
|
berghofe@13449
|
1063 |
|
paulson@14267
|
1064 |
lemma diff_le_self [simp]: "m - n \<le> (m::nat)"
|
nipkow@24438
|
1065 |
by (induct m n rule: diff_induct) (simp_all add: le_SucI)
|
berghofe@13449
|
1066 |
|
haftmann@26072
|
1067 |
lemma le_iff_add: "(m::nat) \<le> n = (\<exists>k. n = m + k)"
|
haftmann@26072
|
1068 |
by (auto simp: le_add1 dest!: le_add_diff_inverse sym [of _ n])
|
haftmann@26072
|
1069 |
|
haftmann@52289
|
1070 |
instance nat :: ordered_cancel_comm_monoid_diff
|
haftmann@52289
|
1071 |
proof
|
haftmann@52289
|
1072 |
show "\<And>m n :: nat. m \<le> n \<longleftrightarrow> (\<exists>q. n = m + q)" by (fact le_iff_add)
|
haftmann@52289
|
1073 |
qed
|
haftmann@52289
|
1074 |
|
berghofe@13449
|
1075 |
lemma less_imp_diff_less: "(j::nat) < k ==> j - n < k"
|
nipkow@24438
|
1076 |
by (rule le_less_trans, rule diff_le_self)
|
berghofe@13449
|
1077 |
|
berghofe@13449
|
1078 |
lemma diff_Suc_less [simp]: "0<n ==> n - Suc i < n"
|
nipkow@24438
|
1079 |
by (cases n) (auto simp add: le_simps)
|
berghofe@13449
|
1080 |
|
paulson@14267
|
1081 |
lemma diff_add_assoc: "k \<le> (j::nat) ==> (i + j) - k = i + (j - k)"
|
nipkow@24438
|
1082 |
by (induct j k rule: diff_induct) simp_all
|
berghofe@13449
|
1083 |
|
paulson@14267
|
1084 |
lemma diff_add_assoc2: "k \<le> (j::nat) ==> (j + i) - k = (j - k) + i"
|
nipkow@24438
|
1085 |
by (simp add: add_commute diff_add_assoc)
|
berghofe@13449
|
1086 |
|
paulson@14267
|
1087 |
lemma le_imp_diff_is_add: "i \<le> (j::nat) ==> (j - i = k) = (j = k + i)"
|
nipkow@24438
|
1088 |
by (auto simp add: diff_add_inverse2)
|
berghofe@13449
|
1089 |
|
paulson@14267
|
1090 |
lemma diff_is_0_eq [simp]: "((m::nat) - n = 0) = (m \<le> n)"
|
nipkow@24438
|
1091 |
by (induct m n rule: diff_induct) simp_all
|
berghofe@13449
|
1092 |
|
paulson@14267
|
1093 |
lemma diff_is_0_eq' [simp]: "m \<le> n ==> (m::nat) - n = 0"
|
nipkow@24438
|
1094 |
by (rule iffD2, rule diff_is_0_eq)
|
berghofe@13449
|
1095 |
|
berghofe@13449
|
1096 |
lemma zero_less_diff [simp]: "(0 < n - (m::nat)) = (m < n)"
|
nipkow@24438
|
1097 |
by (induct m n rule: diff_induct) simp_all
|
berghofe@13449
|
1098 |
|
wenzelm@22718
|
1099 |
lemma less_imp_add_positive:
|
wenzelm@22718
|
1100 |
assumes "i < j"
|
wenzelm@22718
|
1101 |
shows "\<exists>k::nat. 0 < k & i + k = j"
|
wenzelm@22718
|
1102 |
proof
|
wenzelm@22718
|
1103 |
from assms show "0 < j - i & i + (j - i) = j"
|
huffman@23476
|
1104 |
by (simp add: order_less_imp_le)
|
wenzelm@22718
|
1105 |
qed
|
wenzelm@9436
|
1106 |
|
haftmann@26072
|
1107 |
text {* a nice rewrite for bounded subtraction *}
|
haftmann@26072
|
1108 |
lemma nat_minus_add_max:
|
haftmann@26072
|
1109 |
fixes n m :: nat
|
haftmann@26072
|
1110 |
shows "n - m + m = max n m"
|
haftmann@26072
|
1111 |
by (simp add: max_def not_le order_less_imp_le)
|
berghofe@13449
|
1112 |
|
haftmann@26072
|
1113 |
lemma nat_diff_split:
|
haftmann@26072
|
1114 |
"P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
|
haftmann@26072
|
1115 |
-- {* elimination of @{text -} on @{text nat} *}
|
haftmann@26072
|
1116 |
by (cases "a < b")
|
haftmann@26072
|
1117 |
(auto simp add: diff_is_0_eq [THEN iffD2] diff_add_inverse
|
haftmann@26072
|
1118 |
not_less le_less dest!: sym [of a] sym [of b] add_eq_self_zero)
|
berghofe@13449
|
1119 |
|
haftmann@26072
|
1120 |
lemma nat_diff_split_asm:
|
haftmann@26072
|
1121 |
"P(a - b::nat) = (~ (a < b & ~ P 0 | (EX d. a = b + d & ~ P d)))"
|
haftmann@26072
|
1122 |
-- {* elimination of @{text -} on @{text nat} in assumptions *}
|
haftmann@26072
|
1123 |
by (auto split: nat_diff_split)
|
berghofe@13449
|
1124 |
|
huffman@47255
|
1125 |
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"
|
huffman@47255
|
1126 |
by simp
|
huffman@47255
|
1127 |
|
huffman@47255
|
1128 |
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"
|
huffman@47255
|
1129 |
unfolding One_nat_def by (cases m) simp_all
|
huffman@47255
|
1130 |
|
huffman@47255
|
1131 |
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"
|
huffman@47255
|
1132 |
unfolding One_nat_def by (cases m) simp_all
|
huffman@47255
|
1133 |
|
huffman@47255
|
1134 |
lemma Suc_diff_eq_diff_pred: "0 < n ==> Suc m - n = m - (n - 1)"
|
huffman@47255
|
1135 |
unfolding One_nat_def by (cases n) simp_all
|
huffman@47255
|
1136 |
|
huffman@47255
|
1137 |
lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"
|
huffman@47255
|
1138 |
unfolding One_nat_def by (cases m) simp_all
|
huffman@47255
|
1139 |
|
huffman@47255
|
1140 |
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"
|
huffman@47255
|
1141 |
by (fact Let_def)
|
huffman@47255
|
1142 |
|
berghofe@13449
|
1143 |
|
haftmann@26072
|
1144 |
subsubsection {* Monotonicity of Multiplication *}
|
berghofe@13449
|
1145 |
|
paulson@14267
|
1146 |
lemma mult_le_mono1: "i \<le> (j::nat) ==> i * k \<le> j * k"
|
nipkow@24438
|
1147 |
by (simp add: mult_right_mono)
|
berghofe@13449
|
1148 |
|
paulson@14267
|
1149 |
lemma mult_le_mono2: "i \<le> (j::nat) ==> k * i \<le> k * j"
|
nipkow@24438
|
1150 |
by (simp add: mult_left_mono)
