src/Pure/drule.ML
author wenzelm
Mon Jul 27 15:13:05 2015 +0200 (2015-07-27)
changeset 60798 9a9694087cda
parent 60797 7e8e8a469e95
child 60801 7664e0916eec
permissions -rw-r--r--
more explicit checks -- improved errors;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
wenzelm@252
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     3
wenzelm@3766
     4
Derived rules and other operations on theorems.
clasohm@0
     5
*)
clasohm@0
     6
wenzelm@46470
     7
infix 0 RS RSN RL RLN MRS OF COMP INCR_COMP COMP_INCR;
clasohm@0
     8
wenzelm@5903
     9
signature BASIC_DRULE =
wenzelm@3766
    10
sig
wenzelm@18179
    11
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    12
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    13
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    14
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    15
  val cprems_of: thm -> cterm list
wenzelm@18179
    16
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    17
  val forall_intr_vars: thm -> thm
wenzelm@18179
    18
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@59647
    19
  val gen_all: int -> thm -> thm
wenzelm@60367
    20
  val lift_all: Proof.context -> cterm -> thm -> thm
wenzelm@18179
    21
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    22
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@60642
    23
  val instantiate_normalize: ((indexname * sort) * ctyp) list * ((indexname * typ) * cterm) list ->
wenzelm@60642
    24
    thm -> thm
wenzelm@60795
    25
  val infer_instantiate_types: Proof.context -> ((indexname * typ) * cterm) list -> thm -> thm
wenzelm@60778
    26
  val infer_instantiate: Proof.context -> (indexname * cterm) list -> thm -> thm
wenzelm@60783
    27
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@60783
    28
  val infer_instantiate': Proof.context -> cterm option list -> thm -> thm
wenzelm@21603
    29
  val zero_var_indexes_list: thm list -> thm list
wenzelm@18179
    30
  val zero_var_indexes: thm -> thm
wenzelm@18179
    31
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    32
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    33
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    34
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    35
  val RS: thm * thm -> thm
wenzelm@18179
    36
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    37
  val RL: thm list * thm list -> thm list
wenzelm@18179
    38
  val MRS: thm list * thm -> thm
wenzelm@18179
    39
  val OF: thm * thm list -> thm
wenzelm@18179
    40
  val COMP: thm * thm -> thm
wenzelm@21578
    41
  val INCR_COMP: thm * thm -> thm
wenzelm@21578
    42
  val COMP_INCR: thm * thm -> thm
wenzelm@18179
    43
  val size_of_thm: thm -> int
wenzelm@18179
    44
  val reflexive_thm: thm
wenzelm@18179
    45
  val symmetric_thm: thm
wenzelm@18179
    46
  val transitive_thm: thm
wenzelm@18179
    47
  val extensional: thm -> thm
wenzelm@18179
    48
  val asm_rl: thm
wenzelm@18179
    49
  val cut_rl: thm
wenzelm@18179
    50
  val revcut_rl: thm
wenzelm@18179
    51
  val thin_rl: thm
wenzelm@5903
    52
end;
wenzelm@5903
    53
wenzelm@5903
    54
signature DRULE =
wenzelm@5903
    55
sig
wenzelm@5903
    56
  include BASIC_DRULE
wenzelm@19999
    57
  val generalize: string list * string list -> thm -> thm
paulson@15949
    58
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    59
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    60
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    61
  val beta_conv: cterm -> cterm -> cterm
wenzelm@58950
    62
  val flexflex_unique: Proof.context option -> thm -> thm
wenzelm@35021
    63
  val export_without_context: thm -> thm
wenzelm@35021
    64
  val export_without_context_open: thm -> thm
wenzelm@33277
    65
  val store_thm: binding -> thm -> thm
wenzelm@33277
    66
  val store_standard_thm: binding -> thm -> thm
wenzelm@33277
    67
  val store_thm_open: binding -> thm -> thm
wenzelm@33277
    68
  val store_standard_thm_open: binding -> thm -> thm
wenzelm@58950
    69
  val multi_resolve: Proof.context option -> thm list -> thm -> thm Seq.seq
wenzelm@58950
    70
  val multi_resolves: Proof.context option -> thm list -> thm list -> thm Seq.seq
wenzelm@52467
    71
  val compose: thm * int * thm -> thm
wenzelm@46186
    72
  val equals_cong: thm
wenzelm@46186
    73
  val imp_cong: thm
wenzelm@46186
    74
  val swap_prems_eq: thm
wenzelm@18468
    75
  val imp_cong_rule: thm -> thm -> thm
wenzelm@22939
    76
  val arg_cong_rule: cterm -> thm -> thm
wenzelm@23568
    77
  val binop_cong_rule: cterm -> thm -> thm -> thm
wenzelm@22939
    78
  val fun_cong_rule: thm -> cterm -> thm
skalberg@15001
    79
  val beta_eta_conversion: cterm -> thm
paulson@20861
    80
  val eta_contraction_rule: thm -> thm
wenzelm@11975
    81
  val norm_hhf_eq: thm
wenzelm@28618
    82
  val norm_hhf_eqs: thm list
wenzelm@12800
    83
  val is_norm_hhf: term -> bool
wenzelm@16425
    84
  val norm_hhf: theory -> term -> term
wenzelm@60315
    85
  val norm_hhf_cterm: Proof.context -> cterm -> cterm
wenzelm@18025
    86
  val protect: cterm -> cterm
wenzelm@18025
    87
  val protectI: thm
wenzelm@18025
    88
  val protectD: thm
wenzelm@18179
    89
  val protect_cong: thm
wenzelm@18025
    90
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@19775
    91
  val termI: thm
wenzelm@19775
    92
  val mk_term: cterm -> thm
wenzelm@19775
    93
  val dest_term: thm -> cterm
wenzelm@21519
    94
  val cterm_rule: (thm -> thm) -> cterm -> cterm
wenzelm@24005
    95
  val dummy_thm: thm
wenzelm@60240
    96
  val is_sort_constraint: term -> bool
wenzelm@28618
    97
  val sort_constraintI: thm
wenzelm@28618
