src/HOL/Library/Float.thy
author immler
Wed Nov 12 17:37:43 2014 +0100 (2014-11-12)
changeset 58989 99831590def5
parent 58987 119680ebf37c
child 59487 adaa430fc0f7
permissions -rw-r--r--
tuned proofs
hoelzl@47615
     1
(*  Title:      HOL/Library/Float.thy
hoelzl@47615
     2
    Author:     Johannes Hölzl, Fabian Immler
hoelzl@47615
     3
    Copyright   2012  TU München
hoelzl@47615
     4
*)
hoelzl@47615
     5
wenzelm@58881
     6
section {* Floating-Point Numbers *}
huffman@29988
     7
haftmann@20485
     8
theory Float
wenzelm@51542
     9
imports Complex_Main Lattice_Algebras
haftmann@20485
    10
begin
obua@16782
    11
wenzelm@49812
    12
definition "float = {m * 2 powr e | (m :: int) (e :: int). True}"
wenzelm@49812
    13
wenzelm@49834
    14
typedef float = float
hoelzl@47599
    15
  morphisms real_of_float float_of
wenzelm@49812
    16
  unfolding float_def by auto
obua@16782
    17
hoelzl@58042
    18
instantiation float :: real_of
hoelzl@58042
    19
begin
hoelzl@58042
    20
hoelzl@58042
    21
definition real_float :: "float \<Rightarrow> real" where
hoelzl@47601
    22
  real_of_float_def[code_unfold]: "real \<equiv> real_of_float"
hoelzl@47601
    23
hoelzl@58042
    24
instance ..
hoelzl@58042
    25
end
hoelzl@58042
    26
hoelzl@47601
    27
lemma type_definition_float': "type_definition real float_of float"
hoelzl@47601
    28
  using type_definition_float unfolding real_of_float_def .
hoelzl@47601
    29
kuncar@47937
    30
setup_lifting (no_code) type_definition_float'
hoelzl@47599
    31
hoelzl@47599
    32
lemmas float_of_inject[simp]
hoelzl@47599
    33
hoelzl@47600
    34
declare [[coercion "real :: float \<Rightarrow> real"]]
hoelzl@47600
    35
hoelzl@47600
    36
lemma real_of_float_eq:
hoelzl@47600
    37
  fixes f1 f2 :: float shows "f1 = f2 \<longleftrightarrow> real f1 = real f2"
hoelzl@47599
    38
  unfolding real_of_float_def real_of_float_inject ..
hoelzl@47599
    39
hoelzl@47599
    40
lemma float_of_real[simp]: "float_of (real x) = x"
hoelzl@47599
    41
  unfolding real_of_float_def by (rule real_of_float_inverse)
hoelzl@29804
    42
hoelzl@47599
    43
lemma real_float[simp]: "x \<in> float \<Longrightarrow> real (float_of x) = x"
hoelzl@47599
    44
  unfolding real_of_float_def by (rule float_of_inverse)
obua@16782
    45
hoelzl@47599
    46
subsection {* Real operations preserving the representation as floating point number *}
hoelzl@47599
    47
hoelzl@47599
    48
lemma floatI: fixes m e :: int shows "m * 2 powr e = x \<Longrightarrow> x \<in> float"
hoelzl@47599
    49
  by (auto simp: float_def)
wenzelm@19765
    50
hoelzl@47599
    51
lemma zero_float[simp]: "0 \<in> float" by (auto simp: float_def)
hoelzl@47599
    52
lemma one_float[simp]: "1 \<in> float" by (intro floatI[of 1 0]) simp
wenzelm@53381
    53
lemma numeral_float[simp]: "numeral i \<in> float" by (intro floatI[of "numeral i" 0]) simp
haftmann@54489
    54
lemma neg_numeral_float[simp]: "- numeral i \<in> float" by (intro floatI[of "- numeral i" 0]) simp
hoelzl@47599
    55
lemma real_of_int_float[simp]: "real (x :: int) \<in> float" by (intro floatI[of x 0]) simp
hoelzl@47600
    56
lemma real_of_nat_float[simp]: "real (x :: nat) \<in> float" by (intro floatI[of x 0]) simp
hoelzl@47599
    57
lemma two_powr_int_float[simp]: "2 powr (real (i::int)) \<in> float" by (intro floatI[of 1 i]) simp
hoelzl@47599
    58
lemma two_powr_nat_float[simp]: "2 powr (real (i::nat)) \<in> float" by (intro floatI[of 1 i]) simp
hoelzl@47599
    59
lemma two_powr_minus_int_float[simp]: "2 powr - (real (i::int)) \<in> float" by (intro floatI[of 1 "-i"]) simp
hoelzl@47599
    60
lemma two_powr_minus_nat_float[simp]: "2 powr - (real (i::nat)) \<in> float" by (intro floatI[of 1 "-i"]) simp
hoelzl@47599
    61
lemma two_powr_numeral_float[simp]: "2 powr numeral i \<in> float" by (intro floatI[of 1 "numeral i"]) simp
haftmann@54489
    62
lemma two_powr_neg_numeral_float[simp]: "2 powr - numeral i \<in> float" by (intro floatI[of 1 "- numeral i"]) simp
hoelzl@47599
    63
lemma two_pow_float[simp]: "2 ^ n \<in> float" by (intro floatI[of 1 "n"]) (simp add: powr_realpow)
hoelzl@47599
    64
lemma real_of_float_float[simp]: "real (f::float) \<in> float" by (cases f) simp
hoelzl@45495
    65
hoelzl@47599
    66
lemma plus_float[simp]: "r \<in> float \<Longrightarrow> p \<in> float \<Longrightarrow> r + p \<in> float"
hoelzl@47599
    67
  unfolding float_def
hoelzl@47599
    68
proof (safe, simp)
hoelzl@47599
    69
  fix e1 m1 e2 m2 :: int
hoelzl@47599
    70
  { fix e1 m1 e2 m2 :: int assume "e1 \<le> e2"
hoelzl@47599
    71
    then have "m1 * 2 powr e1 + m2 * 2 powr e2 = (m1 + m2 * 2 ^ nat (e2 - e1)) * 2 powr e1"
hoelzl@47599
    72
      by (simp add: powr_realpow[symmetric] powr_divide2[symmetric] field_simps)
hoelzl@47599
    73
    then have "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
hoelzl@47599
    74
      by blast }
hoelzl@47599
    75
  note * = this
hoelzl@47599
    76
  show "\<exists>(m::int) (e::int). m1 * 2 powr e1 + m2 * 2 powr e2 = m * 2 powr e"
hoelzl@47599
    77
  proof (cases e1 e2 rule: linorder_le_cases)
hoelzl@47599
    78
    assume "e2 \<le> e1" from *[OF this, of m2 m1] show ?thesis by (simp add: ac_simps)
hoelzl@47599
    79
  qed (rule *)
hoelzl@47599
    80
qed
obua@16782
    81
hoelzl@47599
    82
lemma uminus_float[simp]: "x \<in> float \<Longrightarrow> -x \<in> float"
hoelzl@47599
    83
  apply (auto simp: float_def)
thomas@57492
    84
  apply hypsubst_thin
hoelzl@47599
    85
  apply (rule_tac x="-x" in exI)
hoelzl@47599
    86
  apply (rule_tac x="xa" in exI)
hoelzl@47599
    87
  apply (simp add: field_simps)
hoelzl@47599
    88
  done
hoelzl@29804
    89
hoelzl@47599
    90
lemma times_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x * y \<in> float"
hoelzl@47599
    91
  apply (auto simp: float_def)
thomas@57492
    92
  apply hypsubst_thin
hoelzl@47599
    93
  apply (rule_tac x="x * xa" in exI)
hoelzl@47599
    94
  apply (rule_tac x="xb + xc" in exI)
hoelzl@47599
    95
  apply (simp add: powr_add)
hoelzl@47599
    96
  done
hoelzl@29804
    97
hoelzl@47599
    98
lemma minus_float[simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> x - y \<in> float"
haftmann@54230
    99
  using plus_float [of x "- y"] by simp
hoelzl@47599
   100
hoelzl@47599
   101
lemma abs_float[simp]: "x \<in> float \<Longrightarrow> abs x \<in> float"
hoelzl@47599
   102
  by (cases x rule: linorder_cases[of 0]) auto
hoelzl@47599
   103
hoelzl@47599
   104
lemma sgn_of_float[simp]: "x \<in> float \<Longrightarrow> sgn x \<in> float"
hoelzl@47599
   105
  by (cases x rule: linorder_cases[of 0]) (auto intro!: uminus_float)
wenzelm@21404
   106
hoelzl@47599
   107
lemma div_power_2_float[simp]: "x \<in> float \<Longrightarrow> x / 2^d \<in> float"
hoelzl@47599
   108
  apply (auto simp add: float_def)
thomas@57492
   109
  apply hypsubst_thin
hoelzl@47599
   110
  apply (rule_tac x="x" in exI)
hoelzl@47599
   111
  apply (rule_tac x="xa - d" in exI)
hoelzl@47599
   112
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
hoelzl@47599
   113
  done
hoelzl@47599
   114
hoelzl@47599
   115
lemma div_power_2_int_float[simp]: "x \<in> float \<Longrightarrow> x / (2::int)^d \<in> float"
hoelzl@47599
   116
  apply (auto simp add: float_def)
thomas@57492
   117
  apply hypsubst_thin
hoelzl@47599
   118
  apply (rule_tac x="x" in exI)
hoelzl@47599
   119
  apply (rule_tac x="xa - d" in exI)
hoelzl@47599
   120
  apply (simp add: powr_realpow[symmetric] field_simps powr_add[symmetric])
hoelzl@47599
   121
  done
obua@16782
   122
hoelzl@47599
   123
lemma div_numeral_Bit0_float[simp]:
hoelzl@47599
   124
  assumes x: "x / numeral n \<in> float" shows "x / (numeral (Num.Bit0 n)) \<in> float"
hoelzl@47599
   125
proof -
hoelzl@47599
   126
  have "(x / numeral n) / 2^1 \<in> float"
hoelzl@47599
   127
    by (intro x div_power_2_float)
hoelzl@47599
   128
  also have "(x / numeral n) / 2^1 = x / (numeral (Num.Bit0 n))"
hoelzl@47599
   129
    by (induct n) auto
hoelzl@47599
   130
  finally show ?thesis .
hoelzl@47599
   131
qed
hoelzl@47599
   132
hoelzl@47599
   133
lemma div_neg_numeral_Bit0_float[simp]:
haftmann@54489
   134
  assumes x: "x / numeral n \<in> float" shows "x / (- numeral (Num.Bit0 n)) \<in> float"
hoelzl@47599
   135
proof -
hoelzl@47599
   136
  have "- (x / numeral (Num.Bit0 n)) \<in> float" using x by simp
haftmann@54489
   137
  also have "- (x / numeral (Num.Bit0 n)) = x / - numeral (Num.Bit0 n)"
haftmann@54489
   138
    by simp
hoelzl@47599
   139
  finally show ?thesis .
hoelzl@29804
   140
qed
obua@16782
   141
immler@58985
   142
lemma power_float[simp]: assumes "a \<in> float" shows "a ^ b \<in> float"
immler@58985
   143
proof -
immler@58985
   144
  from assms obtain m e::int where "a = m * 2 powr e"
immler@58985
   145
    by (auto simp: float_def)
immler@58985
   146
  thus ?thesis
immler@58985
   147
    by (auto intro!: floatI[where m="m^b" and e = "e*b"]
immler@58985
   148
      simp: power_mult_distrib powr_realpow[symmetric] powr_powr)
immler@58985
   149
qed
immler@58985
   150
hoelzl@47600
   151
lift_definition Float :: "int \<Rightarrow> int \<Rightarrow> float" is "\<lambda>(m::int) (e::int). m * 2 powr e" by simp
hoelzl@47601
   152
declare Float.rep_eq[simp]
hoelzl@47601
   153
hoelzl@47780
   154
lemma compute_real_of_float[code]:
hoelzl@47780
   155
  "real_of_float (Float m e) = (if e \<ge> 0 then m * 2 ^ nat e else m / 2 ^ (nat (-e)))"
hoelzl@47780
   156
by (simp add: real_of_float_def[symmetric] powr_int)
hoelzl@47780
   157
hoelzl@47601
   158
code_datatype Float
hoelzl@47600
   159
hoelzl@47599
   160
subsection {* Arithmetic operations on floating point numbers *}
hoelzl@47599
   161
hoelzl@47600
   162
instantiation float :: "{ring_1, linorder, linordered_ring, linordered_idom, numeral, equal}"
hoelzl@47599
   163
begin
hoelzl@47599
   164
hoelzl@47600
   165
lift_definition zero_float :: float is 0 by simp
hoelzl@47601
   166
declare zero_float.rep_eq[simp]
hoelzl@47600
   167
lift_definition one_float :: float is 1 by simp
hoelzl@47601
   168
declare one_float.rep_eq[simp]
hoelzl@47600
   169
lift_definition plus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op +" by simp
hoelzl@47601
   170
declare plus_float.rep_eq[simp]
hoelzl@47600
   171
lift_definition times_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op *" by simp
hoelzl@47601
   172
declare times_float.rep_eq[simp]
hoelzl@47600
   173
lift_definition minus_float :: "float \<Rightarrow> float \<Rightarrow> float" is "op -" by simp
hoelzl@47601
   174
declare minus_float.rep_eq[simp]
hoelzl@47600
   175
lift_definition uminus_float :: "float \<Rightarrow> float" is "uminus" by simp
hoelzl@47601
   176
declare uminus_float.rep_eq[simp]
hoelzl@47599
   177
hoelzl@47600
   178
lift_definition abs_float :: "float \<Rightarrow> float" is abs by simp
hoelzl@47601
   179
declare abs_float.rep_eq[simp]
hoelzl@47600
   180
lift_definition sgn_float :: "float \<Rightarrow> float" is sgn by simp
hoelzl@47601
   181
declare sgn_float.rep_eq[simp]
obua@16782
   182
kuncar@55565
   183
lift_definition equal_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op = :: real \<Rightarrow> real \<Rightarrow> bool" .
hoelzl@47599
   184
kuncar@55565
   185
lift_definition less_eq_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op \<le>" .
hoelzl@47601
   186
declare less_eq_float.rep_eq[simp]
kuncar@55565
   187
lift_definition less_float :: "float \<Rightarrow> float \<Rightarrow> bool" is "op <" .
hoelzl@47601
   188
declare less_float.rep_eq[simp]
obua@16782
   189
hoelzl@47599
   190
instance
hoelzl@47600
   191
  proof qed (transfer, fastforce simp add: field_simps intro: mult_left_mono mult_right_mono)+
hoelzl@47599
   192
end
hoelzl@29804
   193
immler@58985
   194
lemma Float_0_eq_0[simp]: "Float 0 e = 0"
immler@58985
   195
  by transfer simp
immler@58985
   196
hoelzl@47599
   197
lemma real_of_float_power[simp]: fixes f::float shows "real (f^n) = real f^n"
hoelzl@47599
   198
  by (induct n) simp_all
hoelzl@45495
   199
wenzelm@53381
   200
lemma fixes x y::float
hoelzl@47600
   201
  shows real_of_float_min: "real (min x y) = min (real x) (real y)"
hoelzl@47600
   202
    and real_of_float_max: "real (max x y) = max (real x) (real y)"
hoelzl@47600
   203
  by (simp_all add: min_def max_def)
hoelzl@47599
   204
hoelzl@53215
   205
instance float :: unbounded_dense_linorder
hoelzl@47599
   206
proof
hoelzl@47599
   207
  fix a b :: float
hoelzl@47599
   208
  show "\<exists>c. a < c"
hoelzl@47599
   209
    apply (intro exI[of _ "a + 1"])
hoelzl@47600
   210
    apply transfer
hoelzl@47599
   211
    apply simp
hoelzl@47599
   212
    done
hoelzl@47599
   213
  show "\<exists>c. c < a"
hoelzl@47599
   214
    apply (intro exI[of _ "a - 1"])
hoelzl@47600
   215
    apply transfer
hoelzl@47599
   216
    apply simp
hoelzl@47599
   217
    done
hoelzl@47599
   218
  assume "a < b"
hoelzl@47599
   219
  then show "\<exists>c. a < c \<and> c < b"
haftmann@58410
   220
    apply (intro exI[of _ "(a + b) * Float 1 (- 1)"])
hoelzl@47600
   221
    apply transfer
haftmann@54489
   222
    apply (simp add: powr_minus)
hoelzl@29804
   223
    done
hoelzl@29804
   224
qed
hoelzl@29804
   225
hoelzl@47600
   226
instantiation float :: lattice_ab_group_add
wenzelm@46573
   227
begin
hoelzl@47599
   228
hoelzl@47600
   229
definition inf_float::"float\<Rightarrow>float\<Rightarrow>float"
hoelzl@47600
   230
where "inf_float a b = min a b"
hoelzl@29804
   231
hoelzl@47600
   232
definition sup_float::"float\<Rightarrow>float\<Rightarrow>float"
hoelzl@47600
   233
where "sup_float a b = max a b"
hoelzl@29804
   234
hoelzl@47599
   235
instance
hoelzl@47600
   236
  by default
hoelzl@47600
   237
     (transfer, simp_all add: inf_float_def sup_float_def real_of_float_min real_of_float_max)+
hoelzl@29804
   238
end
hoelzl@29804
   239
hoelzl@47600
   240
lemma float_numeral[simp]: "real (numeral x :: float) = numeral x"
hoelzl@47600
   241
  apply (induct x)
hoelzl@47600
   242
  apply simp
hoelzl@47600
   243
  apply (simp_all only: numeral_Bit0 numeral_Bit1 real_of_float_eq real_float
hoelzl@47601
   244
                  plus_float.rep_eq one_float.rep_eq plus_float numeral_float one_float)
hoelzl@47600
   245
  done
hoelzl@29804
   246
wenzelm@53381
   247
lemma transfer_numeral [transfer_rule]:
blanchet@55945
   248
  "rel_fun (op =) pcr_float (numeral :: _ \<Rightarrow> real) (numeral :: _ \<Rightarrow> float)"
blanchet@55945
   249
  unfolding rel_fun_def float.pcr_cr_eq  cr_float_def by simp
hoelzl@47599
   250
haftmann@54489
   251
lemma float_neg_numeral[simp]: "real (- numeral x :: float) = - numeral x"
haftmann@54489
   252
  by simp
huffman@47108
   253
wenzelm@53381
   254
lemma transfer_neg_numeral [transfer_rule]:
blanchet@55945
   255
  "rel_fun (op =) pcr_float (- numeral :: _ \<Rightarrow> real) (- numeral :: _ \<Rightarrow> float)"
blanchet@55945
   256
  unfolding rel_fun_def float.pcr_cr_eq cr_float_def by simp
hoelzl@47600
   257
hoelzl@47599
   258
lemma
hoelzl@47600
   259
  shows float_of_numeral[simp]: "numeral k = float_of (numeral k)"
haftmann@54489
   260
    and float_of_neg_numeral[simp]: "- numeral k = float_of (- numeral k)"
hoelzl@47600
   261
  unfolding real_of_float_eq by simp_all
huffman@47108
   262
immler@58987
   263
subsection {* Quickcheck *}
immler@58987
   264
immler@58987
   265
instantiation float :: exhaustive
immler@58987
   266
begin
immler@58987
   267
immler@58987
   268
definition exhaustive_float where
immler@58987
   269
  "exhaustive_float f d =
immler@58987
   270
    Quickcheck_Exhaustive.exhaustive (%x. Quickcheck_Exhaustive.exhaustive (%y. f (Float x y)) d) d"
immler@58987
   271
immler@58987
   272
instance ..