|
berghofe@13449
|
1151 |
|
paulson@14267
|
1152 |
text {* @{text "\<le>"} monotonicity, BOTH arguments *}
|
paulson@14267
|
1153 |
lemma mult_le_mono: "i \<le> (j::nat) ==> k \<le> l ==> i * k \<le> j * l"
|
nipkow@24438
|
1154 |
by (simp add: mult_mono)
|
berghofe@13449
|
1155 |
|
berghofe@13449
|
1156 |
lemma mult_less_mono1: "(i::nat) < j ==> 0 < k ==> i * k < j * k"
|
nipkow@24438
|
1157 |
by (simp add: mult_strict_right_mono)
|
berghofe@13449
|
1158 |
|
paulson@14266
|
1159 |
text{*Differs from the standard @{text zero_less_mult_iff} in that
|
paulson@14266
|
1160 |
there are no negative numbers.*}
|
paulson@14266
|
1161 |
lemma nat_0_less_mult_iff [simp]: "(0 < (m::nat) * n) = (0 < m & 0 < n)"
|
berghofe@13449
|
1162 |
apply (induct m)
|
wenzelm@22718
|
1163 |
apply simp
|
wenzelm@22718
|
1164 |
apply (case_tac n)
|
wenzelm@22718
|
1165 |
apply simp_all
|
berghofe@13449
|
1166 |
done
|
berghofe@13449
|
1167 |
|
huffman@30079
|
1168 |
lemma one_le_mult_iff [simp]: "(Suc 0 \<le> m * n) = (Suc 0 \<le> m & Suc 0 \<le> n)"
|
berghofe@13449
|
1169 |
apply (induct m)
|
wenzelm@22718
|
1170 |
apply simp
|
wenzelm@22718
|
1171 |
apply (case_tac n)
|
wenzelm@22718
|
1172 |
apply simp_all
|
berghofe@13449
|
1173 |
done
|
berghofe@13449
|
1174 |
|
paulson@14341
|
1175 |
lemma mult_less_cancel2 [simp]: "((m::nat) * k < n * k) = (0 < k & m < n)"
|
berghofe@13449
|
1176 |
apply (safe intro!: mult_less_mono1)
|
wenzelm@47988
|
1177 |
apply (cases k, auto)
|
berghofe@13449
|
1178 |
apply (simp del: le_0_eq add: linorder_not_le [symmetric])
|
berghofe@13449
|
1179 |
apply (blast intro: mult_le_mono1)
|
berghofe@13449
|
1180 |
done
|
berghofe@13449
|
1181 |
|
berghofe@13449
|
1182 |
lemma mult_less_cancel1 [simp]: "(k * (m::nat) < k * n) = (0 < k & m < n)"
|
nipkow@24438
|
1183 |
by (simp add: mult_commute [of k])
|
berghofe@13449
|
1184 |
|
paulson@14267
|
1185 |
lemma mult_le_cancel1 [simp]: "(k * (m::nat) \<le> k * n) = (0 < k --> m \<le> n)"
|
nipkow@24438
|
1186 |
by (simp add: linorder_not_less [symmetric], auto)
|
berghofe@13449
|
1187 |
|
paulson@14267
|
1188 |
lemma mult_le_cancel2 [simp]: "((m::nat) * k \<le> n * k) = (0 < k --> m \<le> n)"
|
nipkow@24438
|
1189 |
by (simp add: linorder_not_less [symmetric], auto)
|
berghofe@13449
|
1190 |
|
berghofe@13449
|
1191 |
lemma Suc_mult_less_cancel1: "(Suc k * m < Suc k * n) = (m < n)"
|
nipkow@24438
|
1192 |
by (subst mult_less_cancel1) simp
|
berghofe@13449
|
1193 |
|
paulson@14267
|
1194 |
lemma Suc_mult_le_cancel1: "(Suc k * m \<le> Suc k * n) = (m \<le> n)"
|
nipkow@24438
|
1195 |
by (subst mult_le_cancel1) simp
|
berghofe@13449
|
1196 |
|
haftmann@26072
|
1197 |
lemma le_square: "m \<le> m * (m::nat)"
|
haftmann@26072
|
1198 |
by (cases m) (auto intro: le_add1)
|
haftmann@26072
|
1199 |
|
haftmann@26072
|
1200 |
lemma le_cube: "(m::nat) \<le> m * (m * m)"
|
haftmann@26072
|
1201 |
by (cases m) (auto intro: le_add1)
|
berghofe@13449
|
1202 |
|
berghofe@13449
|
1203 |
text {* Lemma for @{text gcd} *}
|
huffman@30128
|
1204 |
lemma mult_eq_self_implies_10: "(m::nat) = m * n ==> n = 1 | m = 0"
|
berghofe@13449
|
1205 |
apply (drule sym)
|
berghofe@13449
|
1206 |
apply (rule disjCI)
|
berghofe@13449
|
1207 |
apply (rule nat_less_cases, erule_tac [2] _)
|
paulson@25157
|
1208 |
apply (drule_tac [2] mult_less_mono2)
|
nipkow@25162
|
1209 |
apply (auto)
|
berghofe@13449
|
1210 |
done
|
wenzelm@9436
|
1211 |
|
haftmann@51263
|
1212 |
lemma mono_times_nat:
|
haftmann@51263
|
1213 |
fixes n :: nat
|
haftmann@51263
|
1214 |
assumes "n > 0"
|
haftmann@51263
|
1215 |
shows "mono (times n)"
|
haftmann@51263
|
1216 |
proof
|
haftmann@51263
|
1217 |
fix m q :: nat
|
haftmann@51263
|
1218 |
assume "m \<le> q"
|
haftmann@51263
|
1219 |
with assms show "n * m \<le> n * q" by simp
|
haftmann@51263
|
1220 |
qed
|
haftmann@51263
|
1221 |
|
haftmann@26072
|
1222 |
text {* the lattice order on @{typ nat} *}
|
haftmann@24995
|
1223 |
|
haftmann@26072
|
1224 |
instantiation nat :: distrib_lattice
|
haftmann@26072
|
1225 |
begin
|
haftmann@24995
|
1226 |
|
haftmann@26072
|
1227 |
definition
|
haftmann@26072
|
1228 |
"(inf \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = min"
|
haftmann@24995
|
1229 |
|
haftmann@26072
|
1230 |
definition
|
haftmann@26072
|
1231 |
"(sup \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat) = max"
|
haftmann@24995
|
1232 |
|
haftmann@26072
|
1233 |
instance by intro_classes
|
haftmann@26072
|
1234 |
(auto simp add: inf_nat_def sup_nat_def max_def not_le min_def
|
haftmann@26072
|
1235 |
intro: order_less_imp_le antisym elim!: order_trans order_less_trans)
|
haftmann@24995
|
1236 |
|
haftmann@26072
|
1237 |
end
|
haftmann@24995
|
1238 |
|
haftmann@24995
|
1239 |
|
haftmann@30954
|
1240 |
subsection {* Natural operation of natural numbers on functions *}
|
haftmann@30954
|
1241 |
|
haftmann@30971
|
1242 |
text {*
|
haftmann@30971
|
1243 |
We use the same logical constant for the power operations on
|
haftmann@30971
|
1244 |
functions and relations, in order to share the same syntax.