    98
  val sort_constraint_eq: thm
wenzelm@23423
    99
  val with_subgoal: int -> (thm -> thm) -> thm -> thm
wenzelm@29344
   100
  val comp_no_flatten: thm * int -> int -> thm -> thm
berghofe@14081
   101
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   102
  val rename_bvars': string option list -> thm -> thm
wenzelm@19124
   103
  val incr_indexes: thm -> thm -> thm
wenzelm@19124
   104
  val incr_indexes2: thm -> thm -> thm -> thm
wenzelm@46186
   105
  val triv_forall_equality: thm
wenzelm@46186
   106
  val distinct_prems_rl: thm
wenzelm@46186
   107
  val equal_intr_rule: thm
wenzelm@46186
   108
  val equal_elim_rule1: thm
wenzelm@46186
   109
  val equal_elim_rule2: thm
wenzelm@12297
   110
  val remdups_rl: thm
berghofe@13325
   111
  val abs_def: thm -> thm
wenzelm@3766
   112
end;
clasohm@0
   113
wenzelm@5903
   114
structure Drule: DRULE =
clasohm@0
   115
struct
clasohm@0
   116
wenzelm@3991
   117
wenzelm@16682
   118
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   119
lcp@708
   120
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   121
fun strip_imp_prems ct =
wenzelm@22906
   122
  let val (cA, cB) = Thm.dest_implies ct
wenzelm@20579
   123
  in cA :: strip_imp_prems cB end
wenzelm@20579
   124
  handle TERM _ => [];
lcp@708
   125
paulson@2004
   126
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   127
fun strip_imp_concl ct =
wenzelm@20579
   128
  (case Thm.term_of ct of
wenzelm@56245
   129
    Const ("Pure.imp", _) $ _ $ _ => strip_imp_concl (Thm.dest_arg ct)
wenzelm@20579
   130
  | _ => ct);
paulson@2004
   131
lcp@708
   132
(*The premises of a theorem, as a cterm list*)
wenzelm@59582
   133
val cprems_of = strip_imp_prems o Thm.cprop_of;
lcp@708
   134
wenzelm@59621
   135
fun certify t = Thm.global_cterm_of (Context.the_theory (Context.the_thread_data ())) t;
paulson@9547
   136
wenzelm@27333
   137
val implies = certify Logic.implies;
wenzelm@46497
   138
fun mk_implies (A, B) = Thm.apply (Thm.apply implies A) B;
paulson@9547
   139
paulson@9547
   140
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   141
fun list_implies([], B) = B
paulson@9547
   142
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   143
paulson@15949
   144
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   145
fun list_comb (f, []) = f
wenzelm@46497
   146
  | list_comb (f, t::ts) = list_comb (Thm.apply f t, ts);
paulson@15949
   147
berghofe@12908
   148
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   149
fun strip_comb ct =
berghofe@12908
   150
  let
berghofe@12908
   151
    fun stripc (p as (ct, cts)) =
berghofe@12908
   152
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   153
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   154
  in stripc (ct, []) end;
berghofe@12908
   155
berghofe@15262
   156
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   157
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   158
    Type ("fun", _) =>
berghofe@15262
   159
      let
berghofe@15262
   160
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   161
        val (cTs, cT') = strip_type cT2
berghofe@15262
   162
      in (cT1 :: cTs, cT') end
berghofe@15262
   163
  | _ => ([], cT));
berghofe@15262
   164
paulson@15949
   165
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   166
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   167
fun beta_conv x y =
wenzelm@59582
   168
  Thm.dest_arg (Thm.cprop_of (Thm.beta_conversion false (Thm.apply x y)));
paulson@15949
   169
wenzelm@15875
   170
lcp@708
   171
clasohm@0
   172
(** Standardization of rules **)
clasohm@0
   173
wenzelm@19730
   174
(*Generalization over a list of variables*)
wenzelm@36944
   175
val forall_intr_list = fold_rev Thm.forall_intr;
clasohm@0
   176
wenzelm@18535
   177
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   178
fun forall_intr_vars th =
wenzelm@36944
   179
  fold Thm.forall_intr
wenzelm@59621
   180
    (map (Thm.global_cterm_of (Thm.theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th [])) th;
wenzelm@18535
   181
wenzelm@18025
   182
fun outer_params t =
wenzelm@20077
   183
  let val vs = Term.strip_all_vars t
wenzelm@20077
   184
  in Name.variant_list [] (map (Name.clean o #1) vs) ~~ map #2 vs end;
wenzelm@18025
   185
wenzelm@18025
   186
(*generalize outermost parameters*)
wenzelm@59647
   187
fun gen_all maxidx0 th =
wenzelm@12719
   188
  let
wenzelm@59647
   189
    val thy = Thm.theory_of_thm th;
wenzelm@59647
   190
    val maxidx = Thm.maxidx_thm th maxidx0;
wenzelm@59647
   191
    val prop = Thm.prop_of th;
wenzelm@59647
   192
    fun elim (x, T) =
wenzelm@59647
   193
      Thm.forall_elim (Thm.global_cterm_of thy (Var ((x, maxidx + 1), T)));
wenzelm@18025
   194
  in fold elim (outer_params prop) th end;
wenzelm@18025
   195
wenzelm@18025
   196
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   197
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@60367
   198
fun lift_all ctxt raw_goal raw_th =
wenzelm@18025
   199
  let
wenzelm@60367
   200
    val thy = Proof_Context.theory_of ctxt;
wenzelm@60367
   201
    val goal = Thm.transfer_cterm thy raw_goal;
wenzelm@60367
   202
    val th = Thm.transfer thy raw_th;
wenzelm@60367
   203
wenzelm@19421
   204
    val maxidx = Thm.maxidx_of th;
wenzelm@18025
   205
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   206
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   207
    val Ts = map Term.fastype_of ps;
wenzelm@59995
   208
    val inst =
wenzelm@59995
   209
      Thm.fold_terms Term.add_vars th []
wenzelm@59995
   210
      |> map (fn (xi, T) => ((xi, T), Term.list_comb (Var (xi, Ts ---> T), ps)));
wenzelm@18025
   211
  in
wenzelm@59995
