src/HOL/Tools/datatype_rep_proofs.ML
author berghofe
Wed Jul 10 18:35:34 2002 +0200 (2002-07-10)
changeset 13340 9b0332344ae2
parent 12922 ed70a600f0ea
child 13585 db4005b40cc6
permissions -rw-r--r--
Simplified proof of induction rule for datatypes involving function types.
berghofe@5177
     1
(*  Title:      HOL/Tools/datatype_rep_proofs.ML
berghofe@5177
     2
    ID:         $Id$
wenzelm@11539
     3
    Author:     Stefan Berghofer, TU Muenchen
wenzelm@11539
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
berghofe@5177
     5
berghofe@5177
     6
Definitional introduction of datatypes
berghofe@5177
     7
Proof of characteristic theorems:
berghofe@5177
     8
berghofe@5177
     9
 - injectivity of constructors
berghofe@7228
    10
 - distinctness of constructors
berghofe@5177
    11
 - induction theorem
berghofe@5177
    12
berghofe@5177
    13
*)
berghofe@5177
    14
berghofe@5177
    15
signature DATATYPE_REP_PROOFS =
berghofe@5177
    16
sig
berghofe@5661
    17
  val representation_proofs : bool -> DatatypeAux.datatype_info Symtab.table ->
berghofe@5177
    18
    string list -> (int * (string * DatatypeAux.dtyp list *
berghofe@5177
    19
      (string * DatatypeAux.dtyp list) list)) list list -> (string * sort) list ->
wenzelm@8436
    20
        (string * mixfix) list -> (string * mixfix) list list -> theory attribute
wenzelm@8436
    21
          -> theory -> theory * thm list list * thm list list * thm list list *
berghofe@7015
    22
            DatatypeAux.simproc_dist list * thm
berghofe@5177
    23
end;
berghofe@5177
    24
berghofe@5177
    25
structure DatatypeRepProofs : DATATYPE_REP_PROOFS =
berghofe@5177
    26
struct
berghofe@5177
    27
berghofe@5177
    28
open DatatypeAux;
berghofe@5177
    29
berghofe@5177
    30
val (_ $ (_ $ (_ $ (distinct_f $ _) $ _))) = hd (prems_of distinct_lemma);
berghofe@5177
    31
wenzelm@11435
    32
wenzelm@11435
    33
(** theory context references **)
berghofe@5177
    34
wenzelm@11435
    35
val f_myinv_f = thm "f_myinv_f";
wenzelm@11435
    36
val myinv_f_f = thm "myinv_f_f";
wenzelm@11435
    37
berghofe@5177
    38
berghofe@5177
    39
fun exh_thm_of (dt_info : datatype_info Symtab.table) tname =
berghofe@5177
    40
  #exhaustion (the (Symtab.lookup (dt_info, tname)));
berghofe@5177
    41
berghofe@5177
    42
(******************************************************************************)
berghofe@5177
    43
berghofe@5661
    44
fun representation_proofs flat_names (dt_info : datatype_info Symtab.table)
wenzelm@8436
    45
      new_type_names descr sorts types_syntax constr_syntax case_names_induct thy =
berghofe@5177
    46
  let
wenzelm@12922
    47
    val Datatype_thy =
wenzelm@12922
    48
      if PureThy.get_name thy = "Datatype" then thy
wenzelm@12922
    49
      else theory "Datatype";
wenzelm@11957
    50
    val node_name = "Datatype_Universe.node";
wenzelm@11957
    51
    val In0_name = "Datatype_Universe.In0";
wenzelm@11957
    52
    val In1_name = "Datatype_Universe.In1";
wenzelm@11957
    53
    val Scons_name = "Datatype_Universe.Scons";
wenzelm@11957
    54
    val Leaf_name = "Datatype_Universe.Leaf";
wenzelm@11957
    55
    val Numb_name = "Datatype_Universe.Numb";