|
haftmann@30971
|
1245 |
*}
|
haftmann@30971
|
1246 |
|
haftmann@45965
|
1247 |
consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
|
haftmann@30971
|
1248 |
|
haftmann@45965
|
1249 |
abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) where
|
haftmann@30971
|
1250 |
"f ^^ n \<equiv> compow n f"
|
haftmann@30971
|
1251 |
|
haftmann@30971
|
1252 |
notation (latex output)
|
haftmann@30971
|
1253 |
compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
|
haftmann@30971
|
1254 |
|
haftmann@30971
|
1255 |
notation (HTML output)
|
haftmann@30971
|
1256 |
compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
|
haftmann@30971
|
1257 |
|
haftmann@30971
|
1258 |
text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
|
haftmann@30971
|
1259 |
|
haftmann@30971
|
1260 |
overloading
|
haftmann@30971
|
1261 |
funpow == "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
|
haftmann@30971
|
1262 |
begin
|
haftmann@30954
|
1263 |
|
haftmann@30954
|
1264 |
primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
|
haftmann@44325
|
1265 |
"funpow 0 f = id"
|
haftmann@44325
|
1266 |
| "funpow (Suc n) f = f o funpow n f"
|
haftmann@30954
|
1267 |
|
haftmann@30971
|
1268 |
end
|
haftmann@30971
|
1269 |
|
haftmann@49723
|
1270 |
lemma funpow_Suc_right:
|
haftmann@49723
|
1271 |
"f ^^ Suc n = f ^^ n \<circ> f"
|
haftmann@49723
|
1272 |
proof (induct n)
|
haftmann@49723
|
1273 |
case 0 then show ?case by simp
|
haftmann@49723
|
1274 |
next
|
haftmann@49723
|
1275 |
fix n
|
haftmann@49723
|
1276 |
assume "f ^^ Suc n = f ^^ n \<circ> f"
|
haftmann@49723
|
1277 |
then show "f ^^ Suc (Suc n) = f ^^ Suc n \<circ> f"
|
haftmann@49723
|
1278 |
by (simp add: o_assoc)
|
haftmann@49723
|
1279 |
qed
|
haftmann@49723
|
1280 |
|
haftmann@49723
|
1281 |
lemmas funpow_simps_right = funpow.simps(1) funpow_Suc_right
|
haftmann@49723
|
1282 |
|
haftmann@30971
|
1283 |
text {* for code generation *}
|
haftmann@30971
|
1284 |
|
haftmann@30971
|
1285 |
definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
|
haftmann@46028
|
1286 |
funpow_code_def [code_abbrev]: "funpow = compow"
|
haftmann@30954
|
1287 |
|
haftmann@30971
|
1288 |
lemma [code]:
|
haftmann@37430
|
1289 |
"funpow (Suc n) f = f o funpow n f"
|
haftmann@30971
|
1290 |
"funpow 0 f = id"
|
haftmann@37430
|
1291 |
by (simp_all add: funpow_code_def)
|
haftmann@30971
|
1292 |
|
wenzelm@36176
|
1293 |
hide_const (open) funpow
|
haftmann@30954
|
1294 |
|
haftmann@30954
|
1295 |
lemma funpow_add:
|
haftmann@30971
|
1296 |
"f ^^ (m + n) = f ^^ m \<circ> f ^^ n"
|
haftmann@30954
|
1297 |
by (induct m) simp_all
|
haftmann@30954
|
1298 |
|
haftmann@37430
|
1299 |
lemma funpow_mult:
|
haftmann@37430
|
1300 |
fixes f :: "'a \<Rightarrow> 'a"
|
haftmann@37430
|
1301 |
shows "(f ^^ m) ^^ n = f ^^ (m * n)"
|
haftmann@37430
|
1302 |
by (induct n) (simp_all add: funpow_add)
|
haftmann@37430
|
1303 |
|
haftmann@30954
|
1304 |
lemma funpow_swap1:
|
haftmann@30971
|
1305 |
"f ((f ^^ n) x) = (f ^^ n) (f x)"
|
haftmann@30954
|
1306 |
proof -
|
haftmann@30971
|
1307 |
have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp
|
haftmann@30971
|
1308 |
also have "\<dots> = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add)
|
haftmann@30971
|
1309 |
also have "\<dots> = (f ^^ n) (f x)" by simp
|
haftmann@30954
|
1310 |
finally show ?thesis .
|
haftmann@30954
|
1311 |
qed
|
haftmann@30954
|
1312 |
|
haftmann@38621
|
1313 |
lemma comp_funpow:
|
haftmann@38621
|
1314 |
fixes f :: "'a \<Rightarrow> 'a"
|
haftmann@38621
|
1315 |
shows "comp f ^^ n = comp (f ^^ n)"
|
haftmann@38621
|
1316 |
by (induct n) simp_all
|
haftmann@30954
|
1317 |
|
haftmann@38621
|
1318 |
|
nipkow@45833
|
1319 |
subsection {* Kleene iteration *}
|
nipkow@45833
|
1320 |
|
haftmann@52729
|
1321 |
lemma Kleene_iter_lpfp:
|
haftmann@52729
|
1322 |
assumes "mono f" and "f p \<le> p" shows "(f^^k) (bot::'a::order_bot) \<le> p"
|
nipkow@45833
|
1323 |
proof(induction k)
|
nipkow@45833
|
1324 |
case 0 show ?case by simp
|
nipkow@45833
|
1325 |
next
|
nipkow@45833
|
1326 |
case Suc
|
nipkow@45833
|
1327 |
from monoD[OF assms(1) Suc] assms(2)
|
nipkow@45833
|
1328 |
show ?case by simp
|
nipkow@45833
|
1329 |
qed
|
nipkow@45833
|
1330 |
|
nipkow@45833
|
1331 |
lemma lfp_Kleene_iter: assumes "mono f" and "(f^^Suc k) bot = (f^^k) bot"
|
nipkow@45833
|
1332 |
shows "lfp f = (f^^k) bot"
|
nipkow@45833
|
1333 |
proof(rule antisym)
|
nipkow@45833
|
1334 |
show "lfp f \<le> (f^^k) bot"
|
nipkow@45833
|
1335 |
proof(rule lfp_lowerbound)
|
nipkow@45833
|
1336 |
show "f ((f^^k) bot) \<le> (f^^k) bot" using assms(2) by simp
|
nipkow@45833
|
1337 |
qed
|
nipkow@45833
|
1338 |
next
|
nipkow@45833
|
1339 |
show "(f^^k) bot \<le> lfp f"
|
nipkow@45833
|
1340 |
using Kleene_iter_lpfp[OF assms(1)] lfp_unfold[OF assms(1)] by simp
|
nipkow@45833
|
1341 |
qed
|
nipkow@45833
|
1342 |
|
nipkow@45833
|
1343 |
|
haftmann@38621
|
1344 |
subsection {* Embedding of the Naturals into any @{text semiring_1}: @{term of_nat} *}
|
haftmann@24196
|
1345 |
|
haftmann@24196
|
1346 |
context semiring_1
|
haftmann@24196
|
1347 |
begin
|
haftmann@24196
|
1348 |
|
haftmann@38621
|
1349 |
definition of_nat :: "nat \<Rightarrow> 'a" where
|
haftmann@38621
|
1350 |
"of_nat n = (plus 1 ^^ n) 0"
|
haftmann@38621
|
1351 |
|
haftmann@38621
|
1352 |
lemma of_nat_simps [simp]:
|
haftmann@38621
|
1353 |
shows of_nat_0: "of_nat 0 = 0"
|
haftmann@38621
|
1354 |
and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m"
|
haftmann@38621
|
1355 |
by (simp_all add: of_nat_def)
|
haftmann@25193
|
1356 |
|
haftmann@25193
|
1357 |
lemma of_nat_1 [simp]: "of_nat 1 = 1"
|
haftmann@38621
|
1358 |
by (simp add: of_nat_def)
|
haftmann@25193
|
1359 |
|
haftmann@25193
|
1360 |
lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n"
|
haftmann@25193
|
1361 |
by (induct m) (simp_all add: add_ac)
|
haftmann@25193
|
1362 |
|
haftmann@25193
|
1363 |
lemma of_nat_mult: "of_nat (m * n) = of_nat m * of_nat n"
|
webertj@49962
|
1364 |
by (induct m) (simp_all add: add_ac distrib_right)
|
haftmann@25193
|
1365 |
|
haftmann@28514
|
1366 |
primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" where
|
haftmann@28514
|
1367 |
"of_nat_aux inc 0 i = i"
|
haftmann@44325
|
1368 |
| "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" -- {* tail recursive *}
|
haftmann@25928
|
1369 |
|
haftmann@30966
|
1370 |
lemma of_nat_code:
|
haftmann@28514
|
1371 |
"of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0"
|
haftmann@28514
|
1372 |
proof (induct n)
|
haftmann@28514
|
1373 |
case 0 then show ?case by simp
|
haftmann@28514
|
1374 |
next
|
haftmann@28514
|
1375 |
case (Suc n)
|
haftmann@28514
|
1376 |
have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1"
|
haftmann@28514
|
1377 |
by (induct n) simp_all
|
haftmann@28514
|
1378 |
from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1"
|
haftmann@28514
|
1379 |
by simp
|
haftmann@28514
|
1380 |
with Suc show ?case by (simp add: add_commute)
|
haftmann@28514
|
1381 |
qed
|
haftmann@30966
|
1382 |
|
haftmann@24196
|
1383 |
end
|
haftmann@24196
|
1384 |
|
bulwahn@45231
|
1385 |
declare of_nat_code [code]
|
haftmann@30966
|
1386 |
|
haftmann@26072
|
1387 |
text{*Class for unital semirings with characteristic zero.