   212
    th
wenzelm@60367
   213
    |> Thm.certify_instantiate ctxt ([], inst)
wenzelm@60367
   214
    |> fold_rev (Thm.forall_intr o Thm.cterm_of ctxt) ps
wenzelm@18025
   215
  end;
wenzelm@18025
   216
wenzelm@19999
   217
(*direct generalization*)
wenzelm@19999
   218
fun generalize names th = Thm.generalize names (Thm.maxidx_of th + 1) th;
wenzelm@9554
   219
wenzelm@16949
   220
(*specialization over a list of cterms*)
wenzelm@36944
   221
val forall_elim_list = fold Thm.forall_elim;
clasohm@0
   222
wenzelm@16949
   223
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@36944
   224
val implies_intr_list = fold_rev Thm.implies_intr;
clasohm@0
   225
wenzelm@16949
   226
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
wenzelm@24978
   227
fun implies_elim_list impth ths = fold Thm.elim_implies ths impth;
clasohm@0
   228
clasohm@0
   229
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@21603
   230
fun zero_var_indexes_list [] = []
wenzelm@21603
   231
  | zero_var_indexes_list ths =
wenzelm@21603
   232
      let
wenzelm@21603
   233
        val thy = Theory.merge_list (map Thm.theory_of_thm ths);
wenzelm@60367
   234
        val insts = Term_Subst.zero_var_indexes_inst (map Thm.full_prop_of ths);
wenzelm@60367
   235
      in map (Thm.adjust_maxidx_thm ~1 o Thm.global_certify_instantiate thy insts) ths end;
wenzelm@21603
   236
wenzelm@21603
   237
val zero_var_indexes = singleton zero_var_indexes_list;
clasohm@0
   238
clasohm@0
   239
paulson@14394
   240
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   241
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   242
wenzelm@16595
   243
(*Discharge all hypotheses.*)
wenzelm@16595
   244
fun implies_intr_hyps th =
wenzelm@16595
   245
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   246
paulson@14394
   247
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   248
  This step can lose information.*)
wenzelm@58950
   249
fun flexflex_unique opt_ctxt th =
wenzelm@59773
   250
  if null (Thm.tpairs_of th) then th
wenzelm@59773
   251
  else
wenzelm@59773
   252
    (case distinct Thm.eq_thm (Seq.list_of (Thm.flexflex_rule opt_ctxt th)) of
paulson@23439
   253
      [th] => th
wenzelm@59773
   254
    | [] => raise THM ("flexflex_unique: impossible constraints", 0, [th])
wenzelm@59773
   255
    | _ => raise THM ("flexflex_unique: multiple unifiers", 0, [th]));
paulson@14387
   256
wenzelm@21603
   257
wenzelm@35021
   258
(* old-style export without context *)
wenzelm@21603
   259
wenzelm@35021
   260
val export_without_context_open =
wenzelm@16949
   261
  implies_intr_hyps
wenzelm@35985
   262
  #> Thm.forall_intr_frees
wenzelm@19421
   263
  #> `Thm.maxidx_of
wenzelm@16949
   264
  #-> (fn maxidx =>
wenzelm@26653
   265
    Thm.forall_elim_vars (maxidx + 1)
wenzelm@20904
   266
    #> Thm.strip_shyps
wenzelm@16949
   267
    #> zero_var_indexes
wenzelm@35845
   268
    #> Thm.varifyT_global);
wenzelm@1218
   269
wenzelm@35021
   270
val export_without_context =
wenzelm@58950
   271
  flexflex_unique NONE
wenzelm@35021
   272
  #> export_without_context_open
wenzelm@26627
   273
  #> Thm.close_derivation;
berghofe@11512
   274
clasohm@0
   275
paulson@7248
   276
(*Rotates a rule's premises to the left by k*)
wenzelm@23537
   277
fun rotate_prems 0 = I
wenzelm@31945
   278
  | rotate_prems k = Thm.permute_prems 0 k;
wenzelm@23537
   279
wenzelm@23423
   280
fun with_subgoal i f = rotate_prems (i - 1) #> f #> rotate_prems (1 - i);
paulson@4610
   281
wenzelm@31945
   282
(*Permute prems, where the i-th position in the argument list (counting from 0)
wenzelm@31945
   283
  gives the position within the original thm to be transferred to position i.
wenzelm@31945
   284
  Any remaining trailing positions are left unchanged.*)
wenzelm@31945
   285
val rearrange_prems =
wenzelm@31945
   286
  let
wenzelm@31945
   287
    fun rearr new [] thm = thm
wenzelm@31945
   288
      | rearr new (p :: ps) thm =
wenzelm@31945
   289
          rearr (new + 1)
wenzelm@31945
   290
            (map (fn q => if new <= q andalso q < p then q + 1 else q) ps)
wenzelm@31945
   291
            (Thm.permute_prems (new + 1) (new - p) (Thm.permute_prems new (p - new) thm))
oheimb@11163
   292
  in rearr 0 end;
paulson@4610
   293
wenzelm@47427
   294
wenzelm@47427
   295
(*Resolution: multiple arguments, multiple results*)
wenzelm@47427
   296
local
wenzelm@58950
   297
  fun res opt_ctxt th i rule =
wenzelm@58950
   298
    Thm.biresolution opt_ctxt false [(false, th)] i rule handle THM _ => Seq.empty;
clasohm@0
   299
wenzelm@58950
   300
  fun multi_res _ _ [] rule = Seq.single rule
wenzelm@58950
   301
    | multi_res opt_ctxt i (th :: ths) rule =
wenzelm@58950
   302
        Seq.maps (res opt_ctxt th i) (multi_res opt_ctxt (i + 1) ths rule);
wenzelm@47427
   303
in
wenzelm@58950
   304
  fun multi_resolve opt_ctxt = multi_res opt_ctxt 1;
wenzelm@58950
   305
  fun multi_resolves opt_ctxt facts rules =
wenzelm@58950
   306
    Seq.maps (multi_resolve opt_ctxt facts) (Seq.of_list rules);
wenzelm@47427
   307
end;
wenzelm@47427
   308
wenzelm@47427
   309
(*Resolution: exactly one resolvent must be produced*)
wenzelm@47427
   310
fun tha RSN (i, thb) =
wenzelm@58950
   311
  (case Seq.chop 2 (Thm.biresolution NONE false [(false, tha)] i thb) of
wenzelm@47427
   312
    ([th], _) => th
wenzelm@47427
   313
  | ([], _) => raise THM ("RSN: no unifiers", i, [tha, thb])
wenzelm@47427
   314
  | _ => raise THM ("RSN: multiple unifiers", i, [tha, thb]));
wenzelm@47427
   315
wenzelm@47427
   316
(*Resolution: P==>Q, Q==>R gives P==>R*)
clasohm@0
   317
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   318
clasohm@0
   319