wenzelm@11957
    56
    val Lim_name = "Datatype_Universe.Lim";
wenzelm@11957
    57
    val Funs_name = "Datatype_Universe.Funs";
wenzelm@11957
    58
    val o_name = "Fun.op o";
wenzelm@11957
    59
    val sum_case_name = "Datatype.sum.sum_case";
berghofe@7015
    60
berghofe@5177
    61
    val [In0_inject, In1_inject, Scons_inject, Leaf_inject, In0_eq, In1_eq,
berghofe@7015
    62
         In0_not_In1, In1_not_In0, Funs_mono, FunsI, Lim_inject,
berghofe@7293
    63
         Funs_inv, FunsD, Funs_rangeE, Funs_nonempty, sum_case_inject] = map (get_thm Datatype_thy)
berghofe@7015
    64
        ["In0_inject", "In1_inject", "Scons_inject", "Leaf_inject", "In0_eq", "In1_eq",
berghofe@7015
    65
         "In0_not_In1", "In1_not_In0", "Funs_mono", "FunsI", "Lim_inject",
berghofe@7293
    66
         "Funs_inv", "FunsD", "Funs_rangeE", "Funs_nonempty", "sum_case_inject"];
berghofe@7015
    67
berghofe@7015
    68
    val Funs_IntE = (Int_lower2 RS Funs_mono RS
berghofe@7015
    69
      (Int_lower1 RS Funs_mono RS Int_greatest) RS subsetD) RS IntE;
berghofe@5177
    70
berghofe@5177
    71
    val descr' = flat descr;
berghofe@5177
    72
berghofe@5661
    73
    val big_name = space_implode "_" new_type_names;
berghofe@5661
    74
    val thy1 = add_path flat_names big_name thy;
berghofe@5661
    75
    val big_rec_name = big_name ^ "_rep_set";
wenzelm@6394
    76
    val rep_set_names = map (Sign.full_name (Theory.sign_of thy1))
berghofe@5177
    77
      (if length descr' = 1 then [big_rec_name] else
berghofe@5177
    78
        (map ((curry (op ^) (big_rec_name ^ "_")) o string_of_int)
berghofe@5177
    79
          (1 upto (length descr'))));
berghofe@5177
    80
berghofe@5661
    81
    val tyvars = map (fn (_, (_, Ts, _)) => map dest_DtTFree Ts) (hd descr);
berghofe@5661
    82
    val leafTs' = get_nonrec_types descr' sorts;
berghofe@7015
    83
    val branchTs = get_branching_types descr' sorts;
berghofe@7015
    84
    val branchT = if null branchTs then HOLogic.unitT
berghofe@7015
    85
      else fold_bal (fn (T, U) => Type ("+", [T, U])) branchTs;
berghofe@7015
    86
    val unneeded_vars = hd tyvars \\ foldr add_typ_tfree_names (leafTs' @ branchTs, []);
berghofe@5661
    87
    val leafTs = leafTs' @ (map (fn n => TFree (n, the (assoc (sorts, n)))) unneeded_vars);
berghofe@5177
    88
    val recTs = get_rec_types descr' sorts;
berghofe@5177
    89
    val newTs = take (length (hd descr), recTs);
berghofe@5177
    90
    val oldTs = drop (length (hd descr), recTs);
berghofe@5177
    91
    val sumT = if null leafTs then HOLogic.unitT
berghofe@5177
    92
      else fold_bal (fn (T, U) => Type ("+", [T, U])) leafTs;
berghofe@7015
    93
    val Univ_elT = HOLogic.mk_setT (Type (node_name, [sumT, branchT]));
berghofe@5177
    94
    val UnivT = HOLogic.mk_setT Univ_elT;
berghofe@5177
    95
berghofe@5177
    96
    val In0 = Const (In0_name, Univ_elT --> Univ_elT);
berghofe@5177
    97
    val In1 = Const (In1_name, Univ_elT --> Univ_elT);
berghofe@5177
    98
    val Leaf = Const (Leaf_name, sumT --> Univ_elT);
berghofe@7015
    99
    val Lim = Const (Lim_name, (branchT --> Univ_elT) --> Univ_elT);
berghofe@5177
   100