|
haftmann@26072
|
1388 |
Includes non-ordered rings like the complex numbers.*}
|
haftmann@26072
|
1389 |
|
haftmann@26072
|
1390 |
class semiring_char_0 = semiring_1 +
|
haftmann@38621
|
1391 |
assumes inj_of_nat: "inj of_nat"
|
haftmann@26072
|
1392 |
begin
|
haftmann@26072
|
1393 |
|
haftmann@38621
|
1394 |
lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
|
haftmann@38621
|
1395 |
by (auto intro: inj_of_nat injD)
|
haftmann@38621
|
1396 |
|
haftmann@26072
|
1397 |
text{*Special cases where either operand is zero*}
|
haftmann@26072
|
1398 |
|
blanchet@54147
|
1399 |
lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n"
|
haftmann@38621
|
1400 |
by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0])
|
haftmann@26072
|
1401 |
|
blanchet@54147
|
1402 |
lemma of_nat_eq_0_iff [simp]: "of_nat m = 0 \<longleftrightarrow> m = 0"
|
haftmann@38621
|
1403 |
by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0])
|
haftmann@26072
|
1404 |
|
haftmann@26072
|
1405 |
end
|
haftmann@26072
|
1406 |
|
haftmann@35028
|
1407 |
context linordered_semidom
|
haftmann@25193
|
1408 |
begin
|
haftmann@25193
|
1409 |
|
huffman@47489
|
1410 |
lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n"
|
huffman@47489
|
1411 |
by (induct n) simp_all
|
haftmann@25193
|
1412 |
|
huffman@47489
|
1413 |
lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0"
|
huffman@47489
|
1414 |
by (simp add: not_less)
|
haftmann@25193
|
1415 |
|
haftmann@25193
|
1416 |
lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n"
|
huffman@47489
|
1417 |
by (induct m n rule: diff_induct, simp_all add: add_pos_nonneg)
|
haftmann@25193
|
1418 |
|
haftmann@26072
|
1419 |
lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n"
|
haftmann@26072
|
1420 |
by (simp add: not_less [symmetric] linorder_not_less [symmetric])
|
haftmann@25193
|
1421 |
|
huffman@47489
|
1422 |
lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n"
|
huffman@47489
|
1423 |
by simp
|
huffman@47489
|
1424 |
|
huffman@47489
|
1425 |
lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n"
|
huffman@47489
|
1426 |
by simp
|
huffman@47489
|
1427 |
|
haftmann@35028
|
1428 |
text{*Every @{text linordered_semidom} has characteristic zero.*}
|
haftmann@25193
|
1429 |
|
haftmann@38621
|
1430 |
subclass semiring_char_0 proof
|
haftmann@38621
|
1431 |
qed (auto intro!: injI simp add: eq_iff)
|
haftmann@25193
|
1432 |
|
haftmann@25193
|
1433 |
text{*Special cases where either operand is zero*}
|
haftmann@25193
|
1434 |
|
blanchet@54147
|
1435 |
lemma of_nat_le_0_iff [simp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0"
|
haftmann@25193
|
1436 |
by (rule of_nat_le_iff [of _ 0, simplified])
|
haftmann@25193
|
1437 |
|
haftmann@26072
|
1438 |
lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n"
|
haftmann@26072
|
1439 |
by (rule of_nat_less_iff [of 0, simplified])
|
haftmann@26072
|
1440 |
|
haftmann@26072
|
1441 |
end
|
haftmann@26072
|
1442 |
|
haftmann@26072
|
1443 |
context ring_1
|
haftmann@26072
|
1444 |
begin
|
haftmann@26072
|
1445 |
|
haftmann@26072
|
1446 |
lemma of_nat_diff: "n \<le> m \<Longrightarrow> of_nat (m - n) = of_nat m - of_nat n"
|
nipkow@29667
|
1447 |
by (simp add: algebra_simps of_nat_add [symmetric])
|
haftmann@26072
|
1448 |
|
haftmann@26072
|
1449 |
end
|
haftmann@26072
|
1450 |
|
haftmann@35028
|
1451 |
context linordered_idom
|
haftmann@26072
|
1452 |
begin
|
haftmann@26072
|
1453 |
|
haftmann@26072
|
1454 |
lemma abs_of_nat [simp]: "\<bar>of_nat n\<bar> = of_nat n"
|
haftmann@26072
|
1455 |
unfolding abs_if by auto
|
haftmann@26072
|
1456 |
|
haftmann@25193
|
1457 |
end
|
haftmann@25193
|
1458 |
|
haftmann@25193
|
1459 |
lemma of_nat_id [simp]: "of_nat n = n"
|
huffman@35216
|
1460 |
by (induct n) simp_all
|
haftmann@25193
|
1461 |
|
haftmann@25193
|
1462 |
lemma of_nat_eq_id [simp]: "of_nat = id"
|
nipkow@39302
|
1463 |
by (auto simp add: fun_eq_iff)
|
haftmann@25193
|
1464 |
|
haftmann@25193
|
1465 |
|
haftmann@26149
|
1466 |
subsection {* The Set of Natural Numbers *}
|
haftmann@25193
|
1467 |
|
haftmann@26072
|
1468 |
context semiring_1
|
haftmann@25193
|
1469 |
begin
|
haftmann@25193
|
1470 |
|
haftmann@37767
|
1471 |
definition Nats :: "'a set" where
|
haftmann@37767
|
1472 |
"Nats = range of_nat"
|
haftmann@26072
|
1473 |
|
haftmann@26072
|
1474 |
notation (xsymbols)
|
haftmann@26072
|
1475 |
Nats ("\<nat>")
|
haftmann@25193
|
1476 |
|
haftmann@26072
|
1477 |
lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>"
|
haftmann@26072
|
1478 |
by (simp add: Nats_def)
|
haftmann@26072
|
1479 |
|
haftmann@26072
|
1480 |
lemma Nats_0 [simp]: "0 \<in> \<nat>"
|
haftmann@26072
|
1481 |
apply (simp add: Nats_def)
|
haftmann@26072
|
1482 |
apply (rule range_eqI)
|
haftmann@26072
|
1483 |
apply (rule of_nat_0 [symmetric])
|
haftmann@26072
|
1484 |
done
|
haftmann@25193
|
1485 |
|
haftmann@26072
|
1486 |
lemma Nats_1 [simp]: "1 \<in> \<nat>"
|
haftmann@26072
|
1487 |
apply (simp add: Nats_def)
|
haftmann@26072
|
1488 |
apply (rule range_eqI)
|
haftmann@26072
|
1489 |
apply (rule of_nat_1 [symmetric])
|
haftmann@26072
|
1490 |
done
|
haftmann@25193
|
1491 |
|
haftmann@26072
|
1492 |
lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>"
|
haftmann@26072
|
1493 |
apply (auto simp add: Nats_def)
|
haftmann@26072
|
1494 |
apply (rule range_eqI)
|
haftmann@26072
|
1495 |
apply (rule of_nat_add [symmetric])
|
haftmann@26072
|
1496 |
done
|
haftmann@26072
|
1497 |
|
haftmann@26072
|
1498 |
lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>"
|
haftmann@26072
|
1499 |
apply (auto simp add: Nats_def)
|
haftmann@26072
|
1500 |
apply (rule range_eqI)
|
haftmann@26072
|
1501 |
apply (rule of_nat_mult [symmetric])
|
haftmann@26072
|
1502 |
done
|
haftmann@25193
|
1503 |
|
huffman@35633
|
1504 |
lemma Nats_cases [cases set: Nats]:
|
huffman@35633
|
1505 |
assumes "x \<in> \<nat>"
|
huffman@35633
|
1506 |
obtains (of_nat) n where "x = of_nat n"
|
huffman@35633
|
1507 |
unfolding Nats_def
|
huffman@35633
|
1508 |
proof -
|
huffman@35633
|
1509 |
from `x \<in> \<nat>` have "x \<in> range of_nat" unfolding Nats_def .
|
huffman@35633
|
1510 |
then obtain n where "x = of_nat n" ..
|
huffman@35633
|
1511 |
then show thesis ..