immler@58987
   273
immler@58987
   274
end
immler@58987
   275
immler@58987
   276
definition (in term_syntax) [code_unfold]:
immler@58987
   277
  "valtermify_float x y = Code_Evaluation.valtermify Float {\<cdot>} x {\<cdot>} y"
immler@58987
   278
immler@58987
   279
instantiation float :: full_exhaustive
immler@58987
   280
begin
immler@58987
   281
immler@58987
   282
definition full_exhaustive_float where
immler@58987
   283
  "full_exhaustive_float f d =
immler@58987
   284
    Quickcheck_Exhaustive.full_exhaustive
immler@58987
   285
      (\<lambda>x. Quickcheck_Exhaustive.full_exhaustive (\<lambda>y. f (valtermify_float x y)) d) d"
immler@58987
   286
immler@58987
   287
instance ..
immler@58987
   288
immler@58987
   289
end
immler@58987
   290
immler@58987
   291
instantiation float :: random
immler@58987
   292
begin
immler@58987
   293
immler@58987
   294
definition "Quickcheck_Random.random i =
immler@58987
   295
  scomp (Quickcheck_Random.random (2 ^ nat_of_natural i))
immler@58987
   296
    (\<lambda>man. scomp (Quickcheck_Random.random i) (\<lambda>exp. Pair (valtermify_float man exp)))"
immler@58987
   297
immler@58987
   298
instance ..
immler@58987
   299
immler@58987
   300
end
immler@58987
   301
immler@58987
   302
hoelzl@47599
   303
subsection {* Represent floats as unique mantissa and exponent *}
huffman@47108
   304
hoelzl@47599
   305
lemma int_induct_abs[case_names less]:
hoelzl@47599
   306
  fixes j :: int
hoelzl@47599
   307
  assumes H: "\<And>n. (\<And>i. \<bar>i\<bar> < \<bar>n\<bar> \<Longrightarrow> P i) \<Longrightarrow> P n"
hoelzl@47599
   308
  shows "P j"
hoelzl@47599
   309
proof (induct "nat \<bar>j\<bar>" arbitrary: j rule: less_induct)
hoelzl@47599
   310
  case less show ?case by (rule H[OF less]) simp
hoelzl@47599
   311
qed
hoelzl@47599
   312
hoelzl@47599
   313
lemma int_cancel_factors:
hoelzl@47599
   314
  fixes n :: int assumes "1 < r" shows "n = 0 \<or> (\<exists>k i. n = k * r ^ i \<and> \<not> r dvd k)"
hoelzl@47599
   315
proof (induct n rule: int_induct_abs)
hoelzl@47599
   316
  case (less n)
hoelzl@47599
   317
  { fix m assume n: "n \<noteq> 0" "n = m * r"
hoelzl@47599
   318
    then have "\<bar>m \<bar> < \<bar>n\<bar>"
hoelzl@47599
   319
      by (metis abs_dvd_iff abs_ge_self assms comm_semiring_1_class.normalizing_semiring_rules(7)
hoelzl@47599
   320
                dvd_imp_le_int dvd_refl dvd_triv_right linorder_neq_iff linorder_not_le
hoelzl@47599
   321
                mult_eq_0_iff zdvd_mult_cancel1)
hoelzl@47599
   322
    from less[OF this] n have "\<exists>k i. n = k * r ^ Suc i \<and> \<not> r dvd k" by auto }
hoelzl@47599
   323
  then show ?case
hoelzl@47599
   324
    by (metis comm_semiring_1_class.normalizing_semiring_rules(12,7) dvdE power_0)
hoelzl@47599
   325
qed
hoelzl@47599
   326
hoelzl@47599
   327
lemma mult_powr_eq_mult_powr_iff_asym:
hoelzl@47599
   328
  fixes m1 m2 e1 e2 :: int
hoelzl@47599
   329
  assumes m1: "\<not> 2 dvd m1" and "e1 \<le> e2"
hoelzl@47599
   330
  shows "m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
hoelzl@47599
   331
proof
hoelzl@47599
   332
  have "m1 \<noteq> 0" using m1 unfolding dvd_def by auto
hoelzl@47599
   333
  assume eq: "m1 * 2 powr e1 = m2 * 2 powr e2"
hoelzl@47599
   334
  with `e1 \<le> e2` have "m1 = m2 * 2 powr nat (e2 - e1)"
hoelzl@47599
   335
    by (simp add: powr_divide2[symmetric] field_simps)
hoelzl@47599
   336
  also have "\<dots> = m2 * 2^nat (e2 - e1)"
hoelzl@47599
   337
    by (simp add: powr_realpow)
hoelzl@47599
   338
  finally have m1_eq: "m1 = m2 * 2^nat (e2 - e1)"
hoelzl@47599
   339
    unfolding real_of_int_inject .
hoelzl@47599
   340
  with m1 have "m1 = m2"
hoelzl@47599
   341
    by (cases "nat (e2 - e1)") (auto simp add: dvd_def)
hoelzl@47599
   342
  then show "m1 = m2 \<and> e1 = e2"
hoelzl@47599
   343
    using eq `m1 \<noteq> 0` by (simp add: powr_inj)
hoelzl@47599
   344
qed simp
hoelzl@47599
   345
hoelzl@47599
   346
lemma mult_powr_eq_mult_powr_iff:
hoelzl@47599
   347
  fixes m1 m2 e1 e2 :: int
hoelzl@47599
   348
  shows "\<not> 2 dvd m1 \<Longrightarrow> \<not> 2 dvd m2 \<Longrightarrow> m1 * 2 powr e1 = m2 * 2 powr e2 \<longleftrightarrow> m1 = m2 \<and> e1 = e2"
hoelzl@47599
   349
  using mult_powr_eq_mult_powr_iff_asym[of m1 e1 e2 m2]
hoelzl@47599
   350
  using mult_powr_eq_mult_powr_iff_asym[of m2 e2 e1 m1]
hoelzl@47599
   351
  by (cases e1 e2 rule: linorder_le_cases) auto
hoelzl@47599
   352
hoelzl@47599
   353
lemma floatE_normed:
hoelzl@47599
   354
  assumes x: "x \<in> float"
hoelzl@47599
   355
  obtains (zero) "x = 0"
hoelzl@47599
   356
   | (powr) m e :: int where "x = m * 2 powr e" "\<not> 2 dvd m" "x \<noteq> 0"
hoelzl@47599
   357
proof atomize_elim
hoelzl@47599
   358
  { assume "x \<noteq> 0"
hoelzl@47599
   359
    from x obtain m e :: int where x: "x = m * 2 powr e" by (auto simp: float_def)
hoelzl@47599
   360
    with `x \<noteq> 0` int_cancel_factors[of 2 m] obtain k i where "m = k * 2 ^ i" "\<not> 2 dvd k"
hoelzl@47599
   361
      by auto
hoelzl@47599
   362
    with `\<not> 2 dvd k` x have "\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m"
hoelzl@47599
   363
      by (rule_tac exI[of _ "k"], rule_tac exI[of _ "e + int i"])
hoelzl@47599
   364
         (simp add: powr_add powr_realpow) }
hoelzl@47599
   365
  then show "x = 0 \<or> (\<exists>(m::int) (e::int). x = m * 2 powr e \<and> \<not> (2::int) dvd m \<and> x \<noteq> 0)"
hoelzl@47599
   366
    by blast
hoelzl@47599
   367
qed
hoelzl@47599
   368
hoelzl@47599
   369
lemma float_normed_cases:
hoelzl@47599
   370
  fixes f :: float
hoelzl@47599
   371
  obtains (zero) "f = 0"
hoelzl@47599
   372
   | (powr) m e :: int where "real f = m * 2 powr e" "\<not> 2 dvd m" "f \<noteq> 0"
hoelzl@47599
   373
proof (atomize_elim, induct f)
hoelzl@47599
   374
  case (float_of y) then show ?case
hoelzl@47600
   375
    by (cases rule: floatE_normed) (auto simp: zero_float_def)
hoelzl@47599
   376
qed
hoelzl@47599
   377
hoelzl@47599
   378
definition mantissa :: "float \<Rightarrow> int" where
hoelzl@47599
   379
  "mantissa f = fst (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   380
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"
hoelzl@47599
   381
hoelzl@47599
   382
definition exponent :: "float \<Rightarrow> int" where
hoelzl@47599
   383
  "exponent f = snd (SOME p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   384
   \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p))"
hoelzl@47599
   385
wenzelm@53381
   386
lemma
hoelzl@47599
   387
  shows exponent_0[simp]: "exponent (float_of 0) = 0" (is ?E)
hoelzl@47599
   388
    and mantissa_0[simp]: "mantissa (float_of 0) = 0" (is ?M)
hoelzl@47599
   389
proof -
hoelzl@47599
   390
  have "\<And>p::int \<times> int. fst p = 0 \<and> snd p = 0 \<longleftrightarrow> p = (0, 0)" by auto
hoelzl@47599
   391
  then show ?E ?M
hoelzl@47600
   392
    by (auto simp add: mantissa_def exponent_def zero_float_def)
hoelzl@29804
   393
qed
hoelzl@29804
   394
hoelzl@47599
   395
lemma
hoelzl@47599
   396
  shows mantissa_exponent: "real f = mantissa f * 2 powr exponent f" (is ?E)
hoelzl@47599
   397
    and mantissa_not_dvd: "f \<noteq> (float_of 0) \<Longrightarrow> \<not> 2 dvd mantissa f" (is "_ \<Longrightarrow> ?D")
hoelzl@47599
   398
proof cases
hoelzl@47599
   399
  assume [simp]: "f \<noteq> (float_of 0)"
hoelzl@47599
   400
  have "f = mantissa f * 2 powr exponent f \<and> \<not> 2 dvd mantissa f"
hoelzl@47599
   401
  proof (cases f rule: float_normed_cases)
hoelzl@47599
   402
    case (powr m e)
hoelzl@47599
   403
    then have "\<exists>p::int \<times> int. (f = 0 \<and> fst p = 0 \<and> snd p = 0)
hoelzl@47599
   404
     \<or> (f \<noteq> 0 \<and> real f = real (fst p) * 2 powr real (snd p) \<and> \<not> 2 dvd fst p)"
hoelzl@47599
   405
      by auto
hoelzl@47599
   406
    then show ?thesis
hoelzl@47599
   407
      unfolding exponent_def mantissa_def
hoelzl@47600
   408
      by (rule someI2_ex) (simp add: zero_float_def)
hoelzl@47600
   409
  qed (simp add: zero_float_def)
hoelzl@47599
   410
  then show ?E ?D by auto
hoelzl@47599
   411
qed simp
hoelzl@47599
   412
hoelzl@47599
   413
lemma mantissa_noteq_0: "f \<noteq> float_of 0 \<Longrightarrow> mantissa f \<noteq> 0"
hoelzl@47599
   414
  using mantissa_not_dvd[of f] by auto
hoelzl@47599
   415
wenzelm@53381
   416
lemma
hoelzl@47599
   417
  fixes m e :: int
hoelzl@47599
   418
  defines "f \<equiv> float_of (m * 2 powr e)"
hoelzl@47599
   419
  assumes dvd: "\<not> 2 dvd m"
hoelzl@47599
   420
  shows mantissa_float: "mantissa f = m" (is "?M")
hoelzl@47599
   421
    and exponent_float: "m \<noteq> 0 \<Longrightarrow> exponent f = e" (is "_ \<Longrightarrow> ?E")
hoelzl@47599
   422
proof cases
hoelzl@47599
   423
  assume "m = 0" with dvd show "mantissa f = m" by auto
hoelzl@47599
   424
next
hoelzl@47599
   425
  assume "m \<noteq> 0"
hoelzl@47599
   426
  then have f_not_0: "f \<noteq> float_of 0" by (simp add: f_def)
hoelzl@47599
   427
  from mantissa_exponent[of f]
hoelzl@47599
   428
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
hoelzl@47599
   429
    by (auto simp add: f_def)
hoelzl@47599
   430
  then show "?M" "?E"
hoelzl@47599
   431
    using mantissa_not_dvd[OF f_not_0] dvd
hoelzl@47599
   432
    by (auto simp: mult_powr_eq_mult_powr_iff)
hoelzl@47599
   433
qed
hoelzl@47599
   434
hoelzl@47600
   435
subsection {* Compute arithmetic operations *}
hoelzl@47600
   436
hoelzl@47600
   437
lemma Float_mantissa_exponent: "Float (mantissa f) (exponent f) = f"
hoelzl@47600
   438
  unfolding real_of_float_eq mantissa_exponent[of f] by simp
hoelzl@47600
   439
hoelzl@47600
   440
lemma Float_cases[case_names Float, cases type: float]:
hoelzl@47600
   441
  fixes f :: float
hoelzl@47600
   442
  obtains (Float) m e :: int where "f = Float m e"
hoelzl@47600
   443
  using Float_mantissa_exponent[symmetric]
hoelzl@47600
   444
  by (atomize_elim) auto
hoelzl@47600
   445
hoelzl@47599
   446
lemma denormalize_shift:
hoelzl@47599
   447
  assumes f_def: "f \<equiv> Float m e" and not_0: "f \<noteq> float_of 0"
hoelzl@47599
   448
  obtains i where "m = mantissa f * 2 ^ i" "e = exponent f - i"
hoelzl@47599
   449
proof
hoelzl@47599
   450
  from mantissa_exponent[of f] f_def
hoelzl@47599
   451
  have "m * 2 powr e = mantissa f * 2 powr exponent f"
hoelzl@47599
   452
    by simp
hoelzl@47599
   453
  then have eq: "m = mantissa f * 2 powr (exponent f - e)"
hoelzl@47599
   454
    by (simp add: powr_divide2[symmetric] field_simps)
hoelzl@47599
   455
  moreover
hoelzl@47599
   456
  have "e \<le> exponent f"
hoelzl@47599
   457
  proof (rule ccontr)
hoelzl@47599
   458
    assume "\<not> e \<le> exponent f"
hoelzl@47599
   459
    then have pos: "exponent f < e" by simp
hoelzl@47599
   460
    then have "2 powr (exponent f - e) = 2 powr - real (e - exponent f)"
hoelzl@47599
   461
      by simp
hoelzl@47599
   462
    also have "\<dots> = 1 / 2^nat (e - exponent f)"
hoelzl@47599
   463
      using pos by (simp add: powr_realpow[symmetric] powr_divide2[symmetric])
hoelzl@47599
   464
    finally have "m * 2^nat (e - exponent f) = real (mantissa f)"
hoelzl@47599
   465
      using eq by simp
hoelzl@47599
   466
    then have "mantissa f = m * 2^nat (e - exponent f)"
hoelzl@47599
   467
      unfolding real_of_int_inject by simp
hoelzl@47599
   468
    with `exponent f < e` have "2 dvd mantissa f"
hoelzl@47599
   469
      apply (intro dvdI[where k="m * 2^(nat (e-exponent f)) div 2"])
hoelzl@47599
   470
      apply (cases "nat (e - exponent f)")
hoelzl@47599
   471
      apply auto
hoelzl@47599
   472
      done
hoelzl@47599
   473
    then show False using mantissa_not_dvd[OF not_0] by simp
hoelzl@47599
   474
  qed
hoelzl@47599
   475
  ultimately have "real m = mantissa f * 2^nat (exponent f - e)"
hoelzl@47599
   476
    by (simp add: powr_realpow[symmetric])
hoelzl@47599
   477
  with `e \<le> exponent f`
hoelzl@47599
   478
  show "m = mantissa f * 2 ^ nat (exponent f - e)" "e = exponent f - nat (exponent f - e)"
hoelzl@47599
   479
    unfolding real_of_int_inject by auto
hoelzl@29804
   480
qed
hoelzl@29804
   481
hoelzl@47621
   482
lemma compute_float_zero[code_unfold, code]: "0 = Float 0 0"
hoelzl@47600
   483
  by transfer simp
hoelzl@47621
   484
hide_fact (open) compute_float_zero
hoelzl@47600
   485
hoelzl@47621
   486
lemma compute_float_one[code_unfold, code]: "1 = Float 1 0"
hoelzl@47600
   487
  by transfer simp
hoelzl@47621
   488
hide_fact (open) compute_float_one
hoelzl@47600
   489
immler@58982
   490
lift_definition normfloat :: "float \<Rightarrow> float" is "\<lambda>x. x" .
immler@58982
   491
lemma normloat_id[simp]: "normfloat x = x" by transfer rule
hoelzl@47600
   492
hoelzl@47600
   493
lemma compute_normfloat[code]: "normfloat (Float m e) =
hoelzl@47600
   494
  (if m mod 2 = 0 \<and> m \<noteq> 0 then normfloat (Float (m div 2) (e + 1))
hoelzl@47600
   495
                           else if m = 0 then 0 else Float m e)"
hoelzl@47600
   496
  by transfer (auto simp add: powr_add zmod_eq_0_iff)
hoelzl@47621
   497
hide_fact (open) compute_normfloat
hoelzl@47599
   498
hoelzl@47599
   499
lemma compute_float_numeral[code_abbrev]: "Float (numeral k) 0 = numeral k"
hoelzl@47600
   500
  by transfer simp
hoelzl@47621
   501
hide_fact (open) compute_float_numeral
hoelzl@47599
   502
haftmann@54489
   503
lemma compute_float_neg_numeral[code_abbrev]: "Float (- numeral k) 0 = - numeral k"
hoelzl@47600
   504
  by transfer simp
hoelzl@47621
   505
hide_fact (open) compute_float_neg_numeral
hoelzl@47599
   506
hoelzl@47599
   507
lemma compute_float_uminus[code]: "- Float m1 e1 = Float (- m1) e1"
hoelzl@47600
   508
  by transfer simp
hoelzl@47621
   509
hide_fact (open) compute_float_uminus
hoelzl@47599
   510
hoelzl@47599
   511
lemma compute_float_times[code]: "Float m1 e1 * Float m2 e2 = Float (m1 * m2) (e1 + e2)"
hoelzl@47600
   512
  by transfer (simp add: field_simps powr_add)
hoelzl@47621
   513
hide_fact (open) compute_float_times
hoelzl@47599
   514
hoelzl@47599
   515
lemma compute_float_plus[code]: "Float m1 e1 + Float m2 e2 =
immler@54783
   516
  (if m1 = 0 then Float m2 e2 else if m2 = 0 then Float m1 e1 else
immler@54783
   517
  if e1 \<le> e2 then Float (m1 + m2 * 2^nat (e2 - e1)) e1
hoelzl@47599
   518
              else Float (m2 + m1 * 2^nat (e1 - e2)) e2)"
hoelzl@47600
   519
  by transfer (simp add: field_simps powr_realpow[symmetric] powr_divide2[symmetric])
hoelzl@47621
   520
hide_fact (open) compute_float_plus
hoelzl@47599
   521
hoelzl@47600
   522
lemma compute_float_minus[code]: fixes f g::float shows "f - g = f + (-g)"
hoelzl@47600
   523
  by simp
hoelzl@47621
   524
hide_fact (open) compute_float_minus
hoelzl@47599
   525
hoelzl@47599
   526
lemma compute_float_sgn[code]: "sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then -1 else 0)"
hoelzl@47600
   527
  by transfer (simp add: sgn_times)
hoelzl@47621
   528
hide_fact (open) compute_float_sgn
hoelzl@47599
   529
kuncar@55565
   530
lift_definition is_float_pos :: "float \<Rightarrow> bool" is "op < 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   531
hoelzl@47599
   532
lemma compute_is_float_pos[code]: "is_float_pos (Float m e) \<longleftrightarrow> 0 < m"
hoelzl@47600
   533
  by transfer (auto simp add: zero_less_mult_iff not_le[symmetric, of _ 0])
hoelzl@47621
   534
hide_fact (open) compute_is_float_pos
hoelzl@47599
   535
hoelzl@47599
   536
lemma compute_float_less[code]: "a < b \<longleftrightarrow> is_float_pos (b - a)"
hoelzl@47600
   537
  by transfer (simp add: field_simps)
hoelzl@47621
   538
hide_fact (open) compute_float_less
hoelzl@47599
   539
kuncar@55565
   540
lift_definition is_float_nonneg :: "float \<Rightarrow> bool" is "op \<le> 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   541
hoelzl@47599
   542
lemma compute_is_float_nonneg[code]: "is_float_nonneg (Float m e) \<longleftrightarrow> 0 \<le> m"
hoelzl@47600
   543
  by transfer (auto simp add: zero_le_mult_iff not_less[symmetric, of _ 0])
hoelzl@47621
   544
hide_fact (open) compute_is_float_nonneg
hoelzl@47599
   545
hoelzl@47599
   546
lemma compute_float_le[code]: "a \<le> b \<longleftrightarrow> is_float_nonneg (b - a)"
hoelzl@47600
   547
  by transfer (simp add: field_simps)
hoelzl@47621
   548
hide_fact (open) compute_float_le
hoelzl@47599
   549
kuncar@55565
   550
lift_definition is_float_zero :: "float \<Rightarrow> bool"  is "op = 0 :: real \<Rightarrow> bool" .