berghofe@5177
   101
    (* make injections needed for embedding types in leaves *)
berghofe@5177
   102
berghofe@5177
   103
    fun mk_inj T' x =
berghofe@5177
   104
      let
berghofe@5177
   105
        fun mk_inj' T n i =
berghofe@5177
   106
          if n = 1 then x else
berghofe@5177
   107
          let val n2 = n div 2;
berghofe@5177
   108
              val Type (_, [T1, T2]) = T
berghofe@5177
   109
          in
berghofe@5177
   110
            if i <= n2 then
berghofe@5177
   111
              Const ("Inl", T1 --> T) $ (mk_inj' T1 n2 i)
berghofe@5177
   112
            else
berghofe@5177
   113
              Const ("Inr", T2 --> T) $ (mk_inj' T2 (n - n2) (i - n2))
berghofe@5177
   114
          end
berghofe@5177
   115
      in mk_inj' sumT (length leafTs) (1 + find_index_eq T' leafTs)
berghofe@5177
   116
      end;
berghofe@5177
   117
berghofe@5177
   118
    (* make injections for constructors *)
berghofe@5177
   119
wenzelm@7704
   120
    fun mk_univ_inj ts = access_bal (fn t => In0 $ t, fn t => In1 $ t, if ts = [] then
berghofe@5177
   121
        Const ("arbitrary", Univ_elT)
berghofe@5177
   122
      else
berghofe@5177
   123
        foldr1 (HOLogic.mk_binop Scons_name) ts);
berghofe@5177
   124
berghofe@7015
   125
    (* function spaces *)
berghofe@7015
   126
berghofe@7015
   127
    fun mk_fun_inj T' x =
berghofe@7015
   128
      let
berghofe@7015
   129
        fun mk_inj T n i =
berghofe@7015
   130
          if n = 1 then x else
berghofe@7015
   131
          let
berghofe@7015
   132
            val n2 = n div 2;
berghofe@7015
   133
            val Type (_, [T1, T2]) = T;
berghofe@7293
   134
            val sum_case = Const (sum_case_name, [T1 --> Univ_elT, T2 --> Univ_elT, T] ---> Univ_elT)
berghofe@7015
   135
          in
berghofe@7015
   136
            if i <= n2 then
berghofe@7015
   137
              sum_case $ (mk_inj T1 n2 i) $ Const ("arbitrary", T2 --> Univ_elT)
berghofe@7015
   138
            else
berghofe@7015
   139
              sum_case $ Const ("arbitrary", T1 --> Univ_elT) $ mk_inj T2 (n - n2) (i - n2)
berghofe@7015
   140
          end
berghofe@7015
   141
      in mk_inj branchT (length branchTs) (1 + find_index_eq T' branchTs)
berghofe@7015
   142
      end;
berghofe@7015
   143
berghofe@5177
   144
    (************** generate introduction rules for representing set **********)
berghofe@5177
   145
wenzelm@6427
   146
    val _ = message "Constructing representing sets ...";
berghofe@5177
   147
berghofe@5177
   148
    (* make introduction rule for a single constructor *)
berghofe@5177
   149
berghofe@5177
   150
    fun make_intr s n (i, (_, cargs)) =
berghofe@5177
   151
      let
berghofe@5177
   152
        fun mk_prem (DtRec k, (j, prems, ts)) =
berghofe@5177
   153
              let val free_t = mk_Free "x" Univ_elT j
berghofe@5177
   154
              in (j + 1, (HOLogic.mk_mem (free_t,
berghofe@5177
   155
                Const (nth_elem (k, rep_set_names), UnivT)))::prems, free_t::ts)
berghofe@5177
   156
              end
berghofe@7015
   157
          | mk_prem (DtType ("fun", [T, DtRec k]), (j, prems, ts)) =
berghofe@7015
   158
              let val T' = typ_of_dtyp descr' sorts T;
