src/HOL/Tools/SMT/z3_proof_tools.ML
author boehmes
Wed Nov 17 08:14:56 2010 +0100 (2010-11-17)
changeset 40579 98ebd2300823
parent 40274 6486c610a549
child 40662 798aad2229c0
permissions -rw-r--r--
use the const antiquotation for constants (this checks that the constant is declared, whereas the more general term antiquotation treats undeclared names as free variable)
boehmes@36898
     1
(*  Title:      HOL/Tools/SMT/z3_proof_tools.ML
boehmes@36898
     2
    Author:     Sascha Boehme, TU Muenchen
boehmes@36898
     3
boehmes@36898
     4
Helper functions required for Z3 proof reconstruction.
boehmes@36898
     5
*)
boehmes@36898
     6
boehmes@36898
     7
signature Z3_PROOF_TOOLS =
boehmes@36898
     8
sig
boehmes@36898
     9
  (* accessing and modifying terms *)
boehmes@36898
    10
  val term_of: cterm -> term
boehmes@36898
    11
  val prop_of: thm -> term
boehmes@36898
    12
  val mk_prop: cterm -> cterm
boehmes@36898
    13
  val as_meta_eq: cterm -> cterm
boehmes@36898
    14
boehmes@36898
    15
  (* theorem nets *)
boehmes@40164
    16
  val thm_net_of: ('a -> thm) -> 'a list -> 'a Net.net
boehmes@40164
    17
  val net_instance': ((thm -> thm option) -> 'a -> 'a option) -> 'a Net.net ->
boehmes@40164
    18
    cterm -> 'a option
boehmes@36898
    19
  val net_instance: thm Net.net -> cterm -> thm option
boehmes@36898
    20
boehmes@36898
    21
  (* proof combinators *)
boehmes@36898
    22
  val under_assumption: (thm -> thm) -> cterm -> thm
boehmes@36898
    23
  val with_conv: conv -> (cterm -> thm) -> cterm -> thm
boehmes@36898
    24
  val discharge: thm -> thm -> thm
boehmes@36898
    25
  val varify: string list -> thm -> thm
boehmes@36898
    26
  val unfold_eqs: Proof.context -> thm list -> conv
boehmes@36898
    27
  val match_instantiate: (cterm -> cterm) -> cterm -> thm -> thm
boehmes@36898
    28
  val by_tac: (int -> tactic) -> cterm -> thm
boehmes@36898
    29
  val make_hyp_def: thm -> Proof.context -> thm * Proof.context
boehmes@36899
    30
  val by_abstraction: bool * bool -> Proof.context -> thm list ->
boehmes@36899
    31
    (Proof.context -> cterm -> thm) -> cterm -> thm
boehmes@36898
    32
boehmes@36898
    33
  (* a faster COMP *)
boehmes@36898
    34
  type compose_data
boehmes@36898
    35
  val precompose: (cterm -> cterm list) -> thm -> compose_data
boehmes@36898
    36
  val precompose2: (cterm -> cterm * cterm) -> thm -> compose_data
boehmes@36898
    37
  val compose: compose_data -> thm -> thm
boehmes@36898
    38
boehmes@36898
    39
  (* unfolding of 'distinct' *)
boehmes@36898
    40
  val unfold_distinct_conv: conv
boehmes@36898
    41
boehmes@36898
    42
  (* simpset *)
boehmes@36899
    43
  val add_simproc: Simplifier.simproc -> Context.generic -> Context.generic
boehmes@36898
    44
  val make_simpset: Proof.context -> thm list -> simpset
boehmes@36898
    45
end
boehmes@36898
    46
boehmes@36898
    47
structure Z3_Proof_Tools: Z3_PROOF_TOOLS =
boehmes@36898
    48
struct
boehmes@36898
    49
boehmes@36899
    50
structure I = Z3_Interface
boehmes@36899
    51
boehmes@36898
    52
boehmes@36898
    53
boehmes@36898
    54
(* accessing terms *)
boehmes@36898
    55
boehmes@40579
    56
val dest_prop = (fn @{const Trueprop} $ t => t | t => t)