hoelzl@47599
   551
hoelzl@47599
   552
lemma compute_is_float_zero[code]: "is_float_zero (Float m e) \<longleftrightarrow> 0 = m"
hoelzl@47600
   553
  by transfer (auto simp add: is_float_zero_def)
hoelzl@47621
   554
hide_fact (open) compute_is_float_zero
hoelzl@47599
   555
hoelzl@47600
   556
lemma compute_float_abs[code]: "abs (Float m e) = Float (abs m) e"
hoelzl@47600
   557
  by transfer (simp add: abs_mult)
hoelzl@47621
   558
hide_fact (open) compute_float_abs
hoelzl@47599
   559
hoelzl@47600
   560
lemma compute_float_eq[code]: "equal_class.equal f g = is_float_zero (f - g)"
hoelzl@47600
   561
  by transfer simp
hoelzl@47621
   562
hide_fact (open) compute_float_eq
hoelzl@47599
   563
immler@58982
   564
immler@58982
   565
subsection {* Lemmas for types @{typ real}, @{typ nat}, @{typ int}*}
immler@58982
   566
immler@58982
   567
lemmas real_of_ints =
immler@58982
   568
  real_of_int_zero
immler@58982
   569
  real_of_one
immler@58982
   570
  real_of_int_add
immler@58982
   571
  real_of_int_minus
immler@58982
   572
  real_of_int_diff
immler@58982
   573
  real_of_int_mult
immler@58982
   574
  real_of_int_power
immler@58982
   575
  real_numeral
immler@58982
   576
lemmas real_of_nats =
immler@58982
   577
  real_of_nat_zero
immler@58982
   578
  real_of_nat_one
immler@58982
   579
  real_of_nat_1
immler@58982
   580
  real_of_nat_add
immler@58982
   581
  real_of_nat_mult
immler@58982
   582
  real_of_nat_power
immler@58989
   583
  real_of_nat_numeral
immler@58982
   584
immler@58982
   585
lemmas int_of_reals = real_of_ints[symmetric]
immler@58982
   586
lemmas nat_of_reals = real_of_nats[symmetric]
immler@58982
   587
immler@58982
   588
immler@58985
   589
subsection {* Rounding Real Numbers *}
hoelzl@47599
   590
hoelzl@47599
   591
definition round_down :: "int \<Rightarrow> real \<Rightarrow> real" where
hoelzl@47599
   592
  "round_down prec x = floor (x * 2 powr prec) * 2 powr -prec"
hoelzl@47599
   593
hoelzl@47599
   594
definition round_up :: "int \<Rightarrow> real \<Rightarrow> real" where
hoelzl@47599
   595
  "round_up prec x = ceiling (x * 2 powr prec) * 2 powr -prec"
hoelzl@47599
   596
hoelzl@47599
   597
lemma round_down_float[simp]: "round_down prec x \<in> float"
hoelzl@47599
   598
  unfolding round_down_def
hoelzl@47599
   599
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)
hoelzl@47599
   600
hoelzl@47599
   601
lemma round_up_float[simp]: "round_up prec x \<in> float"
hoelzl@47599
   602
  unfolding round_up_def
hoelzl@47599
   603
  by (auto intro!: times_float simp: real_of_int_minus[symmetric] simp del: real_of_int_minus)
hoelzl@47599
   604
hoelzl@47599
   605
lemma round_up: "x \<le> round_up prec x"
hoelzl@47599
   606
  by (simp add: powr_minus_divide le_divide_eq round_up_def)
hoelzl@47599
   607
hoelzl@47599
   608
lemma round_down: "round_down prec x \<le> x"
hoelzl@47599
   609
  by (simp add: powr_minus_divide divide_le_eq round_down_def)
hoelzl@47599
   610
hoelzl@47599
   611
lemma round_up_0[simp]: "round_up p 0 = 0"
hoelzl@47599
   612
  unfolding round_up_def by simp
hoelzl@47599
   613
hoelzl@47599
   614
lemma round_down_0[simp]: "round_down p 0 = 0"
hoelzl@47599
   615
  unfolding round_down_def by simp
hoelzl@47599
   616
hoelzl@47599
   617
lemma round_up_diff_round_down:
hoelzl@47599
   618
  "round_up prec x - round_down prec x \<le> 2 powr -prec"
hoelzl@47599
   619
proof -
hoelzl@47599
   620
  have "round_up prec x - round_down prec x =
hoelzl@47599
   621
    (ceiling (x * 2 powr prec) - floor (x * 2 powr prec)) * 2 powr -prec"
hoelzl@47599
   622
    by (simp add: round_up_def round_down_def field_simps)
hoelzl@47599
   623
  also have "\<dots> \<le> 1 * 2 powr -prec"
hoelzl@47599
   624
    by (rule mult_mono)
hoelzl@47599
   625
       (auto simp del: real_of_int_diff
hoelzl@47599
   626
             simp: real_of_int_diff[symmetric] real_of_int_le_one_cancel_iff ceiling_diff_floor_le_1)
hoelzl@47599
   627
  finally show ?thesis by simp
hoelzl@29804
   628
qed
hoelzl@29804
   629
hoelzl@47599
   630
lemma round_down_shift: "round_down p (x * 2 powr k) = 2 powr k * round_down (p + k) x"
hoelzl@47599
   631
  unfolding round_down_def
hoelzl@47599
   632
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
hoelzl@47599
   633
    (simp add: powr_add[symmetric])
hoelzl@29804
   634
hoelzl@47599
   635
lemma round_up_shift: "round_up p (x * 2 powr k) = 2 powr k * round_up (p + k) x"
hoelzl@47599
   636
  unfolding round_up_def
hoelzl@47599
   637
  by (simp add: powr_add powr_mult field_simps powr_divide2[symmetric])
hoelzl@47599
   638
    (simp add: powr_add[symmetric])
hoelzl@47599
   639
immler@58982
   640
lemma round_up_uminus_eq: "round_up p (-x) = - round_down p x"
immler@58982
   641
  and round_down_uminus_eq: "round_down p (-x) = - round_up p x"
immler@58982
   642
  by (auto simp: round_up_def round_down_def ceiling_def)
immler@58982
   643
immler@58982
   644
lemma round_up_mono: "x \<le> y \<Longrightarrow> round_up p x \<le> round_up p y"
immler@58982
   645
  by (auto intro!: ceiling_mono simp: round_up_def)
immler@58982
   646
immler@58982
   647
lemma round_up_le1:
immler@58982
   648
  assumes "x \<le> 1" "prec \<ge> 0"
immler@58982
   649
  shows "round_up prec x \<le> 1"
immler@58982
   650
proof -
immler@58982
   651
  have "real \<lceil>x * 2 powr prec\<rceil> \<le> real \<lceil>2 powr real prec\<rceil>"
immler@58982
   652
    using assms by (auto intro!: ceiling_mono)
immler@58982
   653
  also have "\<dots> = 2 powr prec" using assms by (auto simp: powr_int intro!: exI[where x="2^nat prec"])
immler@58982
   654
  finally show ?thesis
immler@58982
   655
    by (simp add: round_up_def) (simp add: powr_minus inverse_eq_divide)
immler@58982
   656
qed
immler@58982
   657
immler@58982
   658
lemma round_up_less1:
immler@58982
   659
  assumes "x < 1 / 2" "p > 0"
immler@58982
   660
  shows "round_up p x < 1"
immler@58982
   661
proof -
immler@58982
   662
  have "x * 2 powr p < 1 / 2 * 2 powr p"
immler@58982
   663
    using assms by simp
immler@58989
   664
  also have "\<dots> \<le> 2 powr p - 1" using `p > 0`
immler@58989
   665
    by (auto simp: powr_divide2[symmetric] powr_int field_simps self_le_power)
immler@58989
   666
  finally show ?thesis using `p > 0`
immler@58989
   667
    by (simp add: round_up_def field_simps powr_minus powr_int ceiling_less_eq)
immler@58982
   668
qed
immler@58982
   669
immler@58982
   670
lemma round_down_ge1:
immler@58982
   671
  assumes x: "x \<ge> 1"
immler@58982
   672
  assumes prec: "p \<ge> - log 2 x"
immler@58982
   673
  shows "1 \<le> round_down p x"
immler@58982
   674
proof cases
immler@58982
   675
  assume nonneg: "0 \<le> p"
immler@58985
   676
  have "2 powr p = real \<lfloor>2 powr real p\<rfloor>"
immler@58985
   677
    using nonneg by (auto simp: powr_int)
immler@58985
   678
  also have "\<dots> \<le> real \<lfloor>x * 2 powr p\<rfloor>"
immler@58985
   679
    using assms by (auto intro!: floor_mono)
immler@58985
   680
  finally show ?thesis
immler@58985
   681
    by (simp add: round_down_def) (simp add: powr_minus inverse_eq_divide)
immler@58982
   682
next
immler@58982
   683
  assume neg: "\<not> 0 \<le> p"
immler@58982
   684
  have "x = 2 powr (log 2 x)"
immler@58982
   685
    using x by simp
immler@58982
   686
  also have "2 powr (log 2 x) \<ge> 2 powr - p"
immler@58982
   687
    using prec by auto
immler@58982
   688
  finally have x_le: "x \<ge> 2 powr -p" .
immler@58982
   689
immler@58982
   690
  from neg have "2 powr real p \<le> 2 powr 0"
immler@58982
   691
    by (intro powr_mono) auto
immler@58982
   692
  also have "\<dots> \<le> \<lfloor>2 powr 0\<rfloor>" by simp
immler@58982
   693
  also have "\<dots> \<le> \<lfloor>x * 2 powr real p\<rfloor>" unfolding real_of_int_le_iff
immler@58982
   694
    using x x_le by (intro floor_mono) (simp add: powr_minus_divide field_simps)
immler@58982
   695
  finally show ?thesis
immler@58982
   696
    using prec x
immler@58982
   697
    by (simp add: round_down_def powr_minus_divide pos_le_divide_eq)
immler@58982
   698
qed
immler@58982
   699
immler@58982
   700
lemma round_up_le0: "x \<le> 0 \<Longrightarrow> round_up p x \<le> 0"
immler@58982
   701
  unfolding round_up_def
immler@58982
   702
  by (auto simp: field_simps mult_le_0_iff zero_le_mult_iff)
immler@58982
   703
immler@58982
   704
hoelzl@47599
   705
subsection {* Rounding Floats *}
hoelzl@29804
   706
immler@58985
   707
definition div_twopow::"int \<Rightarrow> nat \<Rightarrow> int" where [simp]: "div_twopow x n = x div (2 ^ n)"
immler@58985
   708
immler@58985
   709
definition mod_twopow::"int \<Rightarrow> nat \<Rightarrow> int" where [simp]: "mod_twopow x n = x mod (2 ^ n)"
immler@58985
   710
immler@58985
   711
lemma compute_div_twopow[code]:
immler@58985
   712
  "div_twopow x n = (if x = 0 \<or> x = -1 \<or> n = 0 then x else div_twopow (x div 2) (n - 1))"
immler@58985
   713
  by (cases n) (auto simp: zdiv_zmult2_eq div_eq_minus1)
immler@58985
   714
immler@58985
   715
lemma compute_mod_twopow[code]:
immler@58985
   716
  "mod_twopow x n = (if n = 0 then 0 else x mod 2 + 2 * mod_twopow (x div 2) (n - 1))"
immler@58985
   717
  by (cases n) (auto simp: zmod_zmult2_eq)
immler@58985
   718
hoelzl@47600
   719
lift_definition float_up :: "int \<Rightarrow> float \<Rightarrow> float" is round_up by simp
hoelzl@47601
   720
declare float_up.rep_eq[simp]
hoelzl@29804
   721
immler@54782
   722
lemma round_up_correct:
immler@54782
   723
  shows "round_up e f - f \<in> {0..2 powr -e}"
hoelzl@47599
   724
unfolding atLeastAtMost_iff
hoelzl@47599
   725
proof
hoelzl@47599
   726
  have "round_up e f - f \<le> round_up e f - round_down e f" using round_down by simp
hoelzl@47599
   727
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
immler@54782
   728
  finally show "round_up e f - f \<le> 2 powr real (- e)"
hoelzl@47600
   729
    by simp
hoelzl@47600
   730
qed (simp add: algebra_simps round_up)
hoelzl@29804
   731
immler@54782
   732
lemma float_up_correct:
immler@54782
   733
  shows "real (float_up e f) - real f \<in> {0..2 powr -e}"
immler@54782
   734
  by transfer (rule round_up_correct)
immler@54782
   735
hoelzl@47600
   736
lift_definition float_down :: "int \<Rightarrow> float \<Rightarrow> float" is round_down by simp
hoelzl@47601
   737
declare float_down.rep_eq[simp]
obua@16782
   738
immler@54782
   739
lemma round_down_correct:
immler@54782
   740
  shows "f - (round_down e f) \<in> {0..2 powr -e}"
hoelzl@47599
   741
unfolding atLeastAtMost_iff
hoelzl@47599
   742
proof
hoelzl@47599
   743
  have "f - round_down e f \<le> round_up e f - round_down e f" using round_up by simp
hoelzl@47599
   744
  also have "\<dots> \<le> 2 powr -e" using round_up_diff_round_down by simp
immler@54782
   745
  finally show "f - round_down e f \<le> 2 powr real (- e)"
hoelzl@47600
   746
    by simp
hoelzl@47600
   747
qed (simp add: algebra_simps round_down)
obua@24301
   748
immler@54782
   749
lemma float_down_correct:
immler@54782
   750
  shows "real f - real (float_down e f) \<in> {0..2 powr -e}"
immler@54782
   751
  by transfer (rule round_down_correct)
immler@54782
   752
hoelzl@47599
   753
lemma compute_float_down[code]:
hoelzl@47599
   754
  "float_down p (Float m e) =
immler@58985
   755
    (if p + e < 0 then Float (div_twopow m (nat (-(p + e)))) (-p) else Float m e)"
hoelzl@47599
   756
proof cases
hoelzl@47599
   757
  assume "p + e < 0"
hoelzl@47599
   758
  hence "real ((2::int) ^ nat (-(p + e))) = 2 powr (-(p + e))"
hoelzl@47599
   759
    using powr_realpow[of 2 "nat (-(p + e))"] by simp
hoelzl@47599
   760
  also have "... = 1 / 2 powr p / 2 powr e"
hoelzl@47600
   761
    unfolding powr_minus_divide real_of_int_minus by (simp add: powr_add)
hoelzl@47599
   762
  finally show ?thesis
hoelzl@47600
   763
    using `p + e < 0`
hoelzl@47600
   764
    by transfer (simp add: ac_simps round_down_def floor_divide_eq_div[symmetric])
hoelzl@47599
   765
next
hoelzl@47600
   766
  assume "\<not> p + e < 0"
hoelzl@47600
   767
  then have r: "real e + real p = real (nat (e + p))" by simp
hoelzl@47600
   768
  have r: "\<lfloor>(m * 2 powr e) * 2 powr real p\<rfloor> = (m * 2 powr e) * 2 powr real p"
hoelzl@47600
   769
    by (auto intro: exI[where x="m*2^nat (e+p)"]
hoelzl@47600
   770
             simp add: ac_simps powr_add[symmetric] r powr_realpow)
hoelzl@47600
   771
  with `\<not> p + e < 0` show ?thesis
wenzelm@57862
   772
    by transfer (auto simp add: round_down_def field_simps powr_add powr_minus)
hoelzl@47599
   773
qed
hoelzl@47621
   774
hide_fact (open) compute_float_down
obua@24301
   775
immler@54782
   776
lemma abs_round_down_le: "\<bar>f - (round_down e f)\<bar> \<le> 2 powr -e"
immler@54782
   777
  using round_down_correct[of f e] by simp
immler@54782
   778
immler@54782
   779
lemma abs_round_up_le: "\<bar>f - (round_up e f)\<bar> \<le> 2 powr -e"
immler@54782
   780
  using round_up_correct[of e f] by simp
immler@54782
   781
immler@54782
   782
lemma round_down_nonneg: "0 \<le> s \<Longrightarrow> 0 \<le> round_down p s"
nipkow@56536
   783
  by (auto simp: round_down_def)
immler@54782
   784
hoelzl@47599
   785
lemma ceil_divide_floor_conv:
hoelzl@47599
   786
assumes "b \<noteq> 0"
hoelzl@47599
   787
shows "\<lceil>real a / real b\<rceil> = (if b dvd a then a div b else \<lfloor>real a / real b\<rfloor> + 1)"
hoelzl@47599
   788
proof cases
hoelzl@47599
   789
  assume "\<not> b dvd a"
hoelzl@47599
   790
  hence "a mod b \<noteq> 0" by auto
hoelzl@47599
   791
  hence ne: "real (a mod b) / real b \<noteq> 0" using `b \<noteq> 0` by auto
hoelzl@47599
   792
  have "\<lceil>real a / real b\<rceil> = \<lfloor>real a / real b\<rfloor> + 1"
hoelzl@47599
   793
  apply (rule ceiling_eq) apply (auto simp: floor_divide_eq_div[symmetric])
hoelzl@47599
   794
  proof -
hoelzl@47599
   795
    have "real \<lfloor>real a / real b\<rfloor> \<le> real a / real b" by simp
hoelzl@47599
   796
    moreover have "real \<lfloor>real a / real b\<rfloor> \<noteq> real a / real b"
hoelzl@47599
   797
    apply (subst (2) real_of_int_div_aux) unfolding floor_divide_eq_div using ne `b \<noteq> 0` by auto
hoelzl@47599
   798
    ultimately show "real \<lfloor>real a / real b\<rfloor> < real a / real b" by arith
hoelzl@47599
   799
  qed
hoelzl@47599
   800
  thus ?thesis using `\<not> b dvd a` by simp
hoelzl@47599
   801
qed (simp add: ceiling_def real_of_int_minus[symmetric] divide_minus_left[symmetric]
hoelzl@56479
   802
  floor_divide_eq_div dvd_neg_div del: divide_minus_left real_of_int_minus)
wenzelm@19765
   803
hoelzl@47599
   804
lemma compute_float_up[code]:
immler@58982
   805
  "float_up p x = - float_down p (-x)"
immler@58982
   806
  by transfer (simp add: round_down_uminus_eq)
hoelzl@47621
   807
hide_fact (open) compute_float_up
hoelzl@29804
   808
hoelzl@47599
   809
hoelzl@47599
   810
subsection {* Compute bitlen of integers *}
hoelzl@47599
   811
hoelzl@47600
   812
definition bitlen :: "int \<Rightarrow> int" where
hoelzl@47600
   813
  "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)"
hoelzl@47599
   814
hoelzl@47599
   815
lemma bitlen_nonneg: "0 \<le> bitlen x"
hoelzl@29804
   816
proof -
hoelzl@47599
   817
  {
hoelzl@47599
   818
    assume "0 > x"
hoelzl@47599
   819
    have "-1 = log 2 (inverse 2)" by (subst log_inverse) simp_all
hoelzl@47599
   820
    also have "... < log 2 (-x)" using `0 > x` by auto
hoelzl@47599
   821
    finally have "-1 < log 2 (-x)" .