berghofe@7015
   159
                  val free_t = mk_Free "x" (T' --> Univ_elT) j
berghofe@7015
   160
              in (j + 1, (HOLogic.mk_mem (free_t,
berghofe@7015
   161
                Const (Funs_name, UnivT --> HOLogic.mk_setT (T' --> Univ_elT)) $
berghofe@7015
   162
                  Const (nth_elem (k, rep_set_names), UnivT)))::prems,
berghofe@7015
   163
                    Lim $ mk_fun_inj T' free_t::ts)
berghofe@7015
   164
              end
berghofe@5177
   165
          | mk_prem (dt, (j, prems, ts)) =
berghofe@5177
   166
              let val T = typ_of_dtyp descr' sorts dt
berghofe@5177
   167
              in (j + 1, prems, (Leaf $ mk_inj T (mk_Free "x" T j))::ts)
berghofe@5177
   168
              end;
berghofe@5177
   169
berghofe@5177
   170
        val (_, prems, ts) = foldr mk_prem (cargs, (1, [], []));
berghofe@5177
   171
        val concl = HOLogic.mk_Trueprop (HOLogic.mk_mem
berghofe@5177
   172
          (mk_univ_inj ts n i, Const (s, UnivT)))
berghofe@5177
   173
      in Logic.list_implies (map HOLogic.mk_Trueprop prems, concl)
berghofe@5177
   174
      end;
berghofe@5177
   175
berghofe@5177
   176
    val consts = map (fn s => Const (s, UnivT)) rep_set_names;
berghofe@5177
   177
berghofe@5177
   178
    val intr_ts = flat (map (fn ((_, (_, _, constrs)), rep_set_name) =>
berghofe@5177
   179
      map (make_intr rep_set_name (length constrs))
berghofe@5177
   180
        ((1 upto (length constrs)) ~~ constrs)) (descr' ~~ rep_set_names));
berghofe@5177
   181
berghofe@5177
   182
    val (thy2, {raw_induct = rep_induct, intrs = rep_intrs, ...}) =
berghofe@5661
   183
      setmp InductivePackage.quiet_mode (!quiet_mode)
berghofe@5661
   184
        (InductivePackage.add_inductive_i false true big_rec_name false true false
wenzelm@12180
   185
           consts (map (fn x => (("", x), [])) intr_ts) [Funs_mono]) thy1;
berghofe@5177
   186
berghofe@5177
   187
    (********************************* typedef ********************************)
berghofe@5177
   188
berghofe@5661
   189
    val thy3 = add_path flat_names big_name (foldl (fn (thy, ((((name, mx), tvs), c), name')) =>
wenzelm@5696
   190
      setmp TypedefPackage.quiet_mode true
wenzelm@11827
   191
        (TypedefPackage.add_typedef_i false (Some name') (name, tvs, mx) c None
wenzelm@11827
   192
          (rtac exI 1 THEN
wenzelm@11827
   193
            QUIET_BREADTH_FIRST (has_fewer_prems 1)
wenzelm@11822
   194
            (resolve_tac (Funs_nonempty::rep_intrs) 1))) thy |> #1)
berghofe@7015
   195
              (parent_path flat_names thy2, types_syntax ~~ tyvars ~~
berghofe@7015
   196
                (take (length newTs, consts)) ~~ new_type_names));
berghofe@5177
   197
berghofe@5177
   198
    (*********************** definition of constructors ***********************)
berghofe@5177
   199
berghofe@5177
   200
    val big_rep_name = (space_implode "_" new_type_names) ^ "_Rep_";
berghofe@5177
   201
    val rep_names = map (curry op ^ "Rep_") new_type_names;
berghofe@5177
   202
    val rep_names' = map (fn i => big_rep_name ^ (string_of_int i))
berghofe@5177
   203
      (1 upto (length (flat (tl descr))));
wenzelm@6394
   204