|
huffman@35633
|
1512 |
qed
|
huffman@35633
|
1513 |
|
huffman@35633
|
1514 |
lemma Nats_induct [case_names of_nat, induct set: Nats]:
|
huffman@35633
|
1515 |
"x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x"
|
huffman@35633
|
1516 |
by (rule Nats_cases) auto
|
huffman@35633
|
1517 |
|
haftmann@25193
|
1518 |
end
|
haftmann@25193
|
1519 |
|
haftmann@25193
|
1520 |
|
wenzelm@21243
|
1521 |
subsection {* Further Arithmetic Facts Concerning the Natural Numbers *}
|
wenzelm@21243
|
1522 |
|
haftmann@22845
|
1523 |
lemma subst_equals:
|
haftmann@22845
|
1524 |
assumes 1: "t = s" and 2: "u = t"
|
haftmann@22845
|
1525 |
shows "u = s"
|
haftmann@22845
|
1526 |
using 2 1 by (rule trans)
|
haftmann@22845
|
1527 |
|
haftmann@30686
|
1528 |
setup Arith_Data.setup
|
haftmann@30686
|
1529 |
|
wenzelm@48891
|
1530 |
ML_file "Tools/nat_arith.ML"
|
huffman@48559
|
1531 |
|
huffman@48559
|
1532 |
simproc_setup nateq_cancel_sums
|
huffman@48559
|
1533 |
("(l::nat) + m = n" | "(l::nat) = m + n" | "Suc m = n" | "m = Suc n") =
|
huffman@48560
|
1534 |
{* fn phi => fn ss => try Nat_Arith.cancel_eq_conv *}
|
huffman@48559
|
1535 |
|
huffman@48559
|
1536 |
simproc_setup natless_cancel_sums
|
huffman@48559
|
1537 |
("(l::nat) + m < n" | "(l::nat) < m + n" | "Suc m < n" | "m < Suc n") =
|
huffman@48560
|
1538 |
{* fn phi => fn ss => try Nat_Arith.cancel_less_conv *}
|
huffman@48559
|
1539 |
|
huffman@48559
|
1540 |
simproc_setup natle_cancel_sums
|
huffman@48559
|
1541 |
("(l::nat) + m \<le> n" | "(l::nat) \<le> m + n" | "Suc m \<le> n" | "m \<le> Suc n") =
|
huffman@48560
|
1542 |
{* fn phi => fn ss => try Nat_Arith.cancel_le_conv *}
|
huffman@48559
|
1543 |
|
huffman@48559
|
1544 |
simproc_setup natdiff_cancel_sums
|
huffman@48559
|
1545 |
("(l::nat) + m - n" | "(l::nat) - (m + n)" | "Suc m - n" | "m - Suc n") =
|
huffman@48560
|
1546 |
{* fn phi => fn ss => try Nat_Arith.cancel_diff_conv *}
|
wenzelm@24091
|
1547 |
|
wenzelm@48891
|
1548 |
ML_file "Tools/lin_arith.ML"
|
haftmann@31100
|
1549 |
setup {* Lin_Arith.global_setup *}
|
haftmann@30686
|
1550 |
declaration {* K Lin_Arith.setup *}
|
wenzelm@24091
|
1551 |
|
wenzelm@43595
|
1552 |
simproc_setup fast_arith_nat ("(m::nat) < n" | "(m::nat) <= n" | "(m::nat) = n") =
|
wenzelm@43595
|
1553 |
{* fn _ => fn ss => fn ct => Lin_Arith.simproc ss (term_of ct) *}
|
wenzelm@43595
|
1554 |
(* Because of this simproc, the arithmetic solver is really only
|
wenzelm@43595
|
1555 |
useful to detect inconsistencies among the premises for subgoals which are
|
wenzelm@43595
|
1556 |
*not* themselves (in)equalities, because the latter activate
|
wenzelm@43595
|
1557 |
fast_nat_arith_simproc anyway. However, it seems cheaper to activate the
|
wenzelm@43595
|
1558 |
solver all the time rather than add the additional check. *)
|
wenzelm@43595
|
1559 |
|
wenzelm@43595
|
1560 |
|
wenzelm@21243
|
1561 |
lemmas [arith_split] = nat_diff_split split_min split_max
|
wenzelm@21243
|
1562 |
|
nipkow@27625
|
1563 |
context order
|
nipkow@27625
|
1564 |
begin
|
nipkow@27625
|
1565 |
|
nipkow@27625
|
1566 |
lemma lift_Suc_mono_le:
|
haftmann@53986
|
1567 |
assumes mono: "\<And>n. f n \<le> f (Suc n)" and "n \<le> n'"
|
krauss@27627
|
1568 |
shows "f n \<le> f n'"
|
krauss@27627
|
1569 |
proof (cases "n < n'")
|
krauss@27627
|
1570 |
case True
|
haftmann@53986
|
1571 |
then show ?thesis
|
haftmann@53986
|
1572 |
by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
|
haftmann@53986
|
1573 |
qed (insert `n \<le> n'`, auto) -- {* trivial for @{prop "n = n'"} *}
|
nipkow@27625
|
1574 |
|
nipkow@27625
|
1575 |
lemma lift_Suc_mono_less:
|
haftmann@53986
|
1576 |
assumes mono: "\<And>n. f n < f (Suc n)" and "n < n'"
|
krauss@27627
|
1577 |
shows "f n < f n'"
|
krauss@27627
|
1578 |
using `n < n'`
|
haftmann@53986
|
1579 |
by (induct n n' rule: less_Suc_induct [consumes 1]) (auto intro: mono)
|
nipkow@27625
|
1580 |
|
nipkow@27789
|
1581 |
lemma lift_Suc_mono_less_iff:
|
haftmann@53986
|
1582 |
"(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m"
|
haftmann@53986
|
1583 |
by (blast intro: less_asym' lift_Suc_mono_less [of f]
|
haftmann@53986
|
1584 |
dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq [THEN iffD1])
|
nipkow@27789
|
1585 |
|
nipkow@27625
|
1586 |
end
|
nipkow@27625
|
1587 |
|
haftmann@53986
|
1588 |
lemma mono_iff_le_Suc:
|
haftmann@53986
|
1589 |
"mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))"
|
haftmann@37387
|
1590 |
unfolding mono_def by (auto intro: lift_Suc_mono_le [of f])
|
nipkow@27625
|
1591 |
|
nipkow@27789
|
1592 |
lemma mono_nat_linear_lb:
|
haftmann@53986
|
1593 |
fixes f :: "nat \<Rightarrow> nat"
|
haftmann@53986
|
1594 |
assumes "\<And>m n. m < n \<Longrightarrow> f m < f n"
|
haftmann@53986
|
1595 |
shows "f m + k \<le> f (m + k)"
|
haftmann@53986
|
1596 |
proof (induct k)
|
haftmann@53986
|
1597 |
case 0 then show ?case by simp
|
haftmann@53986
|
1598 |
next
|
haftmann@53986
|
1599 |
case (Suc k)
|
haftmann@53986
|
1600 |
then have "Suc (f m + k) \<le> Suc (f (m + k))" by simp
|
haftmann@53986
|
1601 |
also from assms [of "m + k" "Suc (m + k)"] have "Suc (f (m + k)) \<le> f (Suc (m + k))"
|
haftmann@53986
|
1602 |
by (simp add: Suc_le_eq)
|
haftmann@53986
|
1603 |
finally show ?case by simp
|
haftmann@53986
|
1604 |
qed
|
nipkow@27789
|
1605 |
|
nipkow@27789
|
1606 |
|
wenzelm@21243
|
1607 |
text{*Subtraction laws, mostly by Clemens Ballarin*}
|
wenzelm@21243
|
1608 |
|
wenzelm@21243
|
1609 |
lemma diff_less_mono: "[| a < (b::nat); c \<le> a |] ==> a-c < b-c"
|
nipkow@24438
|
1610 |
by arith
|
wenzelm@21243
|
1611 |
|
wenzelm@21243
|
1612 |
lemma less_diff_conv: "(i < j-k) = (i+k < (j::nat))"
|
nipkow@24438
|
1613 |
by arith
|
wenzelm@21243
|
1614 |
|
haftmann@51173
|
1615 |