hoelzl@47599
   822
  } thus "0 \<le> bitlen x" unfolding bitlen_def by (auto intro!: add_nonneg_nonneg)
hoelzl@47599
   823
qed
hoelzl@47599
   824
hoelzl@47599
   825
lemma bitlen_bounds:
hoelzl@47599
   826
  assumes "x > 0"
hoelzl@47599
   827
  shows "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)"
hoelzl@47599
   828
proof
hoelzl@47599
   829
  have "(2::real) ^ nat \<lfloor>log 2 (real x)\<rfloor> = 2 powr real (floor (log 2 (real x)))"
hoelzl@47599
   830
    using powr_realpow[symmetric, of 2 "nat \<lfloor>log 2 (real x)\<rfloor>"] `x > 0`
hoelzl@47599
   831
    using real_nat_eq_real[of "floor (log 2 (real x))"]
hoelzl@47599
   832
    by simp
hoelzl@47599
   833
  also have "... \<le> 2 powr log 2 (real x)"
hoelzl@47599
   834
    by simp
hoelzl@47599
   835
  also have "... = real x"
hoelzl@47599
   836
    using `0 < x` by simp
hoelzl@47599
   837
  finally have "2 ^ nat \<lfloor>log 2 (real x)\<rfloor> \<le> real x" by simp
hoelzl@47599
   838
  thus "2 ^ nat (bitlen x - 1) \<le> x" using `x > 0`
hoelzl@47599
   839
    by (simp add: bitlen_def)
hoelzl@47599
   840
next
hoelzl@47599
   841
  have "x \<le> 2 powr (log 2 x)" using `x > 0` by simp
hoelzl@47599
   842
  also have "... < 2 ^ nat (\<lfloor>log 2 (real x)\<rfloor> + 1)"
hoelzl@47599
   843
    apply (simp add: powr_realpow[symmetric])
hoelzl@47599
   844
    using `x > 0` by simp
hoelzl@47599
   845
  finally show "x < 2 ^ nat (bitlen x)" using `x > 0`
immler@58989
   846
    by (simp add: bitlen_def ac_simps)
hoelzl@47599
   847
qed
hoelzl@47599
   848
hoelzl@47599
   849
lemma bitlen_pow2[simp]:
hoelzl@47599
   850
  assumes "b > 0"
hoelzl@47599
   851
  shows "bitlen (b * 2 ^ c) = bitlen b + c"
hoelzl@47599
   852
proof -
nipkow@56544
   853
  from assms have "b * 2 ^ c > 0" by auto
hoelzl@47599
   854
  thus ?thesis
hoelzl@47599
   855
    using floor_add[of "log 2 b" c] assms
hoelzl@47599
   856
    by (auto simp add: log_mult log_nat_power bitlen_def)
hoelzl@29804
   857
qed
hoelzl@29804
   858
hoelzl@47599
   859
lemma bitlen_Float:
wenzelm@53381
   860
  fixes m e
wenzelm@53381
   861
  defines "f \<equiv> Float m e"
wenzelm@53381
   862
  shows "bitlen (\<bar>mantissa f\<bar>) + exponent f = (if m = 0 then 0 else bitlen \<bar>m\<bar> + e)"
wenzelm@53381
   863
proof (cases "m = 0")
wenzelm@53381
   864
  case True
wenzelm@53381
   865
  then show ?thesis by (simp add: f_def bitlen_def Float_def)
wenzelm@53381
   866
next
wenzelm@53381
   867
  case False
hoelzl@47600
   868
  hence "f \<noteq> float_of 0"
hoelzl@47600
   869
    unfolding real_of_float_eq by (simp add: f_def)
hoelzl@47600
   870
  hence "mantissa f \<noteq> 0"
hoelzl@47599
   871
    by (simp add: mantissa_noteq_0)
hoelzl@47599
   872
  moreover
wenzelm@53381
   873
  obtain i where "m = mantissa f * 2 ^ i" "e = exponent f - int i"
wenzelm@53381
   874
    by (rule f_def[THEN denormalize_shift, OF `f \<noteq> float_of 0`])
hoelzl@47599
   875
  ultimately show ?thesis by (simp add: abs_mult)
wenzelm@53381
   876
qed
hoelzl@29804
   877
hoelzl@47599
   878
lemma compute_bitlen[code]:
hoelzl@47599
   879
  shows "bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)"
hoelzl@47599
   880
proof -
hoelzl@47599
   881
  { assume "2 \<le> x"
hoelzl@47599
   882
    then have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 (x - x mod 2)\<rfloor>"
hoelzl@47599
   883
      by (simp add: log_mult zmod_zdiv_equality')
hoelzl@47599
   884
    also have "\<dots> = \<lfloor>log 2 (real x)\<rfloor>"
hoelzl@47599
   885
    proof cases
hoelzl@47599
   886
      assume "x mod 2 = 0" then show ?thesis by simp
hoelzl@47599
   887
    next
hoelzl@47599
   888
      def n \<equiv> "\<lfloor>log 2 (real x)\<rfloor>"
hoelzl@47599
   889
      then have "0 \<le> n"
hoelzl@47599
   890
        using `2 \<le> x` by simp
hoelzl@47599
   891
      assume "x mod 2 \<noteq> 0"
hoelzl@47599
   892
      with `2 \<le> x` have "x mod 2 = 1" "\<not> 2 dvd x" by (auto simp add: dvd_eq_mod_eq_0)
hoelzl@47599
   893
      with `2 \<le> x` have "x \<noteq> 2^nat n" by (cases "nat n") auto
hoelzl@47599
   894
      moreover
hoelzl@47599
   895
      { have "real (2^nat n :: int) = 2 powr (nat n)"
hoelzl@47599
   896
          by (simp add: powr_realpow)
hoelzl@47599
   897
        also have "\<dots> \<le> 2 powr (log 2 x)"
hoelzl@47599
   898
          using `2 \<le> x` by (simp add: n_def del: powr_log_cancel)
hoelzl@47599
   899
        finally have "2^nat n \<le> x" using `2 \<le> x` by simp }
hoelzl@47599
   900
      ultimately have "2^nat n \<le> x - 1" by simp
hoelzl@47599
   901
      then have "2^nat n \<le> real (x - 1)"
hoelzl@47599
   902
        unfolding real_of_int_le_iff[symmetric] by simp
hoelzl@47599
   903
      { have "n = \<lfloor>log 2 (2^nat n)\<rfloor>"
hoelzl@47599
   904
          using `0 \<le> n` by (simp add: log_nat_power)
hoelzl@47599
   905
        also have "\<dots> \<le> \<lfloor>log 2 (x - 1)\<rfloor>"
hoelzl@47599
   906
          using `2^nat n \<le> real (x - 1)` `0 \<le> n` `2 \<le> x` by (auto intro: floor_mono)
hoelzl@47599
   907
        finally have "n \<le> \<lfloor>log 2 (x - 1)\<rfloor>" . }
hoelzl@47599
   908
      moreover have "\<lfloor>log 2 (x - 1)\<rfloor> \<le> n"
hoelzl@47599
   909
        using `2 \<le> x` by (auto simp add: n_def intro!: floor_mono)
hoelzl@47599
   910
      ultimately show "\<lfloor>log 2 (x - x mod 2)\<rfloor> = \<lfloor>log 2 x\<rfloor>"
hoelzl@47599
   911
        unfolding n_def `x mod 2 = 1` by auto
hoelzl@47599
   912
    qed
hoelzl@47599
   913
    finally have "\<lfloor>log 2 (x div 2)\<rfloor> + 1 = \<lfloor>log 2 x\<rfloor>" . }
hoelzl@47599
   914
  moreover
hoelzl@47599
   915
  { assume "x < 2" "0 < x"
hoelzl@47599
   916
    then have "x = 1" by simp
hoelzl@47599
   917
    then have "\<lfloor>log 2 (real x)\<rfloor> = 0" by simp }
hoelzl@47599
   918
  ultimately show ?thesis
hoelzl@47599
   919
    unfolding bitlen_def
hoelzl@47599
   920
    by (auto simp: pos_imp_zdiv_pos_iff not_le)
hoelzl@47599
   921
qed
hoelzl@47621
   922
hide_fact (open) compute_bitlen
hoelzl@29804
   923
hoelzl@47599
   924
lemma float_gt1_scale: assumes "1 \<le> Float m e"
hoelzl@47599
   925
  shows "0 \<le> e + (bitlen m - 1)"
hoelzl@47599
   926
proof -
hoelzl@47599
   927
  have "0 < Float m e" using assms by auto
hoelzl@47599
   928
  hence "0 < m" using powr_gt_zero[of 2 e]
hoelzl@47600
   929
    by (auto simp: zero_less_mult_iff)
hoelzl@47599
   930
  hence "m \<noteq> 0" by auto
hoelzl@47599
   931
  show ?thesis
hoelzl@47599
   932
  proof (cases "0 \<le> e")
hoelzl@47599
   933
    case True thus ?thesis using `0 < m`  by (simp add: bitlen_def)
hoelzl@29804
   934
  next
hoelzl@47599
   935
    have "(1::int) < 2" by simp
hoelzl@47599
   936
    case False let ?S = "2^(nat (-e))"
hoelzl@47599
   937
    have "inverse (2 ^ nat (- e)) = 2 powr e" using assms False powr_realpow[of 2 "nat (-e)"]
wenzelm@57862
   938
      by (auto simp: powr_minus field_simps)
hoelzl@47599
   939
    hence "1 \<le> real m * inverse ?S" using assms False powr_realpow[of 2 "nat (-e)"]
hoelzl@47599
   940
      by (auto simp: powr_minus)
hoelzl@47599
   941
    hence "1 * ?S \<le> real m * inverse ?S * ?S" by (rule mult_right_mono, auto)
haftmann@57512
   942
    hence "?S \<le> real m" unfolding mult.assoc by auto
hoelzl@47599
   943
    hence "?S \<le> m" unfolding real_of_int_le_iff[symmetric] by auto
hoelzl@47599
   944
    from this bitlen_bounds[OF `0 < m`, THEN conjunct2]
immler@58985
   945
    have "nat (-e) < (nat (bitlen m))" unfolding power_strict_increasing_iff[OF `1 < 2`, symmetric]
immler@58985
   946
      by (rule order_le_less_trans)
hoelzl@47599
   947
    hence "-e < bitlen m" using False by auto
hoelzl@47599
   948
    thus ?thesis by auto
hoelzl@29804
   949
  qed
hoelzl@47599
   950
qed
hoelzl@29804
   951
immler@58985
   952
lemma bitlen_div:
immler@58985
   953
  assumes "0 < m"
immler@58985
   954
  shows "1 \<le> real m / 2^nat (bitlen m - 1)" and "real m / 2^nat (bitlen m - 1) < 2"
hoelzl@29804
   955
proof -
hoelzl@29804
   956
  let ?B = "2^nat(bitlen m - 1)"
hoelzl@29804
   957
hoelzl@29804
   958
  have "?B \<le> m" using bitlen_bounds[OF `0 <m`] ..
hoelzl@29804
   959
  hence "1 * ?B \<le> real m" unfolding real_of_int_le_iff[symmetric] by auto
hoelzl@29804
   960
  thus "1 \<le> real m / ?B" by auto
hoelzl@29804
   961
hoelzl@29804
   962
  have "m \<noteq> 0" using assms by auto
hoelzl@47599
   963
  have "0 \<le> bitlen m - 1" using `0 < m` by (auto simp: bitlen_def)
obua@16782
   964
hoelzl@29804
   965
  have "m < 2^nat(bitlen m)" using bitlen_bounds[OF `0 <m`] ..
hoelzl@47599
   966
  also have "\<dots> = 2^nat(bitlen m - 1 + 1)" using `0 < m` by (auto simp: bitlen_def)
hoelzl@29804
   967
  also have "\<dots> = ?B * 2" unfolding nat_add_distrib[OF `0 \<le> bitlen m - 1` zero_le_one] by auto
hoelzl@29804
   968
  finally have "real m < 2 * ?B" unfolding real_of_int_less_iff[symmetric] by auto
hoelzl@29804
   969
  hence "real m / ?B < 2 * ?B / ?B" by (rule divide_strict_right_mono, auto)
hoelzl@29804
   970
  thus "real m / ?B < 2" by auto
hoelzl@29804
   971
qed
hoelzl@29804
   972
immler@58985
   973
subsection {* Truncating Real Numbers*}
immler@58985
   974
immler@58985
   975
definition truncate_down::"nat \<Rightarrow> real \<Rightarrow> real" where
immler@58985
   976
  "truncate_down prec x = round_down (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x"
immler@58985
   977
immler@58985
   978
lemma truncate_down: "truncate_down prec x \<le> x"
immler@58985
   979
  using round_down by (simp add: truncate_down_def)
immler@58985
   980
immler@58985
   981
lemma truncate_down_le: "x \<le> y \<Longrightarrow> truncate_down prec x \<le> y"
immler@58985
   982
  by (rule order_trans[OF truncate_down])
immler@58985
   983
immler@58985
   984
lemma truncate_down_zero[simp]: "truncate_down prec 0 = 0"
immler@58985
   985
  by (simp add: truncate_down_def)
immler@58985
   986
immler@58985
   987
lemma truncate_down_float[simp]: "truncate_down p x \<in> float"
immler@58985
   988
  by (auto simp: truncate_down_def)
immler@58985
   989
immler@58985
   990
definition truncate_up::"nat \<Rightarrow> real \<Rightarrow> real" where
immler@58985
   991
  "truncate_up prec x = round_up (prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) x"
immler@58985
   992
immler@58985
   993
lemma truncate_up: "x \<le> truncate_up prec x"
immler@58985
   994
  using round_up by (simp add: truncate_up_def)
immler@58985
   995
immler@58985
   996
lemma truncate_up_le: "x \<le> y \<Longrightarrow> x \<le> truncate_up prec y"
immler@58985
   997
  by (rule order_trans[OF _ truncate_up])
immler@58985
   998
immler@58985
   999
lemma truncate_up_zero[simp]: "truncate_up prec 0 = 0"
immler@58985
  1000
  by (simp add: truncate_up_def)
immler@58985
  1001
immler@58985
  1002
lemma truncate_up_uminus_eq: "truncate_up prec (-x) = - truncate_down prec x"
immler@58985
  1003
  and truncate_down_uminus_eq: "truncate_down prec (-x) = - truncate_up prec x"
immler@58985
  1004
  by (auto simp: truncate_up_def round_up_def truncate_down_def round_down_def ceiling_def)
immler@58985
  1005
immler@58985
  1006
lemma truncate_up_float[simp]: "truncate_up p x \<in> float"
immler@58985
  1007
  by (auto simp: truncate_up_def)
immler@58985
  1008
immler@58985
  1009
lemma mult_powr_eq: "0 < b \<Longrightarrow> b \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> x * b powr y = b powr (y + log b x)"
immler@58985
  1010
  by (simp_all add: powr_add)
immler@58985
  1011
immler@58985
  1012
lemma truncate_down_pos:
immler@58985
  1013
  assumes "x > 0" "p > 0"
immler@58985
  1014
  shows "truncate_down p x > 0"
immler@58985
  1015
proof -
immler@58985
  1016
  have "0 \<le> log 2 x - real \<lfloor>log 2 x\<rfloor>"
immler@58985
  1017
    by (simp add: algebra_simps)
immler@58985
  1018
  from this assms
immler@58985
  1019
  show ?thesis
immler@58985
  1020
    by (auto simp: truncate_down_def round_down_def mult_powr_eq
immler@58985
  1021
      intro!: ge_one_powr_ge_zero mult_pos_pos)
immler@58985
  1022
qed
immler@58985
  1023
immler@58985
  1024
lemma truncate_down_nonneg: "0 \<le> y \<Longrightarrow> 0 \<le> truncate_down prec y"
immler@58985
  1025
  by (auto simp: truncate_down_def round_down_def)
immler@58985
  1026
immler@58985
  1027
lemma truncate_down_ge1: "1 \<le> x \<Longrightarrow> 1 \<le> p \<Longrightarrow> 1 \<le> truncate_down p x"
immler@58985
  1028
  by (auto simp: truncate_down_def algebra_simps intro!: round_down_ge1 add_mono)
immler@58985
  1029
immler@58985
  1030
lemma truncate_up_nonpos: "x \<le> 0 \<Longrightarrow> truncate_up prec x \<le> 0"
immler@58985
  1031
  by (auto simp: truncate_up_def round_up_def intro!: mult_nonpos_nonneg)
hoelzl@47599
  1032
immler@58985
  1033
lemma truncate_up_le1:
immler@58985
  1034
  assumes "x \<le> 1" "1 \<le> p" shows "truncate_up p x \<le> 1"
immler@58985
  1035
proof -
immler@58985
  1036
  {
immler@58985
  1037
    assume "x \<le> 0"
immler@58985
  1038
    with truncate_up_nonpos[OF this, of p] have ?thesis by simp
immler@58985
  1039
  } moreover {
immler@58985
  1040
    assume "x > 0"
immler@58985
  1041
    hence le: "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<le> 0"
immler@58985
  1042
      using assms by (auto simp: log_less_iff)
immler@58985
  1043
    from assms have "1 \<le> int p" by simp
immler@58985
  1044
    from add_mono[OF this le]
immler@58985
  1045
    have ?thesis using assms
immler@58985
  1046
      by (simp add: truncate_up_def round_up_le1 add_mono)
immler@58985
  1047
  } ultimately show ?thesis by arith
immler@58985
  1048
qed
immler@58985
  1049
immler@58985
  1050
subsection {* Truncating Floats*}
immler@58985
  1051
immler@58985
  1052
lift_definition float_round_up :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_up
immler@58985
  1053
  by (simp add: truncate_up_def)
immler@58985
  1054
immler@58985
  1055
lemma float_round_up: "real x \<le> real (float_round_up prec x)"
immler@58985
  1056
  using truncate_up by transfer simp
immler@58985
  1057
immler@58985
  1058
lemma float_round_up_zero[simp]: "float_round_up prec 0 = 0"
immler@58985
  1059
  by transfer simp
immler@58985
  1060
immler@58985
  1061
lift_definition float_round_down :: "nat \<Rightarrow> float \<Rightarrow> float" is truncate_down
immler@58985
  1062
  by (simp add: truncate_down_def)
immler@58985
  1063
immler@58985
  1064
lemma float_round_down: "real (float_round_down prec x) \<le> real x"
immler@58985
  1065
  using truncate_down by transfer simp
immler@58985
  1066
immler@58985
  1067
lemma float_round_down_zero[simp]: "float_round_down prec 0 = 0"
immler@58985
  1068
  by transfer simp
immler@58985
  1069
immler@58985
  1070
lemmas float_round_up_le = order_trans[OF _ float_round_up]
immler@58985
  1071
  and float_round_down_le = order_trans[OF float_round_down]
immler@58985
  1072
immler@58985
  1073
lemma minus_float_round_up_eq: "- float_round_up prec x = float_round_down prec (- x)"
immler@58985
  1074
  and minus_float_round_down_eq: "- float_round_down prec x = float_round_up prec (- x)"
immler@58985
  1075
  by (transfer, simp add: truncate_down_uminus_eq truncate_up_uminus_eq)+
immler@58985
  1076
immler@58985
  1077
lemma compute_float_round_down[code]:
immler@58985
  1078
  "float_round_down prec (Float m e) = (let d = bitlen (abs m) - int prec in
immler@58985
  1079
    if 0 < d then Float (div_twopow m (nat d)) (e + d)
immler@58985
  1080
             else Float m e)"
immler@58985
  1081
  using Float.compute_float_down[of "prec - bitlen \<bar>m\<bar> - e" m e, symmetric]
immler@58985
  1082
  by transfer (simp add: field_simps abs_mult log_mult bitlen_def truncate_down_def
immler@58985
  1083
    cong del: if_weak_cong)
immler@58985
  1084
hide_fact (open) compute_float_round_down
immler@58985
  1085
immler@58985
  1086
lemma compute_float_round_up[code]:
immler@58985
  1087
  "float_round_up prec x = - float_round_down prec (-x)"
immler@58985
  1088
  by transfer (simp add: truncate_down_uminus_eq)
immler@58985
  1089
hide_fact (open) compute_float_round_up
immler@58985
  1090
immler@58985
  1091
immler@58985
  1092
subsection {* Approximation of positive rationals *}