boehmes@36898
    57
boehmes@36898
    58
fun term_of ct = dest_prop (Thm.term_of ct)
boehmes@36898
    59
fun prop_of thm = dest_prop (Thm.prop_of thm)
boehmes@36898
    60
boehmes@40579
    61
val mk_prop = Thm.capply (Thm.cterm_of @{theory} @{const Trueprop})
boehmes@36898
    62
boehmes@36899
    63
val eq = I.mk_inst_pair I.destT1 @{cpat "op =="}
boehmes@36899
    64
fun mk_meta_eq_cterm ct cu = Thm.mk_binop (I.instT' ct eq) ct cu
boehmes@36898
    65
boehmes@36898
    66
fun as_meta_eq ct = uncurry mk_meta_eq_cterm (Thm.dest_binop (Thm.dest_arg ct))
boehmes@36898
    67
boehmes@36898
    68
boehmes@36898
    69
boehmes@36898
    70
(* theorem nets *)
boehmes@36898
    71
boehmes@40164
    72
fun thm_net_of f xthms =
boehmes@40164
    73
  let fun insert xthm = Net.insert_term (K false) (Thm.prop_of (f xthm), xthm)
boehmes@40164
    74
  in fold insert xthms Net.empty end
boehmes@36898
    75
boehmes@36898
    76
fun maybe_instantiate ct thm =
boehmes@36898
    77
  try Thm.first_order_match (Thm.cprop_of thm, ct)
boehmes@36898
    78
  |> Option.map (fn inst => Thm.instantiate inst thm)
boehmes@36898
    79
boehmes@40164
    80
fun net_instance' f net ct =
boehmes@40164
    81
  let fun first_of f xthms ct = get_first (f (maybe_instantiate ct)) xthms 
boehmes@40164
    82
  in first_of f (Net.match_term net (Thm.term_of ct)) ct end
boehmes@40164
    83
val net_instance = net_instance' I
boehmes@36898
    84
boehmes@36898
    85
boehmes@36898
    86
boehmes@36898
    87
(* proof combinators *)
boehmes@36898
    88
boehmes@36898
    89
fun under_assumption f ct =
boehmes@36898
    90
  let val ct' = mk_prop ct
boehmes@36898
    91
  in Thm.implies_intr ct' (f (Thm.assume ct')) end
boehmes@36898
    92
boehmes@36898
    93
fun with_conv conv prove ct =
boehmes@36898
    94
  let val eq = Thm.symmetric (conv ct)
boehmes@36898
    95
  in Thm.equal_elim eq (prove (Thm.lhs_of eq)) end
boehmes@36898
    96
boehmes@36898
    97
fun discharge p pq = Thm.implies_elim pq p
boehmes@36898
    98
boehmes@36898
    99
fun varify vars = Drule.generalize ([], vars)
boehmes@36898
   100
boehmes@36898
   101
fun unfold_eqs _ [] = Conv.all_conv
boehmes@36898
   102
  | unfold_eqs ctxt eqs =
wenzelm@36936
   103
      Conv.top_sweep_conv (K (Conv.rewrs_conv eqs)) ctxt
boehmes@36898
   104
boehmes@36898
   105
fun match_instantiate f ct thm =
boehmes@36898
   106
  Thm.instantiate (Thm.match (f (Thm.cprop_of thm), ct)) thm
boehmes@36898
   107
boehmes@36898
   108
fun by_tac tac ct = Goal.norm_result (Goal.prove_internal [] ct (K (tac 1)))
boehmes@36898
   109
boehmes@36898
   110
(* |- c x == t x ==> P (c x)  ~~>  c == t |- P (c x) *) 
boehmes@36898
   111
fun make_hyp_def thm ctxt =
boehmes@36898
   112
  let
boehmes@36898
   113
    val (lhs, rhs) = Thm.dest_binop (Thm.cprem_of thm 1)
boehmes@36898
   114
    val (cf, cvs) = Drule.strip_comb lhs
boehmes@36898
   115
    val eq = mk_meta_eq_cterm cf (fold_rev Thm.cabs cvs rhs)
boehmes@36898
   116
    fun apply cv th =
boehmes@36898
   117
      Thm.combination th (Thm.reflexive cv)
boehmes@36898
   118
      |> Conv.fconv_rule (Conv.arg_conv (Thm.beta_conversion false))
boehmes@36898
   119
  in
boehmes@36898