(*For joining lists of rules*)
wenzelm@47427
   320
fun thas RLN (i, thbs) =
wenzelm@59773
   321
  let
wenzelm@59773
   322
    val resolve = Thm.biresolution NONE false (map (pair false) thas) i
wenzelm@59773
   323
    fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
wenzelm@19482
   324
  in maps resb thbs end;
clasohm@0
   325
wenzelm@47427
   326
fun thas RL thbs = thas RLN (1, thbs);
wenzelm@47427
   327
wenzelm@47427
   328
(*Isar-style multi-resolution*)
wenzelm@47427
   329
fun bottom_rl OF rls =
wenzelm@58950
   330
  (case Seq.chop 2 (multi_resolve NONE rls bottom_rl) of
wenzelm@47427
   331
    ([th], _) => th
wenzelm@47427
   332
  | ([], _) => raise THM ("OF: no unifiers", 0, bottom_rl :: rls)
wenzelm@47427
   333
  | _ => raise THM ("OF: multiple unifiers", 0, bottom_rl :: rls));
clasohm@0
   334
lcp@11
   335
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   336
  makes proof trees*)
wenzelm@47427
   337
fun rls MRS bottom_rl = bottom_rl OF rls;
wenzelm@9288
   338
wenzelm@252
   339
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   340
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   341
  ALWAYS deletes premise i *)
wenzelm@52467
   342
fun compose (tha, i, thb) =
wenzelm@58950
   343
  Thm.bicompose NONE {flatten = true, match = false, incremented = false} (false, tha, 0) i thb
wenzelm@52467
   344
  |> Seq.list_of |> distinct Thm.eq_thm
wenzelm@52467
   345
  |> (fn [th] => th | _ => raise THM ("compose: unique result expected", i, [tha, thb]));
wenzelm@6946
   346
wenzelm@13105
   347
wenzelm@4016
   348
(** theorem equality **)
clasohm@0
   349
clasohm@0
   350
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   351
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   352
lcp@1194
   353
lcp@1194
   354
clasohm@0
   355
(*** Meta-Rewriting Rules ***)
clasohm@0
   356
wenzelm@33384
   357
val read_prop = certify o Simple_Syntax.read_prop;
wenzelm@26487
   358
wenzelm@26487
   359
fun store_thm name th =
wenzelm@39557
   360
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm (name, th)));
paulson@4610
   361
wenzelm@26487
   362
fun store_thm_open name th =
wenzelm@39557
   363
  Context.>>> (Context.map_theory_result (Global_Theory.store_thm_open (name, th)));
wenzelm@26487
   364
wenzelm@35021
   365
fun store_standard_thm name th = store_thm name (export_without_context th);
wenzelm@60367
   366
fun store_standard_thm_open name th = store_thm_open name (export_without_context_open th);
wenzelm@4016
   367
clasohm@0
   368
val reflexive_thm =
wenzelm@26487
   369
  let val cx = certify (Var(("x",0),TVar(("'a",0),[])))
wenzelm@56436
   370
  in store_standard_thm_open (Binding.make ("reflexive", @{here})) (Thm.reflexive cx) end;
clasohm@0
   371
clasohm@0
   372
val symmetric_thm =
wenzelm@33277
   373
  let
wenzelm@33277
   374
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   375
    val thm = Thm.implies_intr xy (Thm.symmetric (Thm.assume xy));
wenzelm@56436
   376
  in store_standard_thm_open (Binding.make ("symmetric", @{here})) thm end;
clasohm@0
   377
clasohm@0
   378
val transitive_thm =
wenzelm@33277
   379
  let
wenzelm@33277
   380
    val xy = read_prop "x::'a == y::'a";
wenzelm@33277
   381
    val yz = read_prop "y::'a == z::'a";
wenzelm@33277
   382
    val xythm = Thm.assume xy;
wenzelm@33277
   383
    val yzthm = Thm.assume yz;
wenzelm@33277
   384
    val thm = Thm.implies_intr yz (Thm.transitive xythm yzthm);
wenzelm@56436
   385
  in store_standard_thm_open (Binding.make ("transitive", @{here})) thm end;
clasohm@0
   386
berghofe@11512
   387
fun extensional eq =
berghofe@11512
   388
  let val eq' =
wenzelm@59582
   389
    Thm.abstract_rule "x" (Thm.dest_arg (fst (Thm.dest_equals (Thm.cprop_of eq)))) eq
wenzelm@59582
   390
  in Thm.equal_elim (Thm.eta_conversion (Thm.cprop_of eq')) eq' end;
berghofe@11512
   391
wenzelm@18820
   392
val equals_cong =
wenzelm@56436
   393
  store_standard_thm_open (Binding.make ("equals_cong", @{here}))
wenzelm@33277
   394
    (Thm.reflexive (read_prop "x::'a == y::'a"));
wenzelm@18820
   395
berghofe@10414
   396
val imp_cong =
berghofe@10414
   397
  let
wenzelm@24241
   398
    val ABC = read_prop "A ==> B::prop == C::prop"
wenzelm@24241
   399
    val AB = read_prop "A ==> B"
wenzelm@24241
   400
    val AC = read_prop "A ==> C"
wenzelm@24241
   401
    val A = read_prop "A"
berghofe@10414
   402
  in
wenzelm@56436
   403
    store_standard_thm_open (Binding.make ("imp_cong", @{here}))
wenzelm@56436
   404
      (Thm.implies_intr ABC (Thm.equal_intr
wenzelm@56436
   405
        (Thm.implies_intr AB (Thm.implies_intr A
wenzelm@56436
   406
          (Thm.equal_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A))
wenzelm@56436
   407
            (Thm.implies_elim (Thm.assume AB) (Thm.assume A)))))
wenzelm@56436
   408
        (Thm.implies_intr AC (Thm.implies_intr A
wenzelm@56436
   409
          (Thm.equal_elim (Thm.symmetric (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)))
wenzelm@56436
   410
            (Thm.implies_elim (Thm.assume AC) (Thm.assume A)))))))
berghofe@10414
   411
  end;
berghofe@10414
   412
berghofe@10414
   413
val swap_prems_eq =
berghofe@10414
   414
  let
wenzelm@24241
   415
    val ABC = read_prop "A ==> B ==> C"
wenzelm@24241
   416
    val BAC = read_prop "B ==> A ==> C"
wenzelm@24241
   417
    val A = read_prop "A"
wenzelm@24241
   418
    val B = read_prop "B"
berghofe@10414
   419
  in
wenzelm@56436
   420
    store_standard_thm_open (Binding.make ("swap_prems_eq", @{here}))
wenzelm@36944
   421
      (Thm.equal_intr
wenzelm@36944
   422
        (Thm.implies_intr ABC (Thm.implies_intr B (Thm.implies_intr A
wenzelm@36944
   423