hoelzl@29804
  1093
hoelzl@47599
  1094
lemma div_mult_twopow_eq: fixes a b::nat shows "a div ((2::nat) ^ n) div b = a div (b * 2 ^ n)"
hoelzl@47599
  1095
  by (cases "b=0") (simp_all add: div_mult2_eq[symmetric] ac_simps)
hoelzl@29804
  1096
hoelzl@47599
  1097
lemma real_div_nat_eq_floor_of_divide:
hoelzl@47599
  1098
  fixes a b::nat
hoelzl@47599
  1099
  shows "a div b = real (floor (a/b))"
hoelzl@47599
  1100
by (metis floor_divide_eq_div real_of_int_of_nat_eq zdiv_int)
hoelzl@29804
  1101
hoelzl@47599
  1102
definition "rat_precision prec x y = int prec - (bitlen x - bitlen y)"
hoelzl@29804
  1103
hoelzl@47600
  1104
lift_definition lapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"
hoelzl@47600
  1105
  is "\<lambda>prec (x::nat) (y::nat). round_down (rat_precision prec x y) (x / y)" by simp
obua@16782
  1106
hoelzl@47599
  1107
lemma compute_lapprox_posrat[code]:
wenzelm@53381
  1108
  fixes prec x y
wenzelm@53381
  1109
  shows "lapprox_posrat prec x y =
wenzelm@53381
  1110
   (let
hoelzl@47599
  1111
       l = rat_precision prec x y;
hoelzl@47599
  1112
       d = if 0 \<le> l then x * 2^nat l div y else x div 2^nat (- l) div y
hoelzl@47599
  1113
    in normfloat (Float d (- l)))"
immler@58982
  1114
    unfolding div_mult_twopow_eq
hoelzl@47600
  1115
    by transfer
hoelzl@47615
  1116
       (simp add: round_down_def powr_int real_div_nat_eq_floor_of_divide field_simps Let_def
hoelzl@47599
  1117
             del: two_powr_minus_int_float)
hoelzl@47621
  1118
hide_fact (open) compute_lapprox_posrat
hoelzl@29804
  1119
hoelzl@47600
  1120
lift_definition rapprox_posrat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float"
hoelzl@47600
  1121
  is "\<lambda>prec (x::nat) (y::nat). round_up (rat_precision prec x y) (x / y)" by simp
hoelzl@29804
  1122
hoelzl@47599
  1123
lemma compute_rapprox_posrat[code]:
hoelzl@47599
  1124
  fixes prec x y
immler@58982
  1125
  notes divmod_int_mod_div[simp]
hoelzl@47599
  1126
  defines "l \<equiv> rat_precision prec x y"
hoelzl@47599
  1127
  shows "rapprox_posrat prec x y = (let
hoelzl@47599
  1128
     l = l ;
hoelzl@47599
  1129
     X = if 0 \<le> l then (x * 2^nat l, y) else (x, y * 2^nat(-l)) ;
immler@58982
  1130
     (d, m) = divmod_int (fst X) (snd X)
hoelzl@47599
  1131
   in normfloat (Float (d + (if m = 0 \<or> y = 0 then 0 else 1)) (- l)))"
hoelzl@47599
  1132
proof (cases "y = 0")
immler@58982
  1133
  assume "y = 0" thus ?thesis by transfer simp
hoelzl@47599
  1134
next
hoelzl@47599
  1135
  assume "y \<noteq> 0"
hoelzl@29804
  1136
  show ?thesis
hoelzl@47599
  1137
  proof (cases "0 \<le> l")
hoelzl@47599
  1138
    assume "0 \<le> l"
wenzelm@56777
  1139
    def x' \<equiv> "x * 2 ^ nat l"
hoelzl@47599
  1140
    have "int x * 2 ^ nat l = x'" by (simp add: x'_def int_mult int_power)
hoelzl@47599
  1141
    moreover have "real x * 2 powr real l = real x'"
hoelzl@47599
  1142
      by (simp add: powr_realpow[symmetric] `0 \<le> l` x'_def)
hoelzl@47599
  1143
    ultimately show ?thesis
hoelzl@47599
  1144
      using ceil_divide_floor_conv[of y x'] powr_realpow[of 2 "nat l"] `0 \<le> l` `y \<noteq> 0`
hoelzl@47600
  1145
        l_def[symmetric, THEN meta_eq_to_obj_eq]
haftmann@58834
  1146
      by transfer (auto simp add: floor_divide_eq_div [symmetric] round_up_def)
hoelzl@47599
  1147
   next
hoelzl@47599
  1148
    assume "\<not> 0 \<le> l"
wenzelm@56777
  1149
    def y' \<equiv> "y * 2 ^ nat (- l)"
hoelzl@47599
  1150
    from `y \<noteq> 0` have "y' \<noteq> 0" by (simp add: y'_def)
hoelzl@47599
  1151
    have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def int_mult int_power)
hoelzl@47599
  1152
    moreover have "real x * real (2::int) powr real l / real y = x / real y'"
hoelzl@47599
  1153
      using `\<not> 0 \<le> l`
wenzelm@57862
  1154
      by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps)
hoelzl@47599
  1155
    ultimately show ?thesis
hoelzl@47599
  1156
      using ceil_divide_floor_conv[of y' x] `\<not> 0 \<le> l` `y' \<noteq> 0` `y \<noteq> 0`
hoelzl@47600
  1157
        l_def[symmetric, THEN meta_eq_to_obj_eq]
hoelzl@47600
  1158
      by transfer
haftmann@58834
  1159
         (auto simp add: round_up_def ceil_divide_floor_conv floor_divide_eq_div [symmetric])
hoelzl@29804
  1160
  qed
hoelzl@29804
  1161
qed
hoelzl@47621
  1162
hide_fact (open) compute_rapprox_posrat
hoelzl@29804
  1163
hoelzl@47599
  1164
lemma rat_precision_pos:
hoelzl@47599
  1165
  assumes "0 \<le> x" and "0 < y" and "2 * x < y" and "0 < n"
hoelzl@47599
  1166
  shows "rat_precision n (int x) (int y) > 0"
hoelzl@29804
  1167
proof -
hoelzl@47599
  1168
  { assume "0 < x" hence "log 2 x + 1 = log 2 (2 * x)" by (simp add: log_mult) }
hoelzl@47599
  1169
  hence "bitlen (int x) < bitlen (int y)" using assms
hoelzl@47599
  1170
    by (simp add: bitlen_def del: floor_add_one)
hoelzl@47599
  1171
      (auto intro!: floor_mono simp add: floor_add_one[symmetric] simp del: floor_add floor_add_one)
hoelzl@47599
  1172
  thus ?thesis
hoelzl@47599
  1173
    using assms by (auto intro!: pos_add_strict simp add: field_simps rat_precision_def)
hoelzl@29804
  1174
qed
obua@16782
  1175
hoelzl@47601
  1176
lemma rapprox_posrat_less1:
immler@58982
  1177
  shows "0 \<le> x \<Longrightarrow> 0 < y \<Longrightarrow> 2 * x < y \<Longrightarrow> 0 < n \<Longrightarrow> real (rapprox_posrat n x y) < 1"
immler@58982
  1178
  by transfer (simp add: rat_precision_pos round_up_less1)
hoelzl@29804
  1179
hoelzl@47600
  1180
lift_definition lapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is
hoelzl@47600
  1181
  "\<lambda>prec (x::int) (y::int). round_down (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp
obua@16782
  1182
hoelzl@29804
  1183
lemma compute_lapprox_rat[code]:
hoelzl@47599
  1184
  "lapprox_rat prec x y =
hoelzl@47599
  1185
    (if y = 0 then 0
hoelzl@47599
  1186
    else if 0 \<le> x then
hoelzl@47599
  1187
      (if 0 < y then lapprox_posrat prec (nat x) (nat y)
wenzelm@53381
  1188
      else - (rapprox_posrat prec (nat x) (nat (-y))))
hoelzl@47599
  1189
      else (if 0 < y
hoelzl@47599
  1190
        then - (rapprox_posrat prec (nat (-x)) (nat y))
hoelzl@47599
  1191
        else lapprox_posrat prec (nat (-x)) (nat (-y))))"
hoelzl@56479
  1192
  by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps)
hoelzl@47621
  1193
hide_fact (open) compute_lapprox_rat
hoelzl@47599
  1194
hoelzl@47600
  1195
lift_definition rapprox_rat :: "nat \<Rightarrow> int \<Rightarrow> int \<Rightarrow> float" is
hoelzl@47600
  1196
  "\<lambda>prec (x::int) (y::int). round_up (rat_precision prec \<bar>x\<bar> \<bar>y\<bar>) (x / y)" by simp
hoelzl@47599
  1197
immler@58982
  1198
lemma "rapprox_rat = rapprox_posrat"
immler@58982
  1199
  by transfer auto
immler@58982
  1200
immler@58982
  1201
lemma "lapprox_rat = lapprox_posrat"
immler@58982
  1202
  by transfer auto
immler@58982
  1203
hoelzl@47599
  1204
lemma compute_rapprox_rat[code]:
immler@58982
  1205
  "rapprox_rat prec x y = - lapprox_rat prec (-x) y"
immler@58982
  1206
  by transfer (simp add: round_down_uminus_eq)
hoelzl@47621
  1207
hide_fact (open) compute_rapprox_rat
hoelzl@47599
  1208
hoelzl@47599
  1209
subsection {* Division *}
hoelzl@47599
  1210
immler@54782
  1211
definition "real_divl prec a b = round_down (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)"
immler@54782
  1212
immler@54782
  1213
definition "real_divr prec a b = round_up (int prec + \<lfloor> log 2 \<bar>b\<bar> \<rfloor> - \<lfloor> log 2 \<bar>a\<bar> \<rfloor>) (a / b)"
immler@54782
  1214
immler@54782
  1215
lift_definition float_divl :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divl
immler@54782
  1216
  by (simp add: real_divl_def)
hoelzl@47599
  1217
hoelzl@47599
  1218
lemma compute_float_divl[code]:
hoelzl@47600
  1219
  "float_divl prec (Float m1 s1) (Float m2 s2) = lapprox_rat prec m1 m2 * Float 1 (s1 - s2)"
hoelzl@47599
  1220
proof cases
hoelzl@47601
  1221
  let ?f1 = "real m1 * 2 powr real s1" and ?f2 = "real m2 * 2 powr real s2"
hoelzl@47601
  1222
  let ?m = "real m1 / real m2" and ?s = "2 powr real (s1 - s2)"
hoelzl@47601
  1223
  assume not_0: "m1 \<noteq> 0 \<and> m2 \<noteq> 0"
hoelzl@47601
  1224
  then have eq2: "(int prec + \<lfloor>log 2 \<bar>?f2\<bar>\<rfloor> - \<lfloor>log 2 \<bar>?f1\<bar>\<rfloor>) = rat_precision prec \<bar>m1\<bar> \<bar>m2\<bar> + (s2 - s1)"
hoelzl@47601
  1225
    by (simp add: abs_mult log_mult rat_precision_def bitlen_def)
hoelzl@47601
  1226
  have eq1: "real m1 * 2 powr real s1 / (real m2 * 2 powr real s2) = ?m * ?s"
hoelzl@47601
  1227
    by (simp add: field_simps powr_divide2[symmetric])
hoelzl@47599
  1228
hoelzl@47601
  1229
  show ?thesis
wenzelm@53381
  1230
    using not_0
immler@54782
  1231
    by (transfer fixing: m1 s1 m2 s2 prec) (unfold eq1 eq2 round_down_shift real_divl_def,
immler@54782
  1232
      simp add: field_simps)
immler@54782
  1233
qed (transfer, auto simp: real_divl_def)
hoelzl@47621
  1234
hide_fact (open) compute_float_divl
hoelzl@47600
  1235
immler@54782
  1236
lift_definition float_divr :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is real_divr
immler@54782
  1237
  by (simp add: real_divr_def)
hoelzl@47599
  1238
hoelzl@47599
  1239
lemma compute_float_divr[code]:
immler@58982
  1240
  "float_divr prec x y = - float_divl prec (-x) y"
immler@58982
  1241
  by transfer (simp add: real_divr_def real_divl_def round_down_uminus_eq)
immler@58982
  1242
hide_fact (open) compute_float_divr
hoelzl@47600
  1243
obua@16782
  1244
immler@58985
  1245
subsection {* Approximate Power *}
immler@58985
  1246
immler@58985
  1247
lemma div2_less_self[termination_simp]: fixes n::nat shows "odd n \<Longrightarrow> n div 2 < n"
immler@58985
  1248
  by (simp add: odd_pos)
immler@58985
  1249
immler@58985
  1250
fun power_down :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where
immler@58985
  1251
  "power_down p x 0 = 1"
immler@58985
  1252
| "power_down p x (Suc n) =
immler@58985
  1253
    (if odd n then truncate_down (Suc p) ((power_down p x (Suc n div 2))\<^sup>2) else truncate_down (Suc p) (x * power_down p x n))"
immler@58985
  1254
immler@58985
  1255
fun power_up :: "nat \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> real" where
immler@58985
  1256
  "power_up p x 0 = 1"
immler@58985
  1257
| "power_up p x (Suc n) =
immler@58985
  1258
    (if odd n then truncate_up p ((power_up p x (Suc n div 2))\<^sup>2) else truncate_up p (x * power_up p x n))"
immler@58985
  1259
immler@58985
  1260
lift_definition power_up_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_up
immler@58985
  1261
  by (induct_tac rule: power_up.induct) simp_all
immler@58985
  1262
immler@58985
  1263
lift_definition power_down_fl :: "nat \<Rightarrow> float \<Rightarrow> nat \<Rightarrow> float" is power_down
immler@58985
  1264
  by (induct_tac rule: power_down.induct) simp_all
immler@58985
  1265
immler@58985
  1266
lemma power_float_transfer[transfer_rule]:
immler@58985
  1267
  "(rel_fun pcr_float (rel_fun op = pcr_float)) op ^ op ^"
immler@58985
  1268
  unfolding power_def
immler@58985
  1269
  by transfer_prover
immler@58985
  1270
immler@58985
  1271
lemma compute_power_up_fl[code]:
immler@58985
  1272
  "power_up_fl p x 0 = 1"
immler@58985
  1273
  "power_up_fl p x (Suc n) =
immler@58985
  1274
    (if odd n then float_round_up p ((power_up_fl p x (Suc n div 2))\<^sup>2) else float_round_up p (x * power_up_fl p x n))"
immler@58985
  1275
  and compute_power_down_fl[code]:
immler@58985
  1276
  "power_down_fl p x 0 = 1"
immler@58985
  1277
  "power_down_fl p x (Suc n) =
immler@58985
  1278
    (if odd n then float_round_down (Suc p) ((power_down_fl p x (Suc n div 2))\<^sup>2) else float_round_down (Suc p) (x * power_down_fl p x n))"
immler@58985
  1279
  unfolding atomize_conj
immler@58985
  1280
  by transfer simp
immler@58985
  1281
immler@58985
  1282
lemma power_down_pos: "0 < x \<Longrightarrow> 0 < power_down p x n"
immler@58985
  1283
  by (induct p x n rule: power_down.induct)
immler@58985
  1284
    (auto simp del: odd_Suc_div_two intro!: truncate_down_pos)
immler@58985
  1285
immler@58985
  1286
lemma power_down_nonneg: "0 \<le> x \<Longrightarrow> 0 \<le> power_down p x n"
immler@58985
  1287
  by (induct p x n rule: power_down.induct)
immler@58985
  1288
    (auto simp del: odd_Suc_div_two intro!: truncate_down_nonneg mult_nonneg_nonneg)
immler@58985
  1289
immler@58985
  1290
lemma power_down: "0 \<le> x \<Longrightarrow> power_down p x n \<le> x ^ n"
immler@58985
  1291
proof (induct p x n rule: power_down.induct)
immler@58985
  1292
  case (2 p x n)
immler@58985
  1293
  {
immler@58985
  1294
    assume "odd n"
immler@58985
  1295
    hence "(power_down p x (Suc n div 2)) ^ 2 \<le> (x ^ (Suc n div 2)) ^ 2"
immler@58985
  1296
      using 2
immler@58985
  1297
      by (auto intro: power_mono power_down_nonneg simp del: odd_Suc_div_two)
immler@58985
  1298
    also have "\<dots> = x ^ (Suc n div 2 * 2)"
immler@58985
  1299
      by (simp add: power_mult[symmetric])
immler@58985
  1300
    also have "Suc n div 2 * 2 = Suc n"
immler@58985
  1301
      using `odd n` by presburger
immler@58985
  1302
    finally have ?case
immler@58985
  1303
      using `odd n`
immler@58985
  1304
      by (auto intro!: truncate_down_le simp del: odd_Suc_div_two)
immler@58985
  1305
  } thus ?case
immler@58985
  1306
    by (auto intro!: truncate_down_le mult_left_mono 2 mult_nonneg_nonneg power_down_nonneg)
immler@58985
  1307
qed simp
immler@58985
  1308
immler@58985
  1309
lemma power_up: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up p x n"
immler@58985
  1310
proof (induct p x n rule: power_up.induct)
immler@58985
  1311
  case (2 p x n)
immler@58985
  1312
  {
immler@58985
  1313
    assume "odd n"
immler@58985
  1314
    hence "Suc n = Suc n div 2 * 2"
immler@58985
  1315
      using `odd n` even_Suc by presburger
immler@58985
  1316
    hence "x ^ Suc n \<le> (x ^ (Suc n div 2))\<^sup>2"
immler@58985
  1317
      by (simp add: power_mult[symmetric])
immler@58985
  1318
    also have "\<dots> \<le> (power_up p x (Suc n div 2))\<^sup>2"
immler@58985
  1319
      using 2 `odd n`
immler@58985
  1320
      by (auto intro: power_mono simp del: odd_Suc_div_two )
immler@58985
  1321
    finally have ?case
immler@58985
  1322
      using `odd n`
immler@58985
  1323
      by (auto intro!: truncate_up_le simp del: odd_Suc_div_two )
immler@58985
  1324
  } thus ?case
immler@58985
  1325
    by (auto intro!: truncate_up_le mult_left_mono 2)
immler@58985
  1326
qed simp
immler@58985
  1327
immler@58985
  1328
lemmas power_up_le = order_trans[OF _ power_up]
immler@58985
  1329
  and power_up_less = less_le_trans[OF _ power_up]
immler@58985
  1330
  and power_down_le = order_trans[OF power_down]
immler@58985
  1331
immler@58985
  1332
lemma power_down_fl: "0 \<le> x \<Longrightarrow> power_down_fl p x n \<le> x ^ n"
immler@58985
  1333
  by transfer (rule power_down)
immler@58985
  1334
immler@58985
  1335
lemma power_up_fl: "0 \<le> x \<Longrightarrow> x ^ n \<le> power_up_fl p x n"
immler@58985
  1336
  by transfer (rule power_up)
immler@58985
  1337
immler@58985
  1338
lemma real_power_up_fl: "real (power_up_fl p x n) = power_up p x n"
immler@58985
  1339
  by transfer simp
immler@58985
  1340
immler@58985
  1341
lemma real_power_down_fl: "real (power_down_fl p x n) = power_down p x n"
immler@58985
  1342
  by transfer simp
immler@58985
  1343
immler@58985
  1344
immler@58985
  1345
subsection {* Approximate Addition *}
immler@58985
  1346
immler@58985
  1347
definition "plus_down prec x y = truncate_down prec (x + y)"
immler@58985
  1348
immler@58985
  1349
definition "plus_up prec x y = truncate_up prec (x + y)"
immler@58985
  1350
immler@58985
  1351
lemma float_plus_down_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_down p x y \<in> float"
immler@58985
  1352
  by (simp add: plus_down_def)
immler@58985
  1353
immler@58985
  1354
lemma float_plus_up_float[intro, simp]: "x \<in> float \<Longrightarrow> y \<in> float \<Longrightarrow> plus_up p x y \<in> float"
immler@58985
  1355
  by (simp add: plus_up_def)
immler@58985
  1356
immler@58985
  1357
lift_definition float_plus_down::"nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_down ..