   120
    yield_singleton Assumption.add_assumes eq ctxt
boehmes@36898
   121
    |>> Thm.implies_elim thm o fold apply cvs
boehmes@36898
   122
  end
boehmes@36898
   123
boehmes@36898
   124
boehmes@36898
   125
boehmes@36898
   126
(* abstraction *)
boehmes@36898
   127
boehmes@36898
   128
local
boehmes@36898
   129
boehmes@36898
   130
fun typ_of ct = #T (Thm.rep_cterm ct)
boehmes@36898
   131
fun certify ctxt = Thm.cterm_of (ProofContext.theory_of ctxt)
boehmes@36898
   132
boehmes@36898
   133
fun abs_context ctxt = (ctxt, Termtab.empty, 1, false)
boehmes@36898
   134
boehmes@36898
   135
fun context_of (ctxt, _, _, _) = ctxt
boehmes@36898
   136
boehmes@36899
   137
fun replace (_, (cv, ct)) = Thm.forall_elim ct o Thm.forall_intr cv
boehmes@36898
   138
boehmes@36898
   139
fun abs_instantiate (_, tab, _, beta_norm) =
boehmes@36899
   140
  fold replace (Termtab.dest tab) #>
boehmes@36898
   141
  beta_norm ? Conv.fconv_rule (Thm.beta_conversion true)
boehmes@36898
   142
boehmes@36899
   143
fun lambda_abstract cvs t =
boehmes@36898
   144
  let
boehmes@36899
   145
    val frees = map Free (Term.add_frees t [])
boehmes@36899
   146
    val cvs' = filter (fn cv => member (op aconv) frees (Thm.term_of cv)) cvs
boehmes@36899
   147
    val vs = map (Term.dest_Free o Thm.term_of) cvs'
boehmes@36899
   148
  in (Term.list_abs_free (vs, t), cvs') end
boehmes@36898
   149
boehmes@36898
   150
fun fresh_abstraction cvs ct (cx as (ctxt, tab, idx, beta_norm)) =
boehmes@36899
   151
  let val (t, cvs') = lambda_abstract cvs (Thm.term_of ct)
boehmes@36898
   152
  in
boehmes@36898
   153
    (case Termtab.lookup tab t of
boehmes@36899
   154
      SOME (cv, _) => (Drule.list_comb (cv, cvs'), cx)
boehmes@36898
   155
    | NONE =>
boehmes@36898
   156
        let
boehmes@36898
   157
          val (n, ctxt') = yield_singleton Variable.variant_fixes "x" ctxt
boehmes@36899
   158
          val cv = certify ctxt' (Free (n, map typ_of cvs' ---> typ_of ct))
boehmes@36899
   159
          val cu = Drule.list_comb (cv, cvs')
boehmes@36898
   160
          val e = (t, (cv, fold_rev Thm.cabs cvs' ct))
boehmes@36898
   161
          val beta_norm' = beta_norm orelse not (null cvs')
boehmes@36899
   162
        in (cu, (ctxt', Termtab.update e tab, idx + 1, beta_norm')) end)
boehmes@36898
   163
  end
boehmes@36898
   164
boehmes@36898
   165
fun abs_comb f g cvs ct =
boehmes@36898
   166
  let val (cf, cu) = Thm.dest_comb ct
boehmes@36898
   167
  in f cvs cf ##>> g cvs cu #>> uncurry Thm.capply end
boehmes@36898
   168
boehmes@36899
   169
fun abs_arg f = abs_comb (K pair) f
boehmes@36899
   170
boehmes@36899
   171
fun abs_args f cvs ct =
boehmes@36899
   172
  (case Thm.term_of ct of
boehmes@36899
   173
    _ $ _ => abs_comb (abs_args f) f cvs ct
boehmes@36899
   174
  | _ => pair ct)
boehmes@36899
   175
boehmes@36898
   176
fun abs_list f g cvs ct =
boehmes@36898
   177
  (case Thm.term_of ct of
boehmes@36898
   178
    Const (@{const_name Nil}, _) => pair ct
boehmes@36898
   179
  | Const (@{const_name Cons}, _) $ _ $ _ =>
boehmes@36898
   180
      abs_comb (abs_arg f) (abs_list f g) cvs ct
boehmes@36898
   181
  | _ => g cvs ct)
boehmes@36898
   182
boehmes@36898
   183