lemma less_diff_conv2:
|
haftmann@51173
|
1616 |
fixes j k i :: nat
|
haftmann@51173
|
1617 |
assumes "k \<le> j"
|
haftmann@51173
|
1618 |
shows "j - k < i \<longleftrightarrow> j < i + k"
|
haftmann@51173
|
1619 |
using assms by arith
|
haftmann@51173
|
1620 |
|
wenzelm@21243
|
1621 |
lemma le_diff_conv: "(j-k \<le> (i::nat)) = (j \<le> i+k)"
|
nipkow@24438
|
1622 |
by arith
|
wenzelm@21243
|
1623 |
|
wenzelm@21243
|
1624 |
lemma le_diff_conv2: "k \<le> j ==> (i \<le> j-k) = (i+k \<le> (j::nat))"
|
nipkow@24438
|
1625 |
by arith
|
wenzelm@21243
|
1626 |
|
wenzelm@21243
|
1627 |
lemma diff_diff_cancel [simp]: "i \<le> (n::nat) ==> n - (n - i) = i"
|
nipkow@24438
|
1628 |
by arith
|
wenzelm@21243
|
1629 |
|
wenzelm@21243
|
1630 |
lemma le_add_diff: "k \<le> (n::nat) ==> m \<le> n + m - k"
|
nipkow@24438
|
1631 |
by arith
|
wenzelm@21243
|
1632 |
|
wenzelm@21243
|
1633 |
(*Replaces the previous diff_less and le_diff_less, which had the stronger
|
wenzelm@21243
|
1634 |
second premise n\<le>m*)
|
wenzelm@21243
|
1635 |
lemma diff_less[simp]: "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"
|
nipkow@24438
|
1636 |
by arith
|
wenzelm@21243
|
1637 |
|
haftmann@26072
|
1638 |
text {* Simplification of relational expressions involving subtraction *}
|
wenzelm@21243
|
1639 |
|
wenzelm@21243
|
1640 |
lemma diff_diff_eq: "[| k \<le> m; k \<le> (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"
|
nipkow@24438
|
1641 |
by (simp split add: nat_diff_split)
|
wenzelm@21243
|
1642 |
|
wenzelm@36176
|
1643 |
hide_fact (open) diff_diff_eq
|
haftmann@35064
|
1644 |
|
wenzelm@21243
|
1645 |
lemma eq_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k = n-k) = (m=n)"
|
nipkow@24438
|
1646 |
by (auto split add: nat_diff_split)
|
wenzelm@21243
|
1647 |
|
wenzelm@21243
|
1648 |
lemma less_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k < n-k) = (m<n)"
|
nipkow@24438
|
1649 |
by (auto split add: nat_diff_split)
|
wenzelm@21243
|
1650 |
|
wenzelm@21243
|
1651 |
lemma le_diff_iff: "[| k \<le> m; k \<le> (n::nat) |] ==> (m-k \<le> n-k) = (m\<le>n)"
|
nipkow@24438
|
1652 |
by (auto split add: nat_diff_split)
|
wenzelm@21243
|
1653 |
|
wenzelm@21243
|
1654 |
text{*(Anti)Monotonicity of subtraction -- by Stephan Merz*}
|
wenzelm@21243
|
1655 |
|
wenzelm@21243
|
1656 |
(* Monotonicity of subtraction in first argument *)
|
wenzelm@21243
|
1657 |
lemma diff_le_mono: "m \<le> (n::nat) ==> (m-l) \<le> (n-l)"
|
nipkow@24438
|
1658 |
by (simp split add: nat_diff_split)
|
wenzelm@21243
|
1659 |
|
wenzelm@21243
|
1660 |
lemma diff_le_mono2: "m \<le> (n::nat) ==> (l-n) \<le> (l-m)"
|
nipkow@24438
|
1661 |
by (simp split add: nat_diff_split)
|
wenzelm@21243
|
1662 |
|
wenzelm@21243
|
1663 |
lemma diff_less_mono2: "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"
|
nipkow@24438
|
1664 |
by (simp split add: nat_diff_split)
|
wenzelm@21243
|
1665 |
|
wenzelm@21243
|
1666 |
lemma diffs0_imp_equal: "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n"
|
nipkow@24438
|
1667 |
by (simp split add: nat_diff_split)
|
wenzelm@21243
|
1668 |
|
bulwahn@26143
|
1669 |
lemma min_diff: "min (m - (i::nat)) (n - i) = min m n - i"
|
nipkow@32437
|
1670 |
by auto
|
bulwahn@26143
|
1671 |
|
bulwahn@26143
|
1672 |
lemma inj_on_diff_nat:
|
bulwahn@26143
|
1673 |
assumes k_le_n: "\<forall>n \<in> N. k \<le> (n::nat)"
|
bulwahn@26143
|
1674 |
shows "inj_on (\<lambda>n. n - k) N"
|
bulwahn@26143
|
1675 |
proof (rule inj_onI)
|
bulwahn@26143
|
1676 |
fix x y
|
bulwahn@26143
|
1677 |
assume a: "x \<in> N" "y \<in> N" "x - k = y - k"
|
bulwahn@26143
|
1678 |
with k_le_n have "x - k + k = y - k + k" by auto
|
bulwahn@26143
|
1679 |
with a k_le_n show "x = y" by auto
|
bulwahn@26143
|
1680 |
qed
|
bulwahn@26143
|
1681 |
|
haftmann@26072
|
1682 |
text{*Rewriting to pull differences out*}
|
haftmann@26072
|
1683 |
|
haftmann@26072
|
1684 |
lemma diff_diff_right [simp]: "k\<le>j --> i - (j - k) = i + (k::nat) - j"
|
haftmann@26072
|
1685 |
by arith
|
haftmann@26072
|
1686 |
|
haftmann@26072
|
1687 |
lemma diff_Suc_diff_eq1 [simp]: "k \<le> j ==> m - Suc (j - k) = m + k - Suc j"
|
haftmann@26072
|
1688 |
by arith
|
haftmann@26072
|
1689 |
|
haftmann@26072
|
1690 |
lemma diff_Suc_diff_eq2 [simp]: "k \<le> j ==> Suc (j - k) - m = Suc j - (k + m)"
|
haftmann@26072
|
1691 |
by arith
|
haftmann@26072
|
1692 |
|
noschinl@45933
|
1693 |
lemma Suc_diff_Suc: "n < m \<Longrightarrow> Suc (m - Suc n) = m - n"
|
noschinl@45933
|
1694 |
by simp
|
noschinl@45933
|
1695 |
|
bulwahn@46350
|
1696 |
(*The others are
|
bulwahn@46350
|
1697 |
i - j - k = i - (j + k),
|
bulwahn@46350
|
1698 |
k \<le> j ==> j - k + i = j + i - k,
|
bulwahn@46350
|
1699 |
k \<le> j ==> i + (j - k) = i + j - k *)
|
bulwahn@46350
|
1700 |
lemmas add_diff_assoc = diff_add_assoc [symmetric]
|
bulwahn@46350
|
1701 |
lemmas add_diff_assoc2 = diff_add_assoc2[symmetric]
|
bulwahn@46350
|
1702 |
declare diff_diff_left [simp] add_diff_assoc [simp] add_diff_assoc2[simp]
|
bulwahn@46350
|
1703 |
|
bulwahn@46350
|
1704 |
text{*At present we prove no analogue of @{text not_less_Least} or @{text
|
bulwahn@46350
|
1705 |
Least_Suc}, since there appears to be no need.*}
|
bulwahn@46350
|
1706 |
|
wenzelm@21243
|
1707 |
text{*Lemmas for ex/Factorization*}
|
wenzelm@21243
|
1708 |
|
wenzelm@21243
|
1709 |
lemma one_less_mult: "[| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"
|
nipkow@24438
|
1710 |
by (cases m) auto
|
wenzelm@21243
|
1711 |
|
wenzelm@21243
|
1712 |
lemma n_less_m_mult_n: "[| Suc 0 < n; Suc 0 < m |] ==> n<m*n"
|
nipkow@24438
|
1713 |
by (cases m) auto
|
wenzelm@21243
|
1714 |
|
wenzelm@21243
|
1715 |
lemma n_less_n_mult_m: "[| Suc 0 < n; Suc 0 < m |] ==> n<n*m"
|
nipkow@24438
|
1716 |
by (cases m) auto
|