immler@58985
  1358
immler@58985
  1359
lift_definition float_plus_up::"nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float" is plus_up ..
immler@58985
  1360
immler@58985
  1361
lemma plus_down: "plus_down prec x y \<le> x + y"
immler@58985
  1362
  and plus_up: "x + y \<le> plus_up prec x y"
immler@58985
  1363
  by (auto simp: plus_down_def truncate_down plus_up_def truncate_up)
immler@58985
  1364
immler@58985
  1365
lemma float_plus_down: "real (float_plus_down prec x y) \<le> x + y"
immler@58985
  1366
  and float_plus_up: "x + y \<le> real (float_plus_up prec x y)"
immler@58985
  1367
  by (transfer, rule plus_down plus_up)+
immler@58985
  1368
immler@58985
  1369
lemmas plus_down_le = order_trans[OF plus_down]
immler@58985
  1370
  and plus_up_le = order_trans[OF _ plus_up]
immler@58985
  1371
  and float_plus_down_le = order_trans[OF float_plus_down]
immler@58985
  1372
  and float_plus_up_le = order_trans[OF _ float_plus_up]
immler@58985
  1373
immler@58985
  1374
lemma compute_plus_up[code]: "plus_up p x y = - plus_down p (-x) (-y)"
immler@58985
  1375
  using truncate_down_uminus_eq[of p "x + y"]
immler@58985
  1376
  by (auto simp: plus_down_def plus_up_def)
immler@58985
  1377
immler@58985
  1378
lemma
immler@58985
  1379
  truncate_down_log2_eqI:
immler@58985
  1380
  assumes "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@58985
  1381
  assumes "\<lfloor>x * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)\<rfloor> = \<lfloor>y * 2 powr (p - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)\<rfloor>"
immler@58985
  1382
  shows "truncate_down p x = truncate_down p y"
immler@58985
  1383
  using assms by (auto simp: truncate_down_def round_down_def)
immler@58985
  1384
immler@58985
  1385
lemma bitlen_eq_zero_iff: "bitlen x = 0 \<longleftrightarrow> x \<le> 0"
immler@58985
  1386
  by (clarsimp simp add: bitlen_def)
immler@58985
  1387
    (metis Float.compute_bitlen add.commute bitlen_def bitlen_nonneg less_add_same_cancel2 not_less
immler@58985
  1388
      zero_less_one)
immler@58985
  1389
immler@58985
  1390
lemma
immler@58985
  1391
  sum_neq_zeroI:
immler@58985
  1392
  fixes a k::real
immler@58985
  1393
  shows "abs a \<ge> k \<Longrightarrow> abs b < k \<Longrightarrow> a + b \<noteq> 0"
immler@58985
  1394
    and "abs a > k \<Longrightarrow> abs b \<le> k \<Longrightarrow> a + b \<noteq> 0"
immler@58985
  1395
  by auto
immler@58985
  1396
immler@58985
  1397
lemma
immler@58985
  1398
  abs_real_le_2_powr_bitlen[simp]:
immler@58985
  1399
  "\<bar>real m2\<bar> < 2 powr real (bitlen \<bar>m2\<bar>)"
immler@58985
  1400
proof cases
immler@58985
  1401
  assume "m2 \<noteq> 0"
immler@58985
  1402
  hence "\<bar>m2\<bar> < 2 ^ nat (bitlen \<bar>m2\<bar>)"
immler@58985
  1403
    using bitlen_bounds[of "\<bar>m2\<bar>"]
immler@58985
  1404
    by (auto simp: powr_add bitlen_nonneg)
immler@58985
  1405
  thus ?thesis
immler@58985
  1406
    by (simp add: powr_int bitlen_nonneg real_of_int_less_iff[symmetric])
immler@58985
  1407
qed simp
immler@58985
  1408
immler@58985
  1409
lemma floor_sum_times_2_powr_sgn_eq:
immler@58985
  1410
  fixes ai p q::int
immler@58985
  1411
  and a b::real
immler@58985
  1412
  assumes "a * 2 powr p = ai"
immler@58985
  1413
  assumes b_le_1: "abs (b * 2 powr (p + 1)) \<le> 1"
immler@58985
  1414
  assumes leqp: "q \<le> p"
immler@58985
  1415
  shows "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2 * ai + sgn b) * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1416
proof -
immler@58985
  1417
  {
immler@58985
  1418
    assume "b = 0"
immler@58985
  1419
    hence ?thesis
immler@58985
  1420
      by (simp add: assms(1)[symmetric] powr_add[symmetric] algebra_simps powr_mult_base)
immler@58985
  1421
  } moreover {
immler@58985
  1422
    assume "b > 0"
immler@58985
  1423
    hence "b * 2 powr p < abs (b * 2 powr (p + 1))" by simp
immler@58985
  1424
    also note b_le_1
immler@58985
  1425
    finally have b_less_1: "b * 2 powr real p < 1" .
immler@58985
  1426
immler@58985
  1427
    from b_less_1 `b > 0` have floor_eq: "\<lfloor>b * 2 powr real p\<rfloor> = 0" "\<lfloor>sgn b / 2\<rfloor> = 0"
immler@58985
  1428
      by (simp_all add: floor_eq_iff)
immler@58985
  1429
immler@58985
  1430
    have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(a + b) * 2 powr p * 2 powr (q - p)\<rfloor>"
immler@58985
  1431
      by (simp add: algebra_simps powr_realpow[symmetric] powr_add[symmetric])
immler@58985
  1432
    also have "\<dots> = \<lfloor>(ai + b * 2 powr p) * 2 powr (q - p)\<rfloor>"
immler@58985
  1433
      by (simp add: assms algebra_simps)
immler@58985
  1434
    also have "\<dots> = \<lfloor>(ai + b * 2 powr p) / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1435
      using assms
immler@58985
  1436
      by (simp add: algebra_simps powr_realpow[symmetric] divide_powr_uminus powr_add[symmetric])
immler@58985
  1437
    also have "\<dots> = \<lfloor>ai / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1438
      by (simp del: real_of_int_power add: floor_divide_real_eq_div floor_eq)
immler@58985
  1439
    finally have "\<lfloor>(a + b) * 2 powr real q\<rfloor> = \<lfloor>real ai / real ((2::int) ^ nat (p - q))\<rfloor>" .
immler@58985
  1440
    moreover
immler@58985
  1441
    {
immler@58985
  1442
      have "\<lfloor>(2 * ai + sgn b) * 2 powr (real (q - p) - 1)\<rfloor> = \<lfloor>(ai + sgn b / 2) * 2 powr (q - p)\<rfloor>"
immler@58985
  1443
        by (subst powr_divide2[symmetric]) (simp add: field_simps)
immler@58985
  1444
      also have "\<dots> = \<lfloor>(ai + sgn b / 2) / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1445
        using leqp by (simp add: powr_realpow[symmetric] powr_divide2[symmetric])
immler@58985
  1446
      also have "\<dots> = \<lfloor>ai / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1447
        by (simp del: real_of_int_power add: floor_divide_real_eq_div floor_eq)
immler@58985
  1448
      finally
immler@58985
  1449
      have "\<lfloor>(2 * ai + (sgn b)) * 2 powr (real (q - p) - 1)\<rfloor> =
immler@58985
  1450
          \<lfloor>real ai / real ((2::int) ^ nat (p - q))\<rfloor>"
immler@58985
  1451
        .
immler@58985
  1452
    } ultimately have ?thesis by simp
immler@58985
  1453
  } moreover {
immler@58985
  1454
    assume "\<not> 0 \<le> b"
immler@58985
  1455
    hence "0 > b" by simp
immler@58985
  1456
    hence floor_eq: "\<lfloor>b * 2 powr (real p + 1)\<rfloor> = -1"
immler@58985
  1457
      using b_le_1
immler@58985
  1458
      by (auto simp: floor_eq_iff algebra_simps pos_divide_le_eq[symmetric] abs_if divide_powr_uminus
immler@58985
  1459
        intro!: mult_neg_pos split: split_if_asm)
immler@58985
  1460
    have "\<lfloor>(a + b) * 2 powr q\<rfloor> = \<lfloor>(2*a + 2*b) * 2 powr p * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1461
      by (simp add: algebra_simps powr_realpow[symmetric] powr_add[symmetric] powr_mult_base)
immler@58985
  1462
    also have "\<dots> = \<lfloor>(2 * (a * 2 powr p) + 2 * b * 2 powr p) * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1463
      by (simp add: algebra_simps)
immler@58985
  1464
    also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / 2 powr (1 - q + p)\<rfloor>"
immler@58985
  1465
      using assms by (simp add: algebra_simps powr_mult_base divide_powr_uminus)
immler@58985
  1466
    also have "\<dots> = \<lfloor>(2 * ai + b * 2 powr (p + 1)) / real ((2::int) ^ nat (p - q + 1))\<rfloor>"
immler@58985
  1467
      using assms by (simp add: algebra_simps powr_realpow[symmetric])
immler@58985
  1468
    also have "\<dots> = \<lfloor>(2 * ai - 1) / real ((2::int) ^ nat (p - q + 1))\<rfloor>"
immler@58985
  1469
      using `b < 0` assms
immler@58985
  1470
      by (simp add: floor_divide_eq_div floor_eq floor_divide_real_eq_div
immler@58985
  1471
        del: real_of_int_mult real_of_int_power real_of_int_diff)
immler@58985
  1472
    also have "\<dots> = \<lfloor>(2 * ai - 1) * 2 powr (q - p - 1)\<rfloor>"
immler@58985
  1473
      using assms by (simp add: algebra_simps divide_powr_uminus powr_realpow[symmetric])
immler@58985
  1474
    finally have ?thesis using `b < 0` by simp
immler@58985
  1475
  } ultimately show ?thesis by arith
immler@58985
  1476
qed
immler@58985
  1477
immler@58985
  1478
lemma
immler@58985
  1479
  log2_abs_int_add_less_half_sgn_eq:
immler@58985
  1480
  fixes ai::int and b::real
immler@58985
  1481
  assumes "abs b \<le> 1/2" "ai \<noteq> 0"
immler@58985
  1482
  shows "\<lfloor>log 2 \<bar>real ai + b\<bar>\<rfloor> = \<lfloor>log 2 \<bar>ai + sgn b / 2\<bar>\<rfloor>"
immler@58985
  1483
proof cases
immler@58985
  1484
  assume "b = 0" thus ?thesis by simp
immler@58985
  1485
next
immler@58985
  1486
  assume "b \<noteq> 0"
immler@58985
  1487
  def k \<equiv> "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor>"
immler@58985
  1488
  hence "\<lfloor>log 2 \<bar>ai\<bar>\<rfloor> = k" by simp
immler@58985
  1489
  hence k: "2 powr k \<le> \<bar>ai\<bar>" "\<bar>ai\<bar> < 2 powr (k + 1)"
immler@58985
  1490
    by (simp_all add: floor_log_eq_powr_iff `ai \<noteq> 0`)
immler@58985
  1491
  have "k \<ge> 0"
immler@58985
  1492
    using assms by (auto simp: k_def)
immler@58985
  1493
  def r \<equiv> "\<bar>ai\<bar> - 2 ^ nat k"
immler@58985
  1494
  have r: "0 \<le> r" "r < 2 powr k"
immler@58985
  1495
    using `k \<ge> 0` k
immler@58985
  1496
    by (auto simp: r_def k_def algebra_simps powr_add abs_if powr_int)
immler@58985
  1497
  hence "r \<le> (2::int) ^ nat k - 1"
immler@58985
  1498
    using `k \<ge> 0` by (auto simp: powr_int)
immler@58985
  1499
  from this[simplified real_of_int_le_iff[symmetric]] `0 \<le> k`
immler@58985
  1500
  have r_le: "r \<le> 2 powr k - 1"
immler@58985
  1501
    by (auto simp: algebra_simps powr_int simp del: real_of_int_le_iff)
immler@58985
  1502
immler@58985
  1503
  have "\<bar>ai\<bar> = 2 powr k + r"
immler@58985
  1504
    using `k \<ge> 0` by (auto simp: k_def r_def powr_realpow[symmetric])
immler@58985
  1505
immler@58985
  1506
  have pos: "\<And>b::real. abs b < 1 \<Longrightarrow> 0 < 2 powr k + (r + b)"
immler@58985
  1507
    using `0 \<le> k` `ai \<noteq> 0`
immler@58985
  1508
    by (auto simp add: r_def powr_realpow[symmetric] abs_if sgn_if algebra_simps
immler@58985
  1509
      split: split_if_asm)
immler@58985
  1510
  have less: "\<bar>sgn ai * b\<bar> < 1"
immler@58985
  1511
    and less': "\<bar>sgn (sgn ai * b) / 2\<bar> < 1"
immler@58985
  1512
    using `abs b \<le> _` by (auto simp: abs_if sgn_if split: split_if_asm)
immler@58985
  1513
immler@58985
  1514
  have floor_eq: "\<And>b::real. abs b \<le> 1 / 2 \<Longrightarrow>
immler@58985
  1515
      \<lfloor>log 2 (1 + (r + b) / 2 powr k)\<rfloor> = (if r = 0 \<and> b < 0 then -1 else 0)"
immler@58985
  1516
    using `k \<ge> 0` r r_le
immler@58985
  1517
    by (auto simp: floor_log_eq_powr_iff powr_minus_divide field_simps sgn_if)
immler@58985
  1518
immler@58985
  1519
  from `real \<bar>ai\<bar> = _` have "\<bar>ai + b\<bar> = 2 powr k + (r + sgn ai * b)"
immler@58985
  1520
    using `abs b <= _` `0 \<le> k` r
immler@58985
  1521
    by (auto simp add: sgn_if abs_if)
immler@58985
  1522
  also have "\<lfloor>log 2 \<dots>\<rfloor> = \<lfloor>log 2 (2 powr k + r + sgn (sgn ai * b) / 2)\<rfloor>"
immler@58985
  1523
  proof -
immler@58985
  1524
    have "2 powr k + (r + (sgn ai) * b) = 2 powr k * (1 + (r + sgn ai * b) / 2 powr k)"
immler@58985
  1525
      by (simp add: field_simps)
immler@58985
  1526
    also have "\<lfloor>log 2 \<dots>\<rfloor> = k + \<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor>"
immler@58985
  1527
      using pos[OF less]
immler@58985
  1528
      by (subst log_mult) (simp_all add: log_mult powr_mult field_simps)
immler@58985
  1529
    also
immler@58985
  1530
    let ?if = "if r = 0 \<and> sgn ai * b < 0 then -1 else 0"
immler@58985
  1531
    have "\<lfloor>log 2 (1 + (r + sgn ai * b) / 2 powr k)\<rfloor> = ?if"
immler@58985
  1532
      using `abs b <= _`
immler@58985
  1533
      by (intro floor_eq) (auto simp: abs_mult sgn_if)
immler@58985
  1534
    also
immler@58985
  1535
    have "\<dots> = \<lfloor>log 2 (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k)\<rfloor>"
immler@58985
  1536
      by (subst floor_eq) (auto simp: sgn_if)
immler@58985
  1537
    also have "k + \<dots> = \<lfloor>log 2 (2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k))\<rfloor>"
immler@58985
  1538
      unfolding floor_add2[symmetric]
immler@58985
  1539
      using pos[OF less'] `abs b \<le> _`
immler@58985
  1540
      by (simp add: field_simps add_log_eq_powr)
immler@58985
  1541
    also have "2 powr k * (1 + (r + sgn (sgn ai * b) / 2) / 2 powr k) =
immler@58985
  1542
        2 powr k + r + sgn (sgn ai * b) / 2"
immler@58985
  1543
      by (simp add: sgn_if field_simps)
immler@58985
  1544
    finally show ?thesis .
immler@58985
  1545
  qed
immler@58985
  1546
  also have "2 powr k + r + sgn (sgn ai * b) / 2 = \<bar>ai + sgn b / 2\<bar>"
immler@58985
  1547
    unfolding `real \<bar>ai\<bar> = _`[symmetric] using `ai \<noteq> 0`
immler@58985
  1548
    by (auto simp: abs_if sgn_if algebra_simps)
immler@58985
  1549
  finally show ?thesis .