          (Thm.implies_elim (Thm.implies_elim (Thm.assume ABC) (Thm.assume A)) (Thm.assume B)))))
wenzelm@36944
   424
        (Thm.implies_intr BAC (Thm.implies_intr A (Thm.implies_intr B
wenzelm@36944
   425
          (Thm.implies_elim (Thm.implies_elim (Thm.assume BAC) (Thm.assume B)) (Thm.assume A))))))
berghofe@10414
   426
  end;
lcp@229
   427
wenzelm@22938
   428
val imp_cong_rule = Thm.combination o Thm.combination (Thm.reflexive implies);
wenzelm@22938
   429
wenzelm@23537
   430
fun arg_cong_rule ct th = Thm.combination (Thm.reflexive ct) th;    (*AP_TERM in LCF/HOL*)
wenzelm@23537
   431
fun fun_cong_rule th ct = Thm.combination th (Thm.reflexive ct);    (*AP_THM in LCF/HOL*)
wenzelm@23568
   432
fun binop_cong_rule ct th1 th2 = Thm.combination (arg_cong_rule ct th1) th2;
clasohm@0
   433
wenzelm@60316
   434
fun beta_eta_conversion ct =
wenzelm@60316
   435
  let val thm = Thm.beta_conversion true ct
wenzelm@60316
   436
  in Thm.transitive thm (Thm.eta_conversion (Thm.rhs_of thm)) end;
skalberg@15001
   437
paulson@20861
   438
(*Contract all eta-redexes in the theorem, lest they give rise to needless abstractions*)
paulson@20861
   439
fun eta_contraction_rule th =
wenzelm@59582
   440
  Thm.equal_elim (Thm.eta_conversion (Thm.cprop_of th)) th;
paulson@20861
   441
wenzelm@24947
   442
wenzelm@24947
   443
(* abs_def *)
wenzelm@24947
   444
wenzelm@24947
   445
(*
wenzelm@24947
   446
   f ?x1 ... ?xn == u
wenzelm@24947
   447
  --------------------
wenzelm@24947
   448
   f == %x1 ... xn. u
wenzelm@24947
   449
*)
wenzelm@24947
   450
wenzelm@24947
   451
local
wenzelm@24947
   452
wenzelm@24947
   453
fun contract_lhs th =
wenzelm@24947
   454
  Thm.transitive (Thm.symmetric (beta_eta_conversion
wenzelm@59582
   455
    (fst (Thm.dest_equals (Thm.cprop_of th))))) th;
wenzelm@24947
   456
wenzelm@24947
   457
fun var_args ct =
wenzelm@24947
   458
  (case try Thm.dest_comb ct of
wenzelm@24947
   459
    SOME (f, arg) =>
wenzelm@24947
   460
      (case Thm.term_of arg of
wenzelm@24947
   461
        Var ((x, _), _) => update (eq_snd (op aconvc)) (x, arg) (var_args f)
wenzelm@24947
   462
      | _ => [])
wenzelm@24947
   463
  | NONE => []);
wenzelm@24947
   464
wenzelm@24947
   465
in
wenzelm@24947
   466
wenzelm@24947
   467
fun abs_def th =
wenzelm@18337
   468
  let
wenzelm@24947
   469
    val th' = contract_lhs th;
wenzelm@24947
   470
    val args = var_args (Thm.lhs_of th');
wenzelm@24947
   471
  in contract_lhs (fold (uncurry Thm.abstract_rule) args th') end;
wenzelm@24947
   472
wenzelm@24947
   473
end;
wenzelm@24947
   474
wenzelm@18337
   475
wenzelm@18468
   476
wenzelm@15669
   477
(*** Some useful meta-theorems ***)
clasohm@0
   478
clasohm@0
   479
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@56436
   480
val asm_rl =
wenzelm@56436
   481
  store_standard_thm_open (Binding.make ("asm_rl", @{here}))
wenzelm@56436
   482
    (Thm.trivial (read_prop "?psi"));
clasohm@0
   483
clasohm@0
   484
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   485
val cut_rl =
wenzelm@56436
   486
  store_standard_thm_open (Binding.make ("cut_rl", @{here}))
wenzelm@24241
   487
    (Thm.trivial (read_prop "?psi ==> ?theta"));
clasohm@0
   488
wenzelm@252
   489
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   490
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   491
val revcut_rl =
wenzelm@33277
   492
  let
wenzelm@33277
   493
    val V = read_prop "V";
wenzelm@33277
   494
    val VW = read_prop "V ==> W";
wenzelm@4016
   495
  in
wenzelm@56436
   496
    store_standard_thm_open (Binding.make ("revcut_rl", @{here}))
wenzelm@56436
   497
      (Thm.implies_intr V
wenzelm@56436
   498
        (Thm.implies_intr VW (Thm.implies_elim (Thm.assume VW) (Thm.assume V))))
clasohm@0
   499
  end;
clasohm@0
   500
lcp@668
   501
(*for deleting an unwanted assumption*)
lcp@668
   502
val thin_rl =
wenzelm@33277
   503
  let
wenzelm@33277
   504
    val V = read_prop "V";
wenzelm@33277
   505
    val W = read_prop "W";
wenzelm@36944
   506
    val thm = Thm.implies_intr V (Thm.implies_intr W (Thm.assume W));
wenzelm@56436
   507
  in store_standard_thm_open (Binding.make ("thin_rl", @{here})) thm end;
lcp@668
   508
clasohm@0
   509
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   510
val triv_forall_equality =
wenzelm@33277
   511
  let
wenzelm@33277
   512
    val V = read_prop "V";
wenzelm@33277
   513
    val QV = read_prop "!!x::'a. V";
wenzelm@33277
   514
    val x = certify (Free ("x", Term.aT []));
wenzelm@4016
   515
  in
wenzelm@56436
   516
    store_standard_thm_open (Binding.make ("triv_forall_equality", @{here}))
wenzelm@36944
   517
      (Thm.equal_intr (Thm.implies_intr QV (Thm.forall_elim x (Thm.assume QV)))
wenzelm@36944
   518
        (Thm.implies_intr V (Thm.forall_intr x (Thm.assume V))))
clasohm@0
   519
  end;
clasohm@0
   520
wenzelm@19051
   521
(* (PROP ?Phi ==> PROP ?Phi ==> PROP ?Psi) ==>
wenzelm@19051
   522
   (PROP ?Phi ==> PROP ?Psi)
wenzelm@19051
   523
*)
wenzelm@19051
   524
val distinct_prems_rl =
wenzelm@19051
   525
  let
wenzelm@33277
   526
    val AAB = read_prop "Phi ==> Phi ==> Psi";
wenzelm@24241
   527
    val A = read_prop "Phi";
wenzelm@19051
   528
  in
wenzelm@56436
   529
    store_standard_thm_open (Binding.make ("distinct_prems_rl", @{here}))
wenzelm@56436
   530
      (implies_intr_list [AAB, A]
wenzelm@56436
   531
        (implies_elim_list (Thm.assume AAB) [Thm.assume A, Thm.assume A]))
wenzelm@19051
   532
  end;
wenzelm@19051
   533
nipkow@3653
   534
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   535
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   536
   Introduction rule for == as a meta-theorem.