fun abs_abs f cvs ct =
boehmes@36898
   184
  let val (cv, cu) = Thm.dest_abs NONE ct
boehmes@36898
   185
  in f (cv :: cvs) cu #>> Thm.cabs cv end
boehmes@36898
   186
boehmes@36898
   187
val is_atomic = (fn _ $ _ => false | Abs _ => false | _ => true)
boehmes@36898
   188
boehmes@36898
   189
fun abstract (ext_logic, with_theories) =
boehmes@36898
   190
  let
boehmes@36898
   191
    fun abstr1 cvs ct = abs_arg abstr cvs ct
boehmes@36898
   192
    and abstr2 cvs ct = abs_comb abstr1 abstr cvs ct
boehmes@36898
   193
    and abstr3 cvs ct = abs_comb abstr2 abstr cvs ct
boehmes@36898
   194
    and abstr_abs cvs ct = abs_arg (abs_abs abstr) cvs ct
boehmes@36898
   195
boehmes@36898
   196
    and abstr cvs ct =
boehmes@36898
   197
      (case Thm.term_of ct of
boehmes@40579
   198
        @{const Trueprop} $ _ => abstr1 cvs ct
boehmes@40579
   199
      | @{const "==>"} $ _ $ _ => abstr2 cvs ct
boehmes@40579
   200
      | @{const True} => pair ct
boehmes@40579
   201
      | @{const False} => pair ct
boehmes@40579
   202
      | @{const Not} $ _ => abstr1 cvs ct
boehmes@40579
   203
      | @{const HOL.conj} $ _ $ _ => abstr2 cvs ct
boehmes@40579
   204
      | @{const HOL.disj} $ _ $ _ => abstr2 cvs ct
boehmes@40579
   205
      | @{const HOL.implies} $ _ $ _ => abstr2 cvs ct
haftmann@38864
   206
      | Const (@{const_name HOL.eq}, _) $ _ $ _ => abstr2 cvs ct
boehmes@40274
   207
      | Const (@{const_name SMT.distinct}, _) $ _ =>
boehmes@36898
   208
          if ext_logic then abs_arg (abs_list abstr fresh_abstraction) cvs ct
boehmes@36898
   209
          else fresh_abstraction cvs ct
boehmes@36898
   210
      | Const (@{const_name If}, _) $ _ $ _ $ _ =>
boehmes@36898
   211
          if ext_logic then abstr3 cvs ct else fresh_abstraction cvs ct
boehmes@36898
   212
      | Const (@{const_name All}, _) $ _ =>
boehmes@36898
   213
          if ext_logic then abstr_abs cvs ct else fresh_abstraction cvs ct
boehmes@36898
   214
      | Const (@{const_name Ex}, _) $ _ =>
boehmes@36898
   215
          if ext_logic then abstr_abs cvs ct else fresh_abstraction cvs ct
boehmes@36899
   216
      | t => (fn cx =>
boehmes@36899
   217
          if is_atomic t orelse can HOLogic.dest_number t then (ct, cx)
boehmes@36899
   218
          else if with_theories andalso
boehmes@36899
   219
            I.is_builtin_theory_term (context_of cx) t
boehmes@36899
   220
          then abs_args abstr cvs ct cx
boehmes@36899
   221
          else fresh_abstraction cvs ct cx))
boehmes@36898
   222
  in abstr [] end
boehmes@36898
   223
boehmes@40579
   224
val cimp = Thm.cterm_of @{theory} @{const "==>"}
boehmes@40579
   225
boehmes@36898
   226
fun with_prems thms f ct =
boehmes@40579
   227
  fold_rev (Thm.mk_binop cimp o Thm.cprop_of) thms ct
boehmes@36898
   228
  |> f
boehmes@36898
   229
  |> fold (fn prem => fn th => Thm.implies_elim th prem) thms
boehmes@36898
   230
boehmes@36898
   231
in
boehmes@36898
   232
boehmes@36899
   233
fun by_abstraction mode ctxt thms prove = with_prems thms (fn ct =>
boehmes@36899
   234
  let val (cu, cx) = abstract mode ct (abs_context ctxt)
boehmes@36898
   235
  in abs_instantiate cx (prove (context_of cx) cu) end)
boehmes@36898
   236
boehmes@36898