immler@58985
  1550
qed
immler@58985
  1551
immler@58985
  1552
lemma compute_far_float_plus_down:
immler@58985
  1553
  fixes m1 e1 m2 e2::int and p::nat
immler@58985
  1554
  defines "k1 \<equiv> p - nat (bitlen \<bar>m1\<bar>)"
immler@58985
  1555
  assumes H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - k1 - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2"
immler@58985
  1556
  shows "float_plus_down p (Float m1 e1) (Float m2 e2) =
immler@58985
  1557
    float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2))"
immler@58985
  1558
proof -
immler@58985
  1559
  let ?a = "real (Float m1 e1)"
immler@58985
  1560
  let ?b = "real (Float m2 e2)"
immler@58985
  1561
  let ?sum = "?a + ?b"
immler@58985
  1562
  let ?shift = "real e2 - real e1 + real k1 + 1"
immler@58985
  1563
  let ?m1 = "m1 * 2 ^ Suc k1"
immler@58985
  1564
  let ?m2 = "m2 * 2 powr ?shift"
immler@58985
  1565
  let ?m2' = "sgn m2 / 2"
immler@58985
  1566
  let ?e = "e1 - int k1 - 1"
immler@58985
  1567
immler@58985
  1568
  have sum_eq: "?sum = (?m1 + ?m2) * 2 powr ?e"
immler@58985
  1569
    by (auto simp: powr_add[symmetric] powr_mult[symmetric] algebra_simps
immler@58985
  1570
      powr_realpow[symmetric] powr_mult_base)
immler@58985
  1571
immler@58985
  1572
  have "\<bar>?m2\<bar> * 2 < 2 powr (bitlen \<bar>m2\<bar> + ?shift + 1)"
immler@58985
  1573
    by (auto simp: field_simps powr_add powr_mult_base powr_numeral powr_divide2[symmetric] abs_mult)
immler@58985
  1574
  also have "\<dots> \<le> 2 powr 0"
immler@58985
  1575
    using H by (intro powr_mono) auto
immler@58985
  1576
  finally have abs_m2_less_half: "\<bar>?m2\<bar> < 1 / 2"
immler@58985
  1577
    by simp
immler@58985
  1578
immler@58985
  1579
  hence "\<bar>real m2\<bar> < 2 powr -(?shift + 1)"
immler@58985
  1580
    unfolding powr_minus_divide by (auto simp: bitlen_def field_simps powr_mult_base abs_mult)
immler@58985
  1581
  also have "\<dots> \<le> 2 powr real (e1 - e2 - 2)"
immler@58985
  1582
    by simp
immler@58985
  1583
  finally have b_less_quarter: "\<bar>?b\<bar> < 1/4 * 2 powr real e1"
immler@58985
  1584
    by (simp add: powr_add field_simps powr_divide2[symmetric] powr_numeral abs_mult)
immler@58985
  1585
  also have "1/4 < \<bar>real m1\<bar> / 2" using `m1 \<noteq> 0` by simp
immler@58985
  1586
  finally have b_less_half_a: "\<bar>?b\<bar> < 1/2 * \<bar>?a\<bar>"
immler@58985
  1587
    by (simp add: algebra_simps powr_mult_base abs_mult)
immler@58985
  1588
  hence a_half_less_sum: "\<bar>?a\<bar> / 2 < \<bar>?sum\<bar>"
immler@58985
  1589
    by (auto simp: field_simps abs_if split: split_if_asm)
immler@58985
  1590
immler@58985
  1591
  from b_less_half_a have "\<bar>?b\<bar> < \<bar>?a\<bar>" "\<bar>?b\<bar> \<le> \<bar>?a\<bar>"
immler@58985
  1592
    by simp_all
immler@58985
  1593
immler@58985
  1594
  have "\<bar>real (Float m1 e1)\<bar> \<ge> 1/4 * 2 powr real e1"
immler@58985
  1595
    using `m1 \<noteq> 0`
immler@58985
  1596
    by (auto simp: powr_add powr_int bitlen_nonneg divide_right_mono abs_mult)
immler@58985
  1597
  hence "?sum \<noteq> 0" using b_less_quarter
immler@58985
  1598
    by (rule sum_neq_zeroI)
immler@58985
  1599
  hence "?m1 + ?m2 \<noteq> 0"
immler@58985
  1600
    unfolding sum_eq by (simp add: abs_mult zero_less_mult_iff)
immler@58985
  1601
immler@58985
  1602
  have "\<bar>real ?m1\<bar> \<ge> 2 ^ Suc k1" "\<bar>?m2'\<bar> < 2 ^ Suc k1"
immler@58985
  1603
    using `m1 \<noteq> 0` `m2 \<noteq> 0` by (auto simp: sgn_if less_1_mult abs_mult simp del: power.simps)
immler@58985
  1604
  hence sum'_nz: "?m1 + ?m2' \<noteq> 0"
immler@58985
  1605
    by (intro sum_neq_zeroI)
immler@58985
  1606
immler@58985
  1607
  have "\<lfloor>log 2 \<bar>real (Float m1 e1) + real (Float m2 e2)\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> + ?e"
immler@58985
  1608
    using `?m1 + ?m2 \<noteq> 0`
immler@58985
  1609
    unfolding floor_add[symmetric] sum_eq
immler@58985
  1610
    by (simp add: abs_mult log_mult)
immler@58985
  1611
  also have "\<lfloor>log 2 \<bar>?m1 + ?m2\<bar>\<rfloor> = \<lfloor>log 2 \<bar>?m1 + sgn (real m2 * 2 powr ?shift) / 2\<bar>\<rfloor>"
immler@58985
  1612
    using abs_m2_less_half `m1 \<noteq> 0`
immler@58985
  1613
    by (intro log2_abs_int_add_less_half_sgn_eq) (auto simp: abs_mult)
immler@58985
  1614
  also have "sgn (real m2 * 2 powr ?shift) = sgn m2"
immler@58985
  1615
    by (auto simp: sgn_if zero_less_mult_iff less_not_sym)
immler@58985
  1616
  also
immler@58985
  1617
  have "\<bar>?m1 + ?m2'\<bar> * 2 powr ?e = \<bar>?m1 * 2 + sgn m2\<bar> * 2 powr (?e - 1)"
immler@58985
  1618
    by (auto simp: field_simps powr_minus[symmetric] powr_divide2[symmetric] powr_mult_base)
immler@58985
  1619
  hence "\<lfloor>log 2 \<bar>?m1 + ?m2'\<bar>\<rfloor> + ?e = \<lfloor>log 2 \<bar>real (Float (?m1 * 2 + sgn m2) (?e - 1))\<bar>\<rfloor>"
immler@58985
  1620
    using `?m1 + ?m2' \<noteq> 0`
immler@58985
  1621
    unfolding floor_add[symmetric]
immler@58985
  1622
    by (simp add: log_add_eq_powr abs_mult_pos)
immler@58985
  1623
  finally
immler@58985
  1624
  have "\<lfloor>log 2 \<bar>?sum\<bar>\<rfloor> = \<lfloor>log 2 \<bar>real (Float (?m1*2 + sgn m2) (?e - 1))\<bar>\<rfloor>" .
immler@58985
  1625
  hence "plus_down p (Float m1 e1) (Float m2 e2) =
immler@58985
  1626
      truncate_down p (Float (?m1*2 + sgn m2) (?e - 1))"
immler@58985
  1627
    unfolding plus_down_def
immler@58985
  1628
  proof (rule truncate_down_log2_eqI)
immler@58985
  1629
    let ?f = "(int p - \<lfloor>log 2 \<bar>real (Float m1 e1) + real (Float m2 e2)\<bar>\<rfloor> - 1)"
immler@58985
  1630
    let ?ai = "m1 * 2 ^ (Suc k1)"
immler@58985
  1631
    have "\<lfloor>(?a + ?b) * 2 powr real ?f\<rfloor> = \<lfloor>(real (2 * ?ai) + sgn ?b) * 2 powr real (?f - - ?e - 1)\<rfloor>"
immler@58985
  1632
    proof (rule floor_sum_times_2_powr_sgn_eq)
immler@58985
  1633
      show "?a * 2 powr real (-?e) = real ?ai"
immler@58985
  1634
        by (simp add: powr_add powr_realpow[symmetric] powr_divide2[symmetric])
immler@58985
  1635
      show "\<bar>?b * 2 powr real (-?e + 1)\<bar> \<le> 1"
immler@58985
  1636
        using abs_m2_less_half
immler@58985
  1637
        by (simp add: abs_mult powr_add[symmetric] algebra_simps powr_mult_base)
immler@58985
  1638
    next
immler@58985
  1639
      have "e1 + \<lfloor>log 2 \<bar>real m1\<bar>\<rfloor> - 1 = \<lfloor>log 2 \<bar>?a\<bar>\<rfloor> - 1"
immler@58985
  1640
        using `m1 \<noteq> 0`
immler@58985
  1641
        by (simp add: floor_add2[symmetric] algebra_simps log_mult abs_mult del: floor_add2)
immler@58985
  1642
      also have "\<dots> \<le> \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor>"
immler@58985
  1643
        using a_half_less_sum `m1 \<noteq> 0` `?sum \<noteq> 0`
immler@58985
  1644
        unfolding floor_subtract[symmetric]
immler@58985
  1645
        by (auto simp add: log_minus_eq_powr powr_minus_divide
immler@58985
  1646
          intro!: floor_mono)
immler@58985
  1647
      finally
immler@58985
  1648
      have "int p - \<lfloor>log 2 \<bar>?a + ?b\<bar>\<rfloor> \<le> p - (bitlen \<bar>m1\<bar>) - e1 + 2"
immler@58985
  1649
        by (auto simp: algebra_simps bitlen_def `m1 \<noteq> 0`)
immler@58985
  1650
      also have "\<dots> \<le> 1 - ?e"
immler@58985
  1651
        using bitlen_nonneg[of "\<bar>m1\<bar>"] by (simp add: k1_def)
immler@58985
  1652
      finally show "?f \<le> - ?e" by simp
immler@58985
  1653
    qed
immler@58985
  1654
    also have "sgn ?b = sgn m2"
immler@58985
  1655
      using powr_gt_zero[of 2 e2]
immler@58985
  1656
      by (auto simp add: sgn_if zero_less_mult_iff simp del: powr_gt_zero)
immler@58985
  1657
    also have "\<lfloor>(real (2 * ?m1) + real (sgn m2)) * 2 powr real (?f - - ?e - 1)\<rfloor> =
immler@58985
  1658
        \<lfloor>Float (?m1 * 2 + sgn m2) (?e - 1) * 2 powr ?f\<rfloor>"
immler@58985
  1659
      by (simp add: powr_add[symmetric] algebra_simps powr_realpow[symmetric])
immler@58985
  1660
    finally
immler@58985
  1661
    show "\<lfloor>(?a + ?b) * 2 powr ?f\<rfloor> = \<lfloor>real (Float (?m1 * 2 + sgn m2) (?e - 1)) * 2 powr ?f\<rfloor>" .
immler@58985
  1662
  qed
immler@58985
  1663
  thus ?thesis
immler@58985
  1664
    by transfer (simp add: plus_down_def ac_simps Let_def)
immler@58985
  1665
qed
immler@58985
  1666
immler@58985
  1667
lemma compute_float_plus_down_naive[code]: "float_plus_down p x y = float_round_down p (x + y)"
immler@58985
  1668
  by transfer (auto simp: plus_down_def)
immler@58985
  1669
immler@58985
  1670
lemma compute_float_plus_down[code]:
immler@58985
  1671
  fixes p::nat and m1 e1 m2 e2::int
immler@58985
  1672
  shows "float_plus_down p (Float m1 e1) (Float m2 e2) =
immler@58985
  1673
    (if m1 = 0 then float_round_down p (Float m2 e2)
immler@58985
  1674
    else if m2 = 0 then float_round_down p (Float m1 e1)
immler@58985
  1675
    else (if e1 \<ge> e2 then
immler@58985
  1676
      (let
immler@58985
  1677
        k1 = p - nat (bitlen \<bar>m1\<bar>)
immler@58985
  1678
      in
immler@58985
  1679
        if bitlen \<bar>m2\<bar> > e1 - e2 - k1 - 2 then float_round_down p ((Float m1 e1) + (Float m2 e2))
immler@58985
  1680
        else float_round_down p (Float (m1 * 2 ^ (Suc (Suc k1)) + sgn m2) (e1 - int k1 - 2)))
immler@58985
  1681
    else float_plus_down p (Float m2 e2) (Float m1 e1)))"
immler@58985
  1682
proof -
immler@58985
  1683
  {
immler@58985
  1684
    assume H: "bitlen \<bar>m2\<bar> \<le> e1 - e2 - (p - nat (bitlen \<bar>m1\<bar>)) - 2" "m1 \<noteq> 0" "m2 \<noteq> 0" "e1 \<ge> e2"
immler@58985
  1685
    note compute_far_float_plus_down[OF H]
immler@58985
  1686
  }
immler@58985
  1687
  thus ?thesis
immler@58985
  1688
    by transfer (simp add: Let_def plus_down_def ac_simps)
immler@58985
  1689
qed
immler@58985
  1690
hide_fact (open) compute_far_float_plus_down
immler@58985
  1691
hide_fact (open) compute_float_plus_down
immler@58985
  1692
immler@58985
  1693
lemma compute_float_plus_up[code]: "float_plus_up p x y = - float_plus_down p (-x) (-y)"
immler@58985
  1694
  using truncate_down_uminus_eq[of p "x + y"]
immler@58985
  1695
  by transfer (simp add: plus_down_def plus_up_def ac_simps)
immler@58985
  1696
hide_fact (open) compute_float_plus_up
immler@58985
  1697
immler@58985
  1698
lemma mantissa_zero[simp]: "mantissa 0 = 0"
immler@58985
  1699
by (metis mantissa_0 zero_float.abs_eq)
immler@58985
  1700
immler@58985
  1701
hoelzl@47599
  1702
subsection {* Lemmas needed by Approximate *}
hoelzl@47599
  1703
hoelzl@47599
  1704
lemma Float_num[simp]: shows
hoelzl@47599
  1705
   "real (Float 1 0) = 1" and "real (Float 1 1) = 2" and "real (Float 1 2) = 4" and
haftmann@58410
  1706
   "real (Float 1 (- 1)) = 1/2" and "real (Float 1 (- 2)) = 1/4" and "real (Float 1 (- 3)) = 1/8" and
haftmann@58410
  1707
   "real (Float (- 1) 0) = -1" and "real (Float (number_of n) 0) = number_of n"
hoelzl@47599
  1708
using two_powr_int_float[of 2] two_powr_int_float[of "-1"] two_powr_int_float[of "-2"] two_powr_int_float[of "-3"]
hoelzl@47599
  1709
using powr_realpow[of 2 2] powr_realpow[of 2 3]
hoelzl@47599
  1710
using powr_minus[of 2 1] powr_minus[of 2 2] powr_minus[of 2 3]
hoelzl@47599
  1711
by auto
hoelzl@47599
  1712
hoelzl@47599
  1713
lemma real_of_Float_int[simp]: "real (Float n 0) = real n" by simp
hoelzl@47599
  1714
hoelzl@47599
  1715
lemma float_zero[simp]: "real (Float 0 e) = 0" by simp
hoelzl@47599
  1716
hoelzl@47599
  1717
lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
hoelzl@47599
  1718
by arith
hoelzl@29804
  1719
hoelzl@47599
  1720
lemma lapprox_rat:
hoelzl@47599
  1721
  shows "real (lapprox_rat prec x y) \<le> real x / real y"
hoelzl@47599
  1722
  using round_down by (simp add: lapprox_rat_def)
obua@16782
  1723
hoelzl@47599
  1724
lemma mult_div_le: fixes a b:: int assumes "b > 0" shows "a \<ge> b * (a div b)"
hoelzl@47599
  1725
proof -
hoelzl@47599
  1726
  from zmod_zdiv_equality'[of a b]
hoelzl@47599
  1727
  have "a = b * (a div b) + a mod b" by simp
hoelzl@47599
  1728
  also have "... \<ge> b * (a div b) + 0" apply (rule add_left_mono) apply (rule pos_mod_sign)
hoelzl@47599
  1729
  using assms by simp
hoelzl@47599
  1730
  finally show ?thesis by simp
hoelzl@47599
  1731
qed
hoelzl@47599
  1732
hoelzl@47599
  1733
lemma lapprox_rat_nonneg:
hoelzl@47599
  1734
  fixes n x y
immler@58982
  1735
  assumes "0 \<le> x" and "0 \<le> y"
hoelzl@47599
  1736
  shows "0 \<le> real (lapprox_rat n x y)"
immler@58982
  1737
  using assms by (auto simp: lapprox_rat_def simp: round_down_nonneg)
obua@16782
  1738
hoelzl@31098
  1739
lemma rapprox_rat: "real x / real y \<le> real (rapprox_rat prec x y)"
hoelzl@47599
  1740
  using round_up by (simp add: rapprox_rat_def)
hoelzl@47599
  1741
hoelzl@47599
  1742
lemma rapprox_rat_le1:
hoelzl@47599
  1743
  fixes n x y
hoelzl@47599
  1744
  assumes xy: "0 \<le> x" "0 < y" "x \<le> y"
hoelzl@47599
  1745
  shows "real (rapprox_rat n x y) \<le> 1"
hoelzl@47599
  1746
proof -
hoelzl@47599
  1747
  have "bitlen \<bar>x\<bar> \<le> bitlen \<bar>y\<bar>"
hoelzl@47599
  1748
    using xy unfolding bitlen_def by (auto intro!: floor_mono)
immler@58982
  1749
  from this assms show ?thesis
immler@58982
  1750
    by transfer (auto intro!: round_up_le1 simp: rat_precision_def)
hoelzl@29804
  1751
qed
obua@16782
  1752
immler@58982
  1753
lemma rapprox_rat_nonneg_nonpos:
immler@58982
  1754
  "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
immler@58982
  1755
  by transfer (simp add: round_up_le0 divide_nonneg_nonpos)
obua@16782
  1756
immler@58982
  1757
lemma rapprox_rat_nonpos_nonneg:
immler@58982
  1758
  "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real (rapprox_rat n x y) \<le> 0"
immler@58982
  1759
  by transfer (simp add: round_up_le0 divide_nonpos_nonneg)
obua@16782
  1760
immler@54782
  1761
lemma real_divl: "real_divl prec x y \<le> x / y"
immler@54782
  1762
  by (simp add: real_divl_def round_down)
immler@54782
  1763
immler@54782
  1764
lemma real_divr: "x / y \<le> real_divr prec x y"
immler@54782
  1765
  using round_up by (simp add: real_divr_def)
immler@54782
  1766
hoelzl@31098
  1767
lemma float_divl: "real (float_divl prec x y) \<le> real x / real y"
immler@54782
  1768
  by transfer (rule real_divl)
immler@54782
  1769
immler@54782
  1770
lemma real_divl_lower_bound:
immler@54782
  1771
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real_divl prec x y"
immler@58982
  1772
  by (simp add: real_divl_def round_down_nonneg)
hoelzl@47599
  1773
hoelzl@47599
  1774
lemma float_divl_lower_bound:
immler@54782
  1775
  "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> real (float_divl prec x y)"
immler@54782
  1776
  by transfer (rule real_divl_lower_bound)
hoelzl@47599
  1777
hoelzl@47599
  1778
lemma exponent_1: "exponent 1 = 0"
hoelzl@47599
  1779
  using exponent_float[of 1 0] by (simp add: one_float_def)
hoelzl@47599
  1780
hoelzl@47599
  1781
lemma mantissa_1: "mantissa 1 = 1"
hoelzl@47599
  1782
  using mantissa_float[of 1 0] by (simp add: one_float_def)
obua@16782
  1783
hoelzl@47599
  1784
lemma bitlen_1: "bitlen 1 = 1"
hoelzl@47599
  1785
  by (simp add: bitlen_def)
hoelzl@47599
  1786
hoelzl@47599
  1787
lemma mantissa_eq_zero_iff: "mantissa x = 0 \<longleftrightarrow> x = 0"
hoelzl@47599
  1788
proof
hoelzl@47599
  1789
  assume "mantissa x = 0" hence z: "0 = real x" using mantissa_exponent by simp
hoelzl@47599
  1790
  show "x = 0" by (simp add: zero_float_def z)
hoelzl@47599
  1791
qed (simp add: zero_float_def)
obua@16782
  1792
hoelzl@47599
  1793
lemma float_upper_bound: "x \<le> 2 powr (bitlen \<bar>mantissa x\<bar> + exponent x)"
hoelzl@47599
  1794
proof (cases "x = 0", simp)
hoelzl@47599
  1795
  assume "x \<noteq> 0" hence "mantissa x \<noteq> 0" using mantissa_eq_zero_iff by auto
hoelzl@47599
  1796
  have "x = mantissa x * 2 powr (exponent x)" by (rule mantissa_exponent)
hoelzl@47599
  1797
  also have "mantissa x \<le> \<bar>mantissa x\<bar>" by simp
hoelzl@47599
  1798
  also have "... \<le> 2 powr (bitlen \<bar>mantissa x\<bar>)"
hoelzl@47599
  1799
    using bitlen_bounds[of "\<bar>mantissa x\<bar>"] bitlen_nonneg `mantissa x \<noteq> 0`
immler@58989
  1800
    by (auto simp del: real_of_int_abs simp add: powr_int)
hoelzl@47599
  1801
  finally show ?thesis by (simp add: powr_add)
hoelzl@29804
  1802
qed
hoelzl@29804
  1803
immler@54782
  1804
lemma real_divl_pos_less1_bound:
immler@58982
  1805
  assumes "0 < x" "x \<le> 1" "prec \<ge> 1"
immler@58982
  1806
  shows "1 \<le> real_divl prec 1 x"
immler@58982
  1807
proof -
immler@58982
  1808
  have "log 2 x \<le> real prec + real \<lfloor>log 2 x\<rfloor>" using `prec \<ge> 1` by arith
immler@58982
  1809
  from this assms show ?thesis
immler@58982
  1810
    by (simp add: real_divl_def log_divide round_down_ge1)