wenzelm@21243
|
1717 |
|
krauss@23001
|
1718 |
text {* Specialized induction principles that work "backwards": *}
|
krauss@23001
|
1719 |
|
krauss@23001
|
1720 |
lemma inc_induct[consumes 1, case_names base step]:
|
krauss@23001
|
1721 |
assumes less: "i <= j"
|
krauss@23001
|
1722 |
assumes base: "P j"
|
krauss@23001
|
1723 |
assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
|
krauss@23001
|
1724 |
shows "P i"
|
krauss@23001
|
1725 |
using less
|
krauss@23001
|
1726 |
proof (induct d=="j - i" arbitrary: i)
|
krauss@23001
|
1727 |
case (0 i)
|
krauss@23001
|
1728 |
hence "i = j" by simp
|
krauss@23001
|
1729 |
with base show ?case by simp
|
krauss@23001
|
1730 |
next
|
krauss@23001
|
1731 |
case (Suc d i)
|
krauss@23001
|
1732 |
hence "i < j" "P (Suc i)"
|
krauss@23001
|
1733 |
by simp_all
|
krauss@23001
|
1734 |
thus "P i" by (rule step)
|
krauss@23001
|
1735 |
qed
|
krauss@23001
|
1736 |
|
krauss@23001
|
1737 |
lemma strict_inc_induct[consumes 1, case_names base step]:
|
krauss@23001
|
1738 |
assumes less: "i < j"
|
krauss@23001
|
1739 |
assumes base: "!!i. j = Suc i ==> P i"
|
krauss@23001
|
1740 |
assumes step: "!!i. [| i < j; P (Suc i) |] ==> P i"
|
krauss@23001
|
1741 |
shows "P i"
|
krauss@23001
|
1742 |
using less
|
krauss@23001
|
1743 |
proof (induct d=="j - i - 1" arbitrary: i)
|
krauss@23001
|
1744 |
case (0 i)
|
krauss@23001
|
1745 |
with `i < j` have "j = Suc i" by simp
|
krauss@23001
|
1746 |
with base show ?case by simp
|
krauss@23001
|
1747 |
next
|
krauss@23001
|
1748 |
case (Suc d i)
|
krauss@23001
|
1749 |
hence "i < j" "P (Suc i)"
|
krauss@23001
|
1750 |
by simp_all
|
krauss@23001
|
1751 |
thus "P i" by (rule step)
|
krauss@23001
|
1752 |
qed
|
krauss@23001
|
1753 |
|
krauss@23001
|
1754 |
lemma zero_induct_lemma: "P k ==> (!!n. P (Suc n) ==> P n) ==> P (k - i)"
|
krauss@23001
|
1755 |
using inc_induct[of "k - i" k P, simplified] by blast
|
krauss@23001
|
1756 |
|
krauss@23001
|
1757 |
lemma zero_induct: "P k ==> (!!n. P (Suc n) ==> P n) ==> P 0"
|
krauss@23001
|
1758 |
using inc_induct[of 0 k P] by blast
|
wenzelm@21243
|
1759 |
|
bulwahn@46351
|
1760 |
text {* Further induction rule similar to @{thm inc_induct} *}
|
nipkow@27625
|
1761 |
|
bulwahn@46351
|
1762 |
lemma dec_induct[consumes 1, case_names base step]:
|
bulwahn@46351
|
1763 |
"i \<le> j \<Longrightarrow> P i \<Longrightarrow> (\<And>n. i \<le> n \<Longrightarrow> P n \<Longrightarrow> P (Suc n)) \<Longrightarrow> P j"
|
bulwahn@46351
|
1764 |
by (induct j arbitrary: i) (auto simp: le_Suc_eq)
|
bulwahn@46351
|
1765 |
|
bulwahn@46351
|
1766 |
|
haftmann@33274
|
1767 |
subsection {* The divides relation on @{typ nat} *}
|
haftmann@33274
|
1768 |
|
haftmann@33274
|
1769 |
lemma dvd_1_left [iff]: "Suc 0 dvd k"
|
haftmann@33274
|
1770 |
unfolding dvd_def by simp
|
haftmann@33274
|
1771 |
|
haftmann@33274
|
1772 |
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
|
haftmann@33274
|
1773 |
by (simp add: dvd_def)
|
haftmann@33274
|
1774 |
|
haftmann@33274
|
1775 |
lemma nat_dvd_1_iff_1 [simp]: "m dvd (1::nat) \<longleftrightarrow> m = 1"
|
haftmann@33274
|
1776 |
by (simp add: dvd_def)
|
haftmann@33274
|
1777 |
|
nipkow@33657
|
1778 |
lemma dvd_antisym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
|
haftmann@33274
|
1779 |
unfolding dvd_def
|
huffman@35216
|
1780 |
by (force dest: mult_eq_self_implies_10 simp add: mult_assoc)
|
haftmann@33274
|
1781 |
|
haftmann@33274
|
1782 |
text {* @{term "op dvd"} is a partial order *}
|
haftmann@33274
|
1783 |
|
haftmann@33274
|
1784 |
interpretation dvd: order "op dvd" "\<lambda>n m \<Colon> nat. n dvd m \<and> \<not> m dvd n"
|
nipkow@33657
|
1785 |
proof qed (auto intro: dvd_refl dvd_trans dvd_antisym)
|
haftmann@33274
|
1786 |
|
haftmann@33274
|
1787 |
lemma dvd_diff_nat[simp]: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
|
haftmann@33274
|
1788 |
unfolding dvd_def
|
haftmann@33274
|
1789 |
by (blast intro: diff_mult_distrib2 [symmetric])
|
haftmann@33274
|
1790 |
|
haftmann@33274
|
1791 |
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
|
haftmann@33274
|
1792 |
apply (erule linorder_not_less [THEN iffD2, THEN add_diff_inverse, THEN subst])
|
haftmann@33274
|
1793 |
apply (blast intro: dvd_add)
|
haftmann@33274
|
1794 |
done
|
haftmann@33274
|
1795 |
|
haftmann@33274
|
1796 |
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
|
haftmann@33274
|
1797 |
by (drule_tac m = m in dvd_diff_nat, auto)
|
haftmann@33274
|
1798 |
|
haftmann@33274
|
1799 |
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
|
haftmann@33274
|
1800 |
apply (rule iffI)
|
haftmann@33274
|
1801 |
apply (erule_tac [2] dvd_add)
|
haftmann@33274
|
1802 |
apply (rule_tac [2] dvd_refl)
|
haftmann@33274
|
1803 |
apply (subgoal_tac "n = (n+k) -k")
|
haftmann@33274
|
1804 |
prefer 2 apply simp
|
haftmann@33274
|
1805 |
apply (erule ssubst)
|
haftmann@33274
|
1806 |
apply (erule dvd_diff_nat)
|
haftmann@33274
|
1807 |
apply (rule dvd_refl)
|
haftmann@33274
|
1808 |
done
|
haftmann@33274
|
1809 |
|
haftmann@33274
|
1810 |
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
|
haftmann@33274
|
1811 |
unfolding dvd_def
|
haftmann@33274
|
1812 |
apply (erule exE)
|
haftmann@33274
|
1813 |
apply (simp add: mult_ac)
|
haftmann@33274
|
1814 |
done
|
haftmann@33274
|
1815 |
|
haftmann@33274
|
1816 |
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
|
haftmann@33274
|
1817 |
apply auto
|
haftmann@33274
|
1818 |
apply (subgoal_tac "m*n dvd m*1")
|
haftmann@33274
|
1819 |
apply (drule dvd_mult_cancel, auto)
|
haftmann@33274
|
1820 |
done
|
haftmann@33274
|
1821 |
|
haftmann@33274
|
1822 |
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
|
haftmann@33274
|
1823 |
apply (subst mult_commute)
|
haftmann@33274
|
1824 |