nipkow@3653
   537
*)
nipkow@3653
   538
val equal_intr_rule =
wenzelm@33277
   539
  let
wenzelm@33277
   540
    val PQ = read_prop "phi ==> psi";
wenzelm@33277
   541
    val QP = read_prop "psi ==> phi";
wenzelm@4016
   542
  in
wenzelm@56436
   543
    store_standard_thm_open (Binding.make ("equal_intr_rule", @{here}))
wenzelm@56436
   544
      (Thm.implies_intr PQ
wenzelm@56436
   545
        (Thm.implies_intr QP (Thm.equal_intr (Thm.assume PQ) (Thm.assume QP))))
nipkow@3653
   546
  end;
nipkow@3653
   547
wenzelm@19421
   548
(* PROP ?phi == PROP ?psi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@13368
   549
val equal_elim_rule1 =
wenzelm@33277
   550
  let
wenzelm@33277
   551
    val eq = read_prop "phi::prop == psi::prop";
wenzelm@33277
   552
    val P = read_prop "phi";
wenzelm@33277
   553
  in
wenzelm@56436
   554
    store_standard_thm_open (Binding.make ("equal_elim_rule1", @{here}))
wenzelm@36944
   555
      (Thm.equal_elim (Thm.assume eq) (Thm.assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   556
  end;
wenzelm@4285
   557
wenzelm@19421
   558
(* PROP ?psi == PROP ?phi ==> PROP ?phi ==> PROP ?psi *)
wenzelm@19421
   559
val equal_elim_rule2 =
wenzelm@56436
   560
  store_standard_thm_open (Binding.make ("equal_elim_rule2", @{here}))
wenzelm@33277
   561
    (symmetric_thm RS equal_elim_rule1);
wenzelm@19421
   562
wenzelm@28618
   563
(* PROP ?phi ==> PROP ?phi ==> PROP ?psi ==> PROP ?psi *)
wenzelm@12297
   564
val remdups_rl =
wenzelm@33277
   565
  let
wenzelm@33277
   566
    val P = read_prop "phi";
wenzelm@33277
   567
    val Q = read_prop "psi";
wenzelm@33277
   568
    val thm = implies_intr_list [P, P, Q] (Thm.assume Q);
wenzelm@56436
   569
  in store_standard_thm_open (Binding.make ("remdups_rl", @{here})) thm end;
wenzelm@12297
   570
wenzelm@12297
   571
wenzelm@28618
   572
wenzelm@28618
   573
(** embedded terms and types **)
wenzelm@28618
   574
wenzelm@28618
   575
local
wenzelm@28618
   576
  val A = certify (Free ("A", propT));
wenzelm@35845
   577
  val axiom = Thm.unvarify_global o Thm.axiom (Context.the_theory (Context.the_thread_data ()));
wenzelm@28674
   578
  val prop_def = axiom "Pure.prop_def";
wenzelm@28674
   579
  val term_def = axiom "Pure.term_def";
wenzelm@28674
   580
  val sort_constraint_def = axiom "Pure.sort_constraint_def";
wenzelm@28618
   581
  val C = Thm.lhs_of sort_constraint_def;
wenzelm@28618
   582
  val T = Thm.dest_arg C;
wenzelm@28618
   583
  val CA = mk_implies (C, A);
wenzelm@28618
   584
in
wenzelm@28618
   585
wenzelm@28618
   586
(* protect *)
wenzelm@28618
   587
wenzelm@46497
   588
val protect = Thm.apply (certify Logic.protectC);
wenzelm@28618
   589
wenzelm@33277
   590
val protectI =
wenzelm@59859
   591
  store_standard_thm (Binding.concealed (Binding.make ("protectI", @{here})))
wenzelm@35021
   592
    (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A));
wenzelm@28618
   593
wenzelm@33277
   594
val protectD =
wenzelm@59859
   595
  store_standard_thm (Binding.concealed (Binding.make ("protectD", @{here})))
wenzelm@35021
   596
    (Thm.equal_elim prop_def (Thm.assume (protect A)));
wenzelm@28618
   597
wenzelm@33277
   598
val protect_cong =
wenzelm@56436
   599
  store_standard_thm_open (Binding.make ("protect_cong", @{here}))
wenzelm@56436
   600
    (Thm.reflexive (protect A));
wenzelm@28618
   601
wenzelm@28618
   602
fun implies_intr_protected asms th =
wenzelm@28618
   603
  let val asms' = map protect asms in
wenzelm@28618
   604
    implies_elim_list
wenzelm@28618
   605
      (implies_intr_list asms th)
wenzelm@28618
   606
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@28618
   607
    |> implies_intr_list asms'
wenzelm@28618
   608
  end;
wenzelm@28618
   609
wenzelm@28618
   610
wenzelm@28618
   611
(* term *)
wenzelm@28618
   612
wenzelm@33277
   613
val termI =
wenzelm@59859
   614
  store_standard_thm (Binding.concealed (Binding.make ("termI", @{here})))
wenzelm@35021
   615
    (Thm.equal_elim (Thm.symmetric term_def) (Thm.forall_intr A (Thm.trivial A)));
wenzelm@9554
   616
wenzelm@28618
   617
fun mk_term ct =
wenzelm@28618
   618
  let
wenzelm@60642
   619
    val cT = Thm.ctyp_of_cterm ct;
wenzelm@60642
   620
    val T = Thm.typ_of cT;
wenzelm@60642
   621
  in Thm.instantiate ([((("'a", 0), []), cT)], [((("x", 0), T), ct)]) termI end;
wenzelm@28618
   622
wenzelm@28618
   623
fun dest_term th =
wenzelm@28618
   624
  let val cprop = strip_imp_concl (Thm.cprop_of th) in
wenzelm@28618
   625
    if can Logic.dest_term (Thm.term_of cprop) then
wenzelm@28618
   626
      Thm.dest_arg cprop
wenzelm@28618
   627
    else raise THM ("dest_term", 0, [th])
wenzelm@28618
   628
  end;
wenzelm@28618
   629
wenzelm@28618
   630
fun cterm_rule f = dest_term o f o mk_term;
wenzelm@28618
   631
wenzelm@45156
   632
val dummy_thm = mk_term (certify Term.dummy_prop);
wenzelm@28618
   633
wenzelm@28618
   634
wenzelm@28618
   635
(* sort_constraint *)
wenzelm@28618
   636
wenzelm@60240
   637
fun is_sort_constraint (Const ("Pure.sort_constraint", _) $ Const ("Pure.type", _)) = true
wenzelm@60240
   638
  | is_sort_constraint _ = false;
wenzelm@60240
   639
wenzelm@33277
   640
val sort_constraintI =
wenzelm@59859
   641
  store_standard_thm (Binding.concealed (Binding.make ("sort_constraintI", @{here})))
wenzelm@35021
   642
    (Thm.equal_elim (Thm.symmetric sort_constraint_def) (mk_term T));
wenzelm@28618
   643
wenzelm@33277
   644
val sort_constraint_eq =
wenzelm@59859
   645
  store_standard_thm (Binding.concealed (Binding.make ("sort_constraint_eq", @{here})))
wenzelm@35021
   646
    (Thm.equal_intr
wenzelm@35845
   647
      (Thm.implies_intr CA (Thm.implies_elim (Thm.assume CA)
wenzelm@35845
   648
        (Thm.unvarify_global sort_constraintI)))
wenzelm@35021
   649
      (implies_intr_list [A, C] (Thm.assume A)));
wenzelm@28618
   650
wenzelm@28618
   651
end;
wenzelm@28618
   652
wenzelm@28618