   237
end
boehmes@36898
   238
boehmes@36898
   239
boehmes@36898
   240
boehmes@36898
   241
(* a faster COMP *)
boehmes@36898
   242
boehmes@36898
   243
type compose_data = cterm list * (cterm -> cterm list) * thm
boehmes@36898
   244
boehmes@36898
   245
fun list2 (x, y) = [x, y]
boehmes@36898
   246
boehmes@36898
   247
fun precompose f rule = (f (Thm.cprem_of rule 1), f, rule)
boehmes@36898
   248
fun precompose2 f rule = precompose (list2 o f) rule
boehmes@36898
   249
boehmes@36898
   250
fun compose (cvs, f, rule) thm =
boehmes@36898
   251
  discharge thm (Thm.instantiate ([], cvs ~~ f (Thm.cprop_of thm)) rule)
boehmes@36898
   252
boehmes@36898
   253
boehmes@36898
   254
boehmes@36898
   255
(* unfolding of 'distinct' *)
boehmes@36898
   256
boehmes@36898
   257
local
boehmes@36898
   258
  val set1 = @{lemma "x ~: set [] == ~False" by simp}
boehmes@36898
   259
  val set2 = @{lemma "x ~: set [x] == False" by simp}
boehmes@36898
   260
  val set3 = @{lemma "x ~: set [y] == x ~= y" by simp}
boehmes@36898
   261
  val set4 = @{lemma "x ~: set (x # ys) == False" by simp}
boehmes@36898
   262
  val set5 = @{lemma "x ~: set (y # ys) == x ~= y & x ~: set ys" by simp}
boehmes@36898
   263
boehmes@36898
   264
  fun set_conv ct =
wenzelm@36936
   265
    (Conv.rewrs_conv [set1, set2, set3, set4] else_conv
boehmes@36898
   266
    (Conv.rewr_conv set5 then_conv Conv.arg_conv set_conv)) ct
boehmes@36898
   267
boehmes@40274
   268
  val dist1 = @{lemma "SMT.distinct [] == ~False" by (simp add: distinct_def)}
boehmes@40274
   269
  val dist2 = @{lemma "SMT.distinct [x] == ~False" by (simp add: distinct_def)}
boehmes@40274
   270
  val dist3 = @{lemma "SMT.distinct (x # xs) == x ~: set xs & distinct xs"
boehmes@40274
   271
    by (simp add: distinct_def)}
boehmes@36898
   272
boehmes@36898
   273
  fun binop_conv cv1 cv2 = Conv.combination_conv (Conv.arg_conv cv1) cv2
boehmes@36898
   274
in
boehmes@36898
   275
fun unfold_distinct_conv ct =
wenzelm@36936
   276
  (Conv.rewrs_conv [dist1, dist2] else_conv
boehmes@36898
   277
  (Conv.rewr_conv dist3 then_conv binop_conv set_conv unfold_distinct_conv)) ct
boehmes@36898
   278
end
boehmes@36898
   279
boehmes@36898
   280
boehmes@36898
   281
boehmes@36898
   282
(* simpset *)
boehmes@36898
   283
boehmes@36898
   284
local
boehmes@36898
   285
  val antisym_le1 = mk_meta_eq @{thm order_class.antisym_conv}
boehmes@36898
   286
  val antisym_le2 = mk_meta_eq @{thm linorder_class.antisym_conv2}
boehmes@36898
   287
  val antisym_less1 = mk_meta_eq @{thm linorder_class.antisym_conv1}
boehmes@36898
   288
  val antisym_less2 = mk_meta_eq @{thm linorder_class.antisym_conv3}
boehmes@36898
   289
boehmes@36898
   290
  fun eq_prop t thm = HOLogic.mk_Trueprop t aconv Thm.prop_of thm
boehmes@36898
   291
  fun dest_binop ((c as Const _) $ t $ u) = (c, t, u)
boehmes@36898
   292
    | dest_binop t = raise TERM ("dest_binop", [t])
boehmes@36898
   293
boehmes@36898
   294
  fun prove_antisym_le ss t =
boehmes@36898
   295
    let
boehmes@36898
   296
      val (le, r, s) = dest_binop t
boehmes@36898
   297
      val less = Const (@{const_name less}, Term.fastype_of le)
boehmes@36898
   298
      val prems = Simplifier.prems_of_ss ss