apply (erule dvd_mult_cancel1)
|
haftmann@33274
|
1825 |
done
|
haftmann@33274
|
1826 |
|
haftmann@33274
|
1827 |
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
|
haftmann@33274
|
1828 |
by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
|
haftmann@33274
|
1829 |
|
haftmann@33274
|
1830 |
lemma nat_dvd_not_less:
|
haftmann@33274
|
1831 |
fixes m n :: nat
|
haftmann@33274
|
1832 |
shows "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m"
|
haftmann@33274
|
1833 |
by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc)
|
haftmann@33274
|
1834 |
|
haftmann@51173
|
1835 |
lemma dvd_plusE:
|
haftmann@51173
|
1836 |
fixes m n q :: nat
|
haftmann@51173
|
1837 |
assumes "m dvd n + q" "m dvd n"
|
haftmann@51173
|
1838 |
obtains "m dvd q"
|
haftmann@51173
|
1839 |
proof (cases "m = 0")
|
haftmann@51173
|
1840 |
case True with assms that show thesis by simp
|
haftmann@51173
|
1841 |
next
|
haftmann@51173
|
1842 |
case False then have "m > 0" by simp
|
haftmann@51173
|
1843 |
from assms obtain r s where "n = m * r" and "n + q = m * s" by (blast elim: dvdE)
|
haftmann@51173
|
1844 |
then have *: "m * r + q = m * s" by simp
|
haftmann@51173
|
1845 |
show thesis proof (cases "r \<le> s")
|
haftmann@51173
|
1846 |
case False then have "s < r" by (simp add: not_le)
|
haftmann@51173
|
1847 |
with * have "m * r + q - m * s = m * s - m * s" by simp
|
haftmann@51173
|
1848 |
then have "m * r + q - m * s = 0" by simp
|
haftmann@53986
|
1849 |
with `m > 0` `s < r` have "m * r - m * s + q = 0" by (unfold less_le_not_le) auto
|
haftmann@51173
|
1850 |
then have "m * (r - s) + q = 0" by auto
|
haftmann@51173
|
1851 |
then have "m * (r - s) = 0" by simp
|
haftmann@51173
|
1852 |
then have "m = 0 \<or> r - s = 0" by simp
|
haftmann@53986
|
1853 |
with `s < r` have "m = 0" by (simp add: less_le_not_le)
|
haftmann@51173
|
1854 |
with `m > 0` show thesis by auto
|
haftmann@51173
|
1855 |
next
|
haftmann@51173
|
1856 |
case True with * have "m * r + q - m * r = m * s - m * r" by simp
|
haftmann@51173
|
1857 |
with `m > 0` `r \<le> s` have "m * r - m * r + q = m * s - m * r" by simp
|
haftmann@51173
|
1858 |
then have "q = m * (s - r)" by (simp add: diff_mult_distrib2)
|
haftmann@51173
|
1859 |
with assms that show thesis by (auto intro: dvdI)
|
haftmann@51173
|
1860 |
qed
|
haftmann@51173
|
1861 |
qed
|
haftmann@51173
|
1862 |
|
haftmann@51173
|
1863 |
lemma dvd_plus_eq_right:
|
haftmann@51173
|
1864 |
fixes m n q :: nat
|
haftmann@51173
|
1865 |
assumes "m dvd n"
|
haftmann@51173
|
1866 |
shows "m dvd n + q \<longleftrightarrow> m dvd q"
|
haftmann@51173
|
1867 |
using assms by (auto elim: dvd_plusE)
|
haftmann@51173
|
1868 |
|
haftmann@51173
|
1869 |
lemma dvd_plus_eq_left:
|
haftmann@51173
|
1870 |
fixes m n q :: nat
|
haftmann@51173
|
1871 |
assumes "m dvd q"
|
haftmann@51173
|
1872 |
shows "m dvd n + q \<longleftrightarrow> m dvd n"
|
haftmann@51173
|
1873 |
using assms by (simp add: dvd_plus_eq_right add_commute [of n])
|
haftmann@51173
|
1874 |
|
haftmann@51173
|
1875 |
lemma less_dvd_minus:
|
haftmann@51173
|
1876 |
fixes m n :: nat
|
haftmann@51173
|
1877 |
assumes "m < n"
|
haftmann@51173
|
1878 |
shows "m dvd n \<longleftrightarrow> m dvd (n - m)"
|
haftmann@51173
|
1879 |
proof -
|
haftmann@51173
|
1880 |
from assms have "n = m + (n - m)" by arith
|
haftmann@51173
|
1881 |
then obtain q where "n = m + q" ..
|
haftmann@51173
|
1882 |
then show ?thesis by (simp add: dvd_reduce add_commute [of m])
|
haftmann@51173
|
1883 |
qed
|
haftmann@51173
|
1884 |
|
haftmann@51173
|
1885 |
lemma dvd_minus_self:
|
haftmann@51173
|
1886 |
fixes m n :: nat
|
haftmann@51173
|
1887 |
shows "m dvd n - m \<longleftrightarrow> n < m \<or> m dvd n"
|
haftmann@51173
|
1888 |
by (cases "n < m") (auto elim!: dvdE simp add: not_less le_imp_diff_is_add)
|
haftmann@51173
|
1889 |
|
haftmann@51173
|
1890 |
lemma dvd_minus_add:
|
haftmann@51173
|
1891 |
fixes m n q r :: nat
|
haftmann@51173
|
1892 |
assumes "q \<le> n" "q \<le> r * m"
|
haftmann@51173
|
1893 |
shows "m dvd n - q \<longleftrightarrow> m dvd n + (r * m - q)"
|
haftmann@51173
|
1894 |
proof -
|
haftmann@51173
|
1895 |
have "m dvd n - q \<longleftrightarrow> m dvd r * m + (n - q)"
|
haftmann@51173
|
1896 |
by (auto elim: dvd_plusE)
|
wenzelm@53374
|
1897 |
also from assms have "\<dots> \<longleftrightarrow> m dvd r * m + n - q" by simp
|
wenzelm@53374
|
1898 |
also from assms have "\<dots> \<longleftrightarrow> m dvd (r * m - q) + n" by simp
|
haftmann@51173
|
1899 |
also have "\<dots> \<longleftrightarrow> m dvd n + (r * m - q)" by (simp add: add_commute)
|
haftmann@51173
|
1900 |
finally show ?thesis .
|
haftmann@51173
|
1901 |
qed
|
haftmann@51173
|
1902 |
|
haftmann@33274
|
1903 |
|
haftmann@44817
|
1904 |
subsection {* aliasses *}
|
haftmann@44817
|
1905 |
|
haftmann@44817
|
1906 |
lemma nat_mult_1: "(1::nat) * n = n"
|
haftmann@44817
|
1907 |
by simp
|
haftmann@44817
|
1908 |
|
haftmann@44817
|
1909 |
lemma nat_mult_1_right: "n * (1::nat) = n"
|
haftmann@44817
|
1910 |
by simp
|
haftmann@44817
|
1911 |
|
haftmann@44817
|
1912 |
|
haftmann@26072
|
1913 |
subsection {* size of a datatype value *}
|
haftmann@25193
|
1914 |
|
haftmann@29608
|
1915 |
class size =
|
krauss@26748
|
1916 |
fixes size :: "'a \<Rightarrow> nat" -- {* see further theory @{text Wellfounded} *}
|
haftmann@23852
|
1917 |
|
haftmann@33364
|
1918 |
|
haftmann@33364
|
1919 |
subsection {* code module namespace *}
|
haftmann@33364
|
1920 |
|
haftmann@52435
|
1921 |
code_identifier
|
haftmann@52435
|
1922 |
code_module Nat \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
|
haftmann@33364
|
1923 |
|
huffman@47108
|
1924 |
hide_const (open) of_nat_aux
|
huffman@47108
|
1925 |
|
haftmann@25193
|
1926 |
end
|
haftmann@49388
|
1927 |
|