   653
wenzelm@28618
   654
(* HHF normalization *)
wenzelm@28618
   655
wenzelm@46214
   656
(* (PROP ?phi ==> (!!x. PROP ?psi x)) == (!!x. PROP ?phi ==> PROP ?psi x) *)
wenzelm@9554
   657
val norm_hhf_eq =
wenzelm@9554
   658
  let
wenzelm@14854
   659
    val aT = TFree ("'a", []);
wenzelm@9554
   660
    val x = Free ("x", aT);
wenzelm@9554
   661
    val phi = Free ("phi", propT);
wenzelm@9554
   662
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   663
wenzelm@26487
   664
    val cx = certify x;
wenzelm@26487
   665
    val cphi = certify phi;
wenzelm@46214
   666
    val lhs = certify (Logic.mk_implies (phi, Logic.all x (psi $ x)));
wenzelm@46214
   667
    val rhs = certify (Logic.all x (Logic.mk_implies (phi, psi $ x)));
wenzelm@9554
   668
  in
wenzelm@9554
   669
    Thm.equal_intr
wenzelm@9554
   670
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   671
        |> Thm.forall_elim cx
wenzelm@9554
   672
        |> Thm.implies_intr cphi
wenzelm@9554
   673
        |> Thm.forall_intr cx
wenzelm@9554
   674
        |> Thm.implies_intr lhs)
wenzelm@9554
   675
      (Thm.implies_elim
wenzelm@9554
   676
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   677
        |> Thm.forall_intr cx
wenzelm@9554
   678
        |> Thm.implies_intr cphi
wenzelm@9554
   679
        |> Thm.implies_intr rhs)
wenzelm@56436
   680
    |> store_standard_thm_open (Binding.make ("norm_hhf_eq", @{here}))
wenzelm@9554
   681
  end;
wenzelm@9554
   682
wenzelm@18179
   683
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@28618
   684
val norm_hhf_eqs = [norm_hhf_eq, sort_constraint_eq];
wenzelm@18179
   685
wenzelm@30553
   686
fun is_norm_hhf (Const ("Pure.sort_constraint", _)) = false
wenzelm@56245
   687
  | is_norm_hhf (Const ("Pure.imp", _) $ _ $ (Const ("Pure.all", _) $ _)) = false
wenzelm@30553
   688
  | is_norm_hhf (Abs _ $ _) = false
wenzelm@30553
   689
  | is_norm_hhf (t $ u) = is_norm_hhf t andalso is_norm_hhf u
wenzelm@30553
   690
  | is_norm_hhf (Abs (_, _, t)) = is_norm_hhf t
wenzelm@30553
   691
  | is_norm_hhf _ = true;
wenzelm@12800
   692
wenzelm@16425
   693
fun norm_hhf thy t =
wenzelm@12800
   694
  if is_norm_hhf t then t
wenzelm@18179
   695
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   696
wenzelm@60315
   697
fun norm_hhf_cterm ctxt raw_ct =
wenzelm@60315
   698
  let
wenzelm@60315
   699
    val thy = Proof_Context.theory_of ctxt;
wenzelm@60315
   700
    val ct = Thm.transfer_cterm thy raw_ct;
wenzelm@60315
   701
    val t = Thm.term_of ct;
wenzelm@60315
   702
  in if is_norm_hhf t then ct else Thm.cterm_of ctxt (norm_hhf thy t) end;
wenzelm@20298
   703
wenzelm@12800
   704
wenzelm@21603
   705
(* var indexes *)
wenzelm@21603
   706
wenzelm@21603
   707
fun incr_indexes th = Thm.incr_indexes (Thm.maxidx_of th + 1);
wenzelm@21603
   708
wenzelm@21603
   709
fun incr_indexes2 th1 th2 =
wenzelm@21603
   710
  Thm.incr_indexes (Int.max (Thm.maxidx_of th1, Thm.maxidx_of th2) + 1);
wenzelm@21603
   711
wenzelm@52224
   712
local
wenzelm@52224
   713
wenzelm@52224
   714
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
wenzelm@52224
   715
fun comp incremented th1 th2 =
wenzelm@59773
   716
  Thm.bicompose NONE {flatten = true, match = false, incremented = incremented}
wenzelm@59773
   717
    (false, th1, 0) 1 th2
wenzelm@52224
   718
  |> Seq.list_of |> distinct Thm.eq_thm
wenzelm@52224
   719
  |> (fn [th] => th | _ => raise THM ("COMP", 1, [th1, th2]));
wenzelm@52224
   720
wenzelm@52224
   721
in
wenzelm@52224
   722
wenzelm@52224
   723
fun th1 COMP th2 = comp false th1 th2;
wenzelm@52224
   724
fun th1 INCR_COMP th2 = comp true (incr_indexes th2 th1) th2;
wenzelm@52224
   725
fun th1 COMP_INCR th2 = comp true th1 (incr_indexes th1 th2);
wenzelm@52224
   726
wenzelm@52224
   727
end;
wenzelm@21603
   728
wenzelm@29344
   729
fun comp_no_flatten (th, n) i rule =
wenzelm@29344
   730
  (case distinct Thm.eq_thm (Seq.list_of
wenzelm@58950
   731
      (Thm.bicompose NONE {flatten = false, match = false, incremented = true}
wenzelm@52223
   732
        (false, th, n) i (incr_indexes th rule))) of
wenzelm@29344
   733
    [th'] => th'
wenzelm@29344
   734
  | [] => raise THM ("comp_no_flatten", i, [th, rule])
wenzelm@29344
   735
  | _ => raise THM ("comp_no_flatten: unique result expected", i, [th, rule]));
wenzelm@29344
   736
wenzelm@29344
   737
wenzelm@9554
   738
wenzelm@45348
   739
(** variations on Thm.instantiate **)
paulson@8129
   740
wenzelm@43333
   741
fun instantiate_normalize instpair th =
wenzelm@21603
   742
  Thm.adjust_maxidx_thm ~1 (Thm.instantiate instpair th COMP_INCR asm_rl);
paulson@8129
   743
wenzelm@60778
   744
(*instantiation with type-inference for variables*)
wenzelm@60795
   745
fun infer_instantiate_types _ [] th = th
wenzelm@60798
   746
  | infer_instantiate_types ctxt args raw_th =
wenzelm@60794
   747
      let
wenzelm@60794
   748
        val thy = Proof_Context.theory_of ctxt;
wenzelm@60798
   749
        val th = Thm.transfer thy raw_th;
wenzelm@60794
   750
wenzelm@60794
   751
        fun infer ((xi, T), cu) (tyenv, maxidx) =
wenzelm@60794
   752
          let
wenzelm@60798
   753
            val _ = Thm.ctyp_of ctxt T;
wenzelm@60798
   754
            val _ = Thm.transfer_cterm thy cu;
wenzelm@60794
   755
            val U = Thm.typ_of_cterm cu;
wenzelm@60794
   756
            val maxidx' = maxidx
wenzelm@60794
   757
              |> Integer.max (#2 xi)
wenzelm@60794
   758
              |> Term.maxidx_typ T
wenzelm@60794
   759
              |> Integer.max (Thm.maxidx_of_cterm cu);
wenzelm@60794
   760
            val (tyenv', maxidx'') = Sign.typ_unify thy (T, U) (tyenv, maxidx')
wenzelm@60794
   761
              handle Type.TUNIFY =>
wenzelm@60794
   762
                let
wenzelm@60794
   763
                  val t = Var (xi, T);
wenzelm@60794
   764
                  val u = Thm.term_of cu;
wenzelm@60794
   765
                in