boehmes@36898
   299
    in
boehmes@36898
   300
      (case find_first (eq_prop (le $ s $ r)) prems of
boehmes@36898
   301
        NONE =>
boehmes@36898
   302
          find_first (eq_prop (HOLogic.mk_not (less $ r $ s))) prems
boehmes@36898
   303
          |> Option.map (fn thm => thm RS antisym_less1)
boehmes@36898
   304
      | SOME thm => SOME (thm RS antisym_le1))
boehmes@36898
   305
    end
boehmes@36898
   306
    handle THM _ => NONE
boehmes@36898
   307
boehmes@36898
   308
  fun prove_antisym_less ss t =
boehmes@36898
   309
    let
boehmes@36898
   310
      val (less, r, s) = dest_binop (HOLogic.dest_not t)
boehmes@36898
   311
      val le = Const (@{const_name less_eq}, Term.fastype_of less)
boehmes@36898
   312
      val prems = prems_of_ss ss
boehmes@36898
   313
    in
boehmes@36898
   314
      (case find_first (eq_prop (le $ r $ s)) prems of
boehmes@36898
   315
        NONE =>
boehmes@36898
   316
          find_first (eq_prop (HOLogic.mk_not (less $ s $ r))) prems
boehmes@36898
   317
          |> Option.map (fn thm => thm RS antisym_less2)
boehmes@36898
   318
      | SOME thm => SOME (thm RS antisym_le2))
boehmes@36898
   319
  end
boehmes@36898
   320
  handle THM _ => NONE
boehmes@36899
   321
boehmes@36899
   322
  val basic_simpset = HOL_ss addsimps @{thms field_simps}
boehmes@36899
   323
    addsimps [@{thm times_divide_eq_right}, @{thm times_divide_eq_left}]
boehmes@36899
   324
    addsimps @{thms arith_special} addsimps @{thms less_bin_simps}
boehmes@36899
   325
    addsimps @{thms le_bin_simps} addsimps @{thms eq_bin_simps}
boehmes@36899
   326
    addsimps @{thms add_bin_simps} addsimps @{thms succ_bin_simps}
boehmes@36899
   327
    addsimps @{thms minus_bin_simps} addsimps @{thms pred_bin_simps}
boehmes@36899
   328
    addsimps @{thms mult_bin_simps} addsimps @{thms iszero_simps}
boehmes@36899
   329
    addsimps @{thms array_rules}
boehmes@37151
   330
    addsimps @{thms z3div_def} addsimps @{thms z3mod_def}
boehmes@36899
   331
    addsimprocs [
wenzelm@38715
   332
      Simplifier.simproc_global @{theory} "fast_int_arith" [
boehmes@36899
   333
        "(m::int) < n", "(m::int) <= n", "(m::int) = n"] (K Lin_Arith.simproc),
wenzelm@38715
   334
      Simplifier.simproc_global @{theory} "antisym_le" ["(x::'a::order) <= y"]
boehmes@36899
   335
        (K prove_antisym_le),
wenzelm@38715
   336
      Simplifier.simproc_global @{theory} "antisym_less" ["~ (x::'a::linorder) < y"]
boehmes@36899
   337
        (K prove_antisym_less)]
boehmes@36899
   338
boehmes@36899
   339
  structure Simpset = Generic_Data
boehmes@36899
   340
  (
boehmes@36899
   341
    type T = simpset
boehmes@36899
   342
    val empty = basic_simpset
boehmes@36899
   343
    val extend = I
boehmes@36899
   344
    val merge = Simplifier.merge_ss
boehmes@36899
   345
  )
boehmes@36898
   346
in
boehmes@36898
   347
boehmes@36899
   348
fun add_simproc simproc = Simpset.map (fn ss => ss addsimprocs [simproc])
boehmes@36899
   349
boehmes@36899
   350
fun make_simpset ctxt rules =
boehmes@36899
   351
  Simplifier.context ctxt (Simpset.get (Context.Proof ctxt)) addsimps rules
boehmes@36898
   352
boehmes@36898
   353
end
boehmes@36898
   354
boehmes@36898
   355
end