hoelzl@29804
  1811
qed
obua@16782
  1812
immler@54782
  1813
lemma float_divl_pos_less1_bound:
immler@58982
  1814
  "0 < real x \<Longrightarrow> real x \<le> 1 \<Longrightarrow> prec \<ge> 1 \<Longrightarrow> 1 \<le> real (float_divl prec 1 x)"
immler@54782
  1815
  by (transfer, rule real_divl_pos_less1_bound)
obua@16782
  1816
immler@54782
  1817
lemma float_divr: "real x / real y \<le> real (float_divr prec x y)"
immler@54782
  1818
  by transfer (rule real_divr)
immler@54782
  1819
immler@58982
  1820
lemma real_divr_pos_less1_lower_bound: assumes "0 < x" and "x \<le> 1" shows "1 \<le> real_divr prec 1 x"
hoelzl@29804
  1821
proof -
immler@58982
  1822
  have "1 \<le> 1 / x" using `0 < x` and `x <= 1` by auto
immler@54782
  1823
  also have "\<dots> \<le> real_divr prec 1 x" using real_divr[where x=1 and y=x] by auto
hoelzl@47600
  1824
  finally show ?thesis by auto
hoelzl@29804
  1825
qed
hoelzl@29804
  1826
immler@58982
  1827
lemma float_divr_pos_less1_lower_bound: "0 < x \<Longrightarrow> x \<le> 1 \<Longrightarrow> 1 \<le> float_divr prec 1 x"
immler@54782
  1828
  by transfer (rule real_divr_pos_less1_lower_bound)
immler@54782
  1829
immler@54782
  1830
lemma real_divr_nonpos_pos_upper_bound:
immler@58982
  1831
  "x \<le> 0 \<Longrightarrow> 0 \<le> y \<Longrightarrow> real_divr prec x y \<le> 0"
immler@58982
  1832
  by (simp add: real_divr_def round_up_le0 divide_le_0_iff)
immler@54782
  1833
hoelzl@47599
  1834
lemma float_divr_nonpos_pos_upper_bound:
immler@58982
  1835
  "real x \<le> 0 \<Longrightarrow> 0 \<le> real y \<Longrightarrow> real (float_divr prec x y) \<le> 0"
immler@54782
  1836
  by transfer (rule real_divr_nonpos_pos_upper_bound)
immler@54782
  1837
immler@54782
  1838
lemma real_divr_nonneg_neg_upper_bound:
immler@58982
  1839
  "0 \<le> x \<Longrightarrow> y \<le> 0 \<Longrightarrow> real_divr prec x y \<le> 0"
immler@58982
  1840
  by (simp add: real_divr_def round_up_le0 divide_le_0_iff)
obua@16782
  1841
hoelzl@47599
  1842
lemma float_divr_nonneg_neg_upper_bound:
immler@58982
  1843
  "0 \<le> real x \<Longrightarrow> real y \<le> 0 \<Longrightarrow> real (float_divr prec x y) \<le> 0"
immler@54782
  1844
  by transfer (rule real_divr_nonneg_neg_upper_bound)
immler@54782
  1845
immler@54784
  1846
lemma truncate_up_nonneg_mono:
immler@54784
  1847
  assumes "0 \<le> x" "x \<le> y"
immler@54784
  1848
  shows "truncate_up prec x \<le> truncate_up prec y"
immler@54784
  1849
proof -
immler@54784
  1850
  {
immler@54784
  1851
    assume "\<lfloor>log 2 x\<rfloor> = \<lfloor>log 2 y\<rfloor>"
immler@54784
  1852
    hence ?thesis
immler@54784
  1853
      using assms
immler@54784
  1854
      by (auto simp: truncate_up_def round_up_def intro!: ceiling_mono)
immler@54784
  1855
  } moreover {
immler@54784
  1856
    assume "0 < x"
immler@54784
  1857
    hence "log 2 x \<le> log 2 y" using assms by auto
immler@54784
  1858
    moreover
immler@54784
  1859
    assume "\<lfloor>log 2 x\<rfloor> \<noteq> \<lfloor>log 2 y\<rfloor>"
immler@54784
  1860
    ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"
immler@54784
  1861
      unfolding atomize_conj
immler@54784
  1862
      by (metis floor_less_cancel linorder_cases not_le)
immler@54784
  1863
    have "truncate_up prec x =
immler@54784
  1864
      real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> * 2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1)"
immler@54784
  1865
      using assms by (simp add: truncate_up_def round_up_def)
immler@54784
  1866
    also have "\<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> (2 ^ prec)"
immler@54784
  1867
    proof (unfold ceiling_le_eq)
immler@54784
  1868
      have "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> x * (2 powr real prec / (2 powr log 2 x))"
immler@54784
  1869
        using real_of_int_floor_add_one_ge[of "log 2 x"] assms
immler@54784
  1870
        by (auto simp add: algebra_simps powr_divide2 intro!: mult_left_mono)
immler@54784
  1871
      thus "x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> real ((2::int) ^ prec)"
immler@54784
  1872
        using `0 < x` by (simp add: powr_realpow)
immler@54784
  1873
    qed
immler@54784
  1874
    hence "real \<lceil>x * 2 powr real (int prec - \<lfloor>log 2 x\<rfloor> - 1)\<rceil> \<le> 2 powr int prec"
immler@54784
  1875
      by (auto simp: powr_realpow)
immler@54784
  1876
    also
immler@54784
  1877
    have "2 powr - real (int prec - \<lfloor>log 2 x\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)"
immler@54784
  1878
      using logless flogless by (auto intro!: floor_mono)
immler@54784
  1879
    also have "2 powr real (int prec) \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>))"
immler@54784
  1880
      using assms `0 < x`
immler@54784
  1881
      by (auto simp: algebra_simps)
immler@54784
  1882
    finally have "truncate_up prec x \<le> 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>)) * 2 powr - real (int prec - \<lfloor>log 2 y\<rfloor>)"
immler@54784
  1883
      by simp
immler@54784
  1884
    also have "\<dots> = 2 powr (log 2 y + real (int prec - \<lfloor>log 2 y\<rfloor>) - real (int prec - \<lfloor>log 2 y\<rfloor>))"
immler@54784
  1885
      by (subst powr_add[symmetric]) simp
immler@54784
  1886
    also have "\<dots> = y"
immler@54784
  1887
      using `0 < x` assms
immler@54784
  1888
      by (simp add: powr_add)
immler@54784
  1889
    also have "\<dots> \<le> truncate_up prec y"
immler@54784
  1890
      by (rule truncate_up)
immler@54784
  1891
    finally have ?thesis .
immler@54784
  1892
  } moreover {
immler@54784
  1893
    assume "~ 0 < x"
immler@54784
  1894
    hence ?thesis
immler@54784
  1895
      using assms
immler@54784
  1896
      by (auto intro!: truncate_up_le)
immler@54784
  1897
  } ultimately show ?thesis
immler@54784
  1898
    by blast
immler@54784
  1899
qed
immler@54784
  1900
immler@54784
  1901
lemma truncate_up_switch_sign_mono:
immler@54784
  1902
  assumes "x \<le> 0" "0 \<le> y"
immler@54784
  1903
  shows "truncate_up prec x \<le> truncate_up prec y"
immler@54784
  1904
proof -
immler@54784
  1905
  note truncate_up_nonpos[OF `x \<le> 0`]
immler@54784
  1906
  also note truncate_up_le[OF `0 \<le> y`]
immler@54784
  1907
  finally show ?thesis .
immler@54784
  1908
qed
immler@54784
  1909
immler@54784
  1910
lemma truncate_down_zeroprec_mono:
immler@54784
  1911
  assumes "0 < x" "x \<le> y"
immler@54784
  1912
  shows "truncate_down 0 x \<le> truncate_down 0 y"
immler@54784
  1913
proof -
immler@54784
  1914
  have "x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1) = x * inverse (2 powr ((real \<lfloor>log 2 x\<rfloor> + 1)))"
immler@54784
  1915
    by (simp add: powr_divide2[symmetric] powr_add powr_minus inverse_eq_divide)
immler@54784
  1916
  also have "\<dots> = 2 powr (log 2 x - (real \<lfloor>log 2 x\<rfloor>) - 1)"
immler@54784
  1917
    using `0 < x`
wenzelm@57862
  1918
    by (auto simp: field_simps powr_add powr_divide2[symmetric])
immler@54784
  1919
  also have "\<dots> < 2 powr 0"
immler@54784
  1920
    using real_of_int_floor_add_one_gt
immler@54784
  1921
    unfolding neg_less_iff_less
immler@54784
  1922
    by (intro powr_less_mono) (auto simp: algebra_simps)
immler@54784
  1923
  finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> < 1"
immler@54784
  1924
    unfolding less_ceiling_eq real_of_int_minus real_of_one
immler@54784
  1925
    by simp
immler@54784
  1926
  moreover
immler@54784
  1927
  have "0 \<le> \<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor>"
nipkow@56536
  1928
    using `x > 0` by auto
immler@54784
  1929
  ultimately have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> \<in> {0 ..< 1}"
immler@54784
  1930
    by simp
immler@54784
  1931
  also have "\<dots> \<subseteq> {0}" by auto
immler@54784
  1932
  finally have "\<lfloor>x * 2 powr (- real \<lfloor>log 2 x\<rfloor> - 1)\<rfloor> = 0" by simp
immler@54784
  1933
  with assms show ?thesis
nipkow@56536
  1934
    by (auto simp: truncate_down_def round_down_def)
immler@54784
  1935
qed
immler@54784
  1936
immler@54784
  1937
lemma truncate_down_switch_sign_mono:
immler@54784
  1938
  assumes "x \<le> 0" "0 \<le> y"
immler@54784
  1939
  assumes "x \<le> y"
immler@54784
  1940
  shows "truncate_down prec x \<le> truncate_down prec y"
immler@54784
  1941
proof -
immler@58985
  1942
  note truncate_down_le[OF `x \<le> 0`]
immler@54784
  1943
  also note truncate_down_nonneg[OF `0 \<le> y`]
immler@54784
  1944
  finally show ?thesis .
immler@54784
  1945
qed
immler@54784
  1946
immler@54784
  1947
lemma truncate_down_nonneg_mono:
immler@54784
  1948
  assumes "0 \<le> x" "x \<le> y"
immler@54784
  1949
  shows "truncate_down prec x \<le> truncate_down prec y"
immler@54784
  1950
proof -
immler@54784
  1951
  {
immler@54784
  1952
    assume "0 < x" "prec = 0"
immler@54784
  1953
    with assms have ?thesis
immler@54784
  1954
      by (simp add: truncate_down_zeroprec_mono)
immler@54784
  1955
  } moreover {
immler@54784
  1956
    assume "~ 0 < x"
immler@54784
  1957
    with assms have "x = 0" "0 \<le> y" by simp_all
immler@54784
  1958
    hence ?thesis
immler@58985
  1959
      by (auto intro!: truncate_down_nonneg)
immler@54784
  1960
  } moreover {
immler@54784
  1961
    assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> = \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@54784
  1962
    hence ?thesis
immler@54784
  1963
      using assms
immler@54784
  1964
      by (auto simp: truncate_down_def round_down_def intro!: floor_mono)
immler@54784
  1965
  } moreover {
immler@54784
  1966
    assume "0 < x"
immler@54784
  1967
    hence "log 2 x \<le> log 2 y" "0 < y" "0 \<le> y" using assms by auto
immler@54784
  1968
    moreover
immler@54784
  1969
    assume "\<lfloor>log 2 \<bar>x\<bar>\<rfloor> \<noteq> \<lfloor>log 2 \<bar>y\<bar>\<rfloor>"
immler@54784
  1970
    ultimately have logless: "log 2 x < log 2 y" and flogless: "\<lfloor>log 2 x\<rfloor> < \<lfloor>log 2 y\<rfloor>"
immler@54784
  1971
      unfolding atomize_conj abs_of_pos[OF `0 < x`] abs_of_pos[OF `0 < y`]
immler@54784
  1972
      by (metis floor_less_cancel linorder_cases not_le)
immler@54784
  1973
    assume "prec \<noteq> 0" hence [simp]: "prec \<ge> Suc 0" by auto
immler@54784
  1974
    have "2 powr (prec - 1) \<le> y * 2 powr real (prec - 1) / (2 powr log 2 y)"
immler@54784
  1975
      using `0 < y`
immler@54784
  1976
      by simp
immler@54784
  1977
    also have "\<dots> \<le> y * 2 powr real prec / (2 powr (real \<lfloor>log 2 y\<rfloor> + 1))"
immler@54784
  1978
      using `0 \<le> y` `0 \<le> x` assms(2)
nipkow@56544
  1979
      by (auto intro!: powr_mono divide_left_mono
immler@54784
  1980
        simp: real_of_nat_diff powr_add
immler@54784
  1981
        powr_divide2[symmetric])
immler@54784
  1982
    also have "\<dots> = y * 2 powr real prec / (2 powr real \<lfloor>log 2 y\<rfloor> * 2)"
immler@54784
  1983
      by (auto simp: powr_add)
immler@54784
  1984
    finally have "(2 ^ (prec - 1)) \<le> \<lfloor>y * 2 powr real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)\<rfloor>"
immler@54784
  1985
      using `0 \<le> y`
immler@54784
  1986
      by (auto simp: powr_divide2[symmetric] le_floor_eq powr_realpow)
immler@54784
  1987
    hence "(2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1) \<le> truncate_down prec y"
immler@54784
  1988
      by (auto simp: truncate_down_def round_down_def)
immler@54784
  1989
    moreover
immler@54784
  1990
    {
immler@54784
  1991
      have "x = 2 powr (log 2 \<bar>x\<bar>)" using `0 < x` by simp
immler@54784
  1992
      also have "\<dots> \<le> (2 ^ (prec )) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1)"
immler@54784
  1993
        using real_of_int_floor_add_one_ge[of "log 2 \<bar>x\<bar>"]
immler@54784
  1994
        by (auto simp: powr_realpow[symmetric] powr_add[symmetric] algebra_simps)
immler@54784
  1995
      also
immler@54784
  1996
      have "2 powr - real (int prec - \<lfloor>log 2 \<bar>x\<bar>\<rfloor> - 1) \<le> 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor>)"
immler@54784
  1997
        using logless flogless `x > 0` `y > 0`
immler@54784
  1998
        by (auto intro!: floor_mono)
immler@54784
  1999
      finally have "x \<le> (2 ^ (prec - 1)) * 2 powr - real (int prec - \<lfloor>log 2 \<bar>y\<bar>\<rfloor> - 1)"
immler@54784
  2000
        by (auto simp: powr_realpow[symmetric] powr_divide2[symmetric] assms real_of_nat_diff)
immler@54784
  2001
    } ultimately have ?thesis
immler@54784
  2002
      by (metis dual_order.trans truncate_down)
immler@54784
  2003
  } ultimately show ?thesis by blast
immler@54784
  2004
qed
immler@54784
  2005
immler@58982
  2006
lemma truncate_down_eq_truncate_up: "truncate_down p x = - truncate_up p (-x)"
immler@58982
  2007
  and truncate_up_eq_truncate_down: "truncate_up p x = - truncate_down p (-x)"
immler@58982
  2008
  by (auto simp: truncate_up_uminus_eq truncate_down_uminus_eq)
immler@58982
  2009
immler@54784
  2010
lemma truncate_down_mono: "x \<le> y \<Longrightarrow> truncate_down p x \<le> truncate_down p y"
immler@54784
  2011
  apply (cases "0 \<le> x")
immler@54784
  2012
  apply (rule truncate_down_nonneg_mono, assumption+)
immler@58982
  2013
  apply (simp add: truncate_down_eq_truncate_up)
immler@54784
  2014
  apply (cases "0 \<le> y")
immler@54784
  2015
  apply (auto intro: truncate_up_nonneg_mono truncate_up_switch_sign_mono)
immler@54784
  2016
  done
immler@54784
  2017
immler@54784
  2018
lemma truncate_up_mono: "x \<le> y \<Longrightarrow> truncate_up p x \<le> truncate_up p y"
immler@58982
  2019
  by (simp add: truncate_up_eq_truncate_down truncate_down_mono)
immler@54784
  2020
hoelzl@47599
  2021
lemma Float_le_zero_iff: "Float a b \<le> 0 \<longleftrightarrow> a \<le> 0"
hoelzl@47599
  2022
 apply (auto simp: zero_float_def mult_le_0_iff)
hoelzl@47599
  2023
 using powr_gt_zero[of 2 b] by simp
hoelzl@47599
  2024
hoelzl@47621
  2025
lemma real_of_float_pprt[simp]: fixes a::float shows "real (pprt a) = pprt (real a)"
hoelzl@47600
  2026
  unfolding pprt_def sup_float_def max_def sup_real_def by auto
hoelzl@47599
  2027
hoelzl@47621
  2028
lemma real_of_float_nprt[simp]: fixes a::float shows "real (nprt a) = nprt (real a)"
hoelzl@47600
  2029
  unfolding nprt_def inf_float_def min_def inf_real_def by auto
hoelzl@47599
  2030
kuncar@55565
  2031
lift_definition int_floor_fl :: "float \<Rightarrow> int" is floor .
obua@16782
  2032
hoelzl@47599
  2033
lemma compute_int_floor_fl[code]:
hoelzl@47601
  2034
  "int_floor_fl (Float m e) = (if 0 \<le> e then m * 2 ^ nat e else m div (2 ^ (nat (-e))))"
hoelzl@47600
  2035
  by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints)
hoelzl@47621
  2036
hide_fact (open) compute_int_floor_fl
hoelzl@47599
  2037
hoelzl@47600
  2038
lift_definition floor_fl :: "float \<Rightarrow> float" is "\<lambda>x. real (floor x)" by simp
hoelzl@47599
  2039
hoelzl@47599
  2040
lemma compute_floor_fl[code]:
hoelzl@47601
  2041
  "floor_fl (Float m e) = (if 0 \<le> e then Float m e else Float (m div (2 ^ (nat (-e)))) 0)"
hoelzl@47600
  2042
  by transfer (simp add: powr_int int_of_reals floor_divide_eq_div del: real_of_ints)
hoelzl@47621
  2043
hide_fact (open) compute_floor_fl
obua@16782
  2044
hoelzl@47600
  2045
lemma floor_fl: "real (floor_fl x) \<le> real x" by transfer simp
hoelzl@47600
  2046
hoelzl@47600
  2047
lemma int_floor_fl: "real (int_floor_fl x) \<le> real x" by transfer simp
hoelzl@29804
  2048
hoelzl@47599
  2049
lemma floor_pos_exp: "exponent (floor_fl x) \<ge> 0"
wenzelm@53381
  2050
proof (cases "floor_fl x = float_of 0")
wenzelm@53381
  2051
  case True
wenzelm@53381
  2052
  then show ?thesis by (simp add: floor_fl_def)
wenzelm@53381
  2053
next
wenzelm@53381
  2054
  case False
wenzelm@53381
  2055
  have eq: "floor_fl x = Float \<lfloor>real x\<rfloor> 0" by transfer simp
wenzelm@53381
  2056
  obtain i where "\<lfloor>real x\<rfloor> = mantissa (floor_fl x) * 2 ^ i" "0 = exponent (floor_fl x) - int i"
wenzelm@53381
  2057
    by (rule denormalize_shift[OF eq[THEN eq_reflection] False])
wenzelm@53381
  2058
  then show ?thesis by simp
wenzelm@53381
  2059
qed
obua@16782
  2060
immler@58985
  2061
lemma compute_mantissa[code]:
immler@58985
  2062
  "mantissa (Float m e) = (if m = 0 then 0 else if 2 dvd m then mantissa (normfloat (Float m e)) else m)"
immler@58985
  2063
  by (auto simp: mantissa_float Float.abs_eq)
immler@58985
  2064
immler@58985
  2065
lemma compute_exponent[code]:
immler@58985
  2066
  "exponent (Float m e) = (if m = 0 then 0 else if 2 dvd m then exponent (normfloat (Float m e)) else e)"
immler@58985
  2067
  by (auto simp: exponent_float Float.abs_eq)
immler@58985
  2068
obua@16782
  2069
end
hoelzl@47599
  2070