wenzelm@60795
   766
                  raise THM ("infer_instantiate_types: type " ^
wenzelm@60794
   767
                    Syntax.string_of_typ ctxt (Envir.norm_type tyenv T) ^ " of variable " ^
wenzelm@60794
   768
                    Syntax.string_of_term ctxt (Term.map_types (Envir.norm_type tyenv) t) ^
wenzelm@60794
   769
                    "\ncannot be unified with type " ^
wenzelm@60794
   770
                    Syntax.string_of_typ ctxt (Envir.norm_type tyenv U) ^ " of term " ^
wenzelm@60794
   771
                    Syntax.string_of_term ctxt (Term.map_types (Envir.norm_type tyenv) u),
wenzelm@60794
   772
                    0, [th])
wenzelm@60794
   773
                end;
wenzelm@60794
   774
          in (tyenv', maxidx'') end;
wenzelm@60794
   775
wenzelm@60794
   776
        val (tyenv, _) = fold infer args (Vartab.empty, 0);
wenzelm@60794
   777
        val instT =
wenzelm@60794
   778
          Vartab.fold (fn (xi, (S, T)) =>
wenzelm@60794
   779
            cons ((xi, S), Thm.ctyp_of ctxt (Envir.norm_type tyenv T))) tyenv [];
wenzelm@60794
   780
        val inst = args |> map (fn ((xi, T), cu) =>
wenzelm@60794
   781
          ((xi, Envir.norm_type tyenv T),
wenzelm@60794
   782
            Thm.instantiate_cterm (instT, []) (Thm.transfer_cterm thy cu)));
wenzelm@60794
   783
      in instantiate_normalize (instT, inst) th end
wenzelm@60798
   784
      handle CTERM (msg, _) => raise THM (msg, 0, [raw_th])
wenzelm@60798
   785
        | TERM (msg, _) => raise THM (msg, 0, [raw_th])
wenzelm@60798
   786
        | TYPE (msg, _, _) => raise THM (msg, 0, [raw_th]);
wenzelm@60794
   787
wenzelm@60778
   788
fun infer_instantiate _ [] th = th
wenzelm@60778
   789
  | infer_instantiate ctxt args th =
wenzelm@60778
   790
      let
wenzelm@60778
   791
        val vars = Term.add_vars (Thm.full_prop_of th) [];
wenzelm@60778
   792
        val dups = duplicates (eq_fst op =) vars;
wenzelm@60778
   793
        val _ = null dups orelse
wenzelm@60778
   794
          raise THM ("infer_instantiate: inconsistent types for variables " ^
wenzelm@60778
   795
            commas_quote (map (Syntax.string_of_term (Config.put show_types true ctxt) o Var) dups),
wenzelm@60778
   796
            0, [th]);
wenzelm@60794
   797
        val args' = args |> map_filter (fn (xi, cu) =>
wenzelm@60794
   798
          AList.lookup (op =) vars xi |> Option.map (fn T => ((xi, T), cu)));
wenzelm@60795
   799
      in infer_instantiate_types ctxt args' th end;
wenzelm@60778
   800
paulson@8129
   801
wenzelm@4285
   802
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
   803
wenzelm@4285
   804
fun instantiate' cTs cts thm =
wenzelm@4285
   805
  let
wenzelm@4285
   806
    fun err msg =
wenzelm@4285
   807
      raise TYPE ("instantiate': " ^ msg,
wenzelm@19482
   808
        map_filter (Option.map Thm.typ_of) cTs,
wenzelm@19482
   809
        map_filter (Option.map Thm.term_of) cts);
wenzelm@4285
   810
wenzelm@20298
   811
    fun zip_vars xs ys =
wenzelm@40722
   812
      zip_options xs ys handle ListPair.UnequalLengths =>
wenzelm@20298
   813
        err "more instantiations than variables in thm";
wenzelm@4285
   814
wenzelm@4285
   815
    val thm' =
wenzelm@60783
   816
      Thm.instantiate ((zip_vars (rev (Thm.fold_terms Term.add_tvars thm [])) cTs), []) thm;
wenzelm@20579
   817
    val thm'' =
wenzelm@60783
   818
      Thm.instantiate ([], zip_vars (rev (Thm.fold_terms Term.add_vars thm' [])) cts) thm';
wenzelm@60783
   819
  in thm'' end;
wenzelm@60783
   820
wenzelm@60783
   821
fun infer_instantiate' ctxt args th =
wenzelm@60783
   822
  let
wenzelm@60794
   823
    val vars = rev (Term.add_vars (Thm.full_prop_of th) []);
wenzelm@60783
   824
    val args' = zip_options vars args
wenzelm@60783
   825
      handle ListPair.UnequalLengths =>
wenzelm@60783
   826
        raise THM ("infer_instantiate': more instantiations than variables in thm", 0, [th]);
wenzelm@60795
   827
  in infer_instantiate_types ctxt args' th end;
wenzelm@4285
   828
wenzelm@4285
   829
berghofe@14081
   830
berghofe@14081
   831
(** renaming of bound variables **)
berghofe@14081
   832
berghofe@14081
   833
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
   834
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
   835
berghofe@14081
   836
fun rename_bvars [] thm = thm
berghofe@14081
   837
  | rename_bvars vs thm =
wenzelm@26627
   838
      let
wenzelm@60313
   839
        fun rename (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, rename t)
wenzelm@60313
   840
          | rename (t $ u) = rename t $ rename u
wenzelm@60313
   841
          | rename a = a;
wenzelm@60313
   842
      in Thm.renamed_prop (rename (Thm.prop_of thm)) thm end;
berghofe@14081
   843
berghofe@14081
   844
berghofe@14081
   845
(* renaming in left-to-right order *)
berghofe@14081
   846
berghofe@14081
   847
fun rename_bvars' xs thm =
berghofe@14081
   848
  let
berghofe@14081
   849
    fun rename [] t = ([], t)
berghofe@14081
   850
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
   851
          let val (xs', t') = rename xs t
wenzelm@18929
   852
          in (xs', Abs (the_default x x', T, t')) end
berghofe@14081
   853
      | rename xs (t $ u) =
berghofe@14081
   854
          let
berghofe@14081
   855
            val (xs', t') = rename xs t;
wenzelm@60313
   856
            val (xs'', u') = rename xs' u;
berghofe@14081
   857
          in (xs'', t' $ u') end
wenzelm@60320
   858
      | rename xs a = (xs, a);
wenzelm@59616
   859
  in
wenzelm@60313
   860
    (case rename xs (Thm.prop_of thm) of
wenzelm@60313
   861
      ([], prop') => Thm.renamed_prop prop' thm
wenzelm@59616
   862
    | _ => error "More names than abstractions in theorem")
berghofe@14081
   863
  end;
berghofe@14081
   864
wenzelm@11975
   865
end;
wenzelm@5903
   866
wenzelm@35021
   867
structure Basic_Drule: BASIC_DRULE = Drule;
wenzelm@35021
   868
open Basic_Drule;