    val all_rep_names = map (Sign.intern_const (Theory.sign_of thy3)) rep_names @
wenzelm@6394
   205
      map (Sign.full_name (Theory.sign_of thy3)) rep_names';
berghofe@5177
   206
berghofe@5177
   207
    (* isomorphism declarations *)
berghofe@5177
   208
berghofe@5177
   209
    val iso_decls = map (fn (T, s) => (s, T --> Univ_elT, NoSyn))
berghofe@5177
   210
      (oldTs ~~ rep_names');
berghofe@5177
   211
berghofe@5177
   212
    (* constructor definitions *)
berghofe@5177
   213
berghofe@5177
   214
    fun make_constr_def tname T n ((thy, defs, eqns, i), ((cname, cargs), (cname', mx))) =
berghofe@5177
   215
      let
berghofe@5177
   216
        fun constr_arg (dt, (j, l_args, r_args)) =
berghofe@5177
   217
          let val T = typ_of_dtyp descr' sorts dt;
berghofe@5177
   218
              val free_t = mk_Free "x" T j
berghofe@5177
   219
          in (case dt of
berghofe@5177
   220
              DtRec m => (j + 1, free_t::l_args, (Const (nth_elem (m, all_rep_names),
berghofe@5177
   221
                T --> Univ_elT) $ free_t)::r_args)
berghofe@7015
   222
            | DtType ("fun", [T', DtRec m]) =>
berghofe@7015
   223
                let val ([T''], T''') = strip_type T
berghofe@7015
   224
                in (j + 1, free_t::l_args, (Lim $ mk_fun_inj T''
berghofe@7015
   225
                  (Const (o_name, [T''' --> Univ_elT, T, T''] ---> Univ_elT) $
berghofe@7015
   226
                    Const (nth_elem (m, all_rep_names), T''' --> Univ_elT) $ free_t))::r_args)
berghofe@7015
   227
                end
berghofe@7015
   228
berghofe@5177
   229
            | _ => (j + 1, free_t::l_args, (Leaf $ mk_inj T free_t)::r_args))
berghofe@5177
   230
          end;
berghofe@5177
   231
berghofe@5177
   232
        val (_, l_args, r_args) = foldr constr_arg (cargs, (1, [], []));
berghofe@5177
   233
        val constrT = (map (typ_of_dtyp descr' sorts) cargs) ---> T;
wenzelm@6394
   234
        val abs_name = Sign.intern_const (Theory.sign_of thy) ("Abs_" ^ tname);
wenzelm@6394
   235
        val rep_name = Sign.intern_const (Theory.sign_of thy) ("Rep_" ^ tname);
berghofe@5177
   236
        val lhs = list_comb (Const (cname, constrT), l_args);
berghofe@5177
   237
        val rhs = mk_univ_inj r_args n i;
berghofe@5177
   238
        val def = equals T $ lhs $ (Const (abs_name, Univ_elT --> T) $ rhs);
berghofe@5177
   239
        val def_name = (Sign.base_name cname) ^ "_def";
berghofe@5177
   240
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   241
          (Const (rep_name, T --> Univ_elT) $ lhs, rhs));
wenzelm@8436
   242
        val (thy', [def_thm]) = thy |>
berghofe@5177
   243
          Theory.add_consts_i [(cname', constrT, mx)] |>
wenzelm@9315
   244
          (PureThy.add_defs_i false o map Thm.no_attributes) [(def_name, def)];
berghofe@5177
   245
wenzelm@8436
   246
      in (thy', defs @ [def_thm], eqns @ [eqn], i + 1) end;
berghofe@5177
   247
berghofe@5177
   248
    (* constructor definitions for datatype *)
berghofe@5177
   249
berghofe@5177
   250
    fun dt_constr_defs ((thy, defs, eqns, rep_congs, dist_lemmas),
berghofe@5177
   251
        ((((_, (_, _, constrs)), tname), T), constr_syntax)) =
berghofe@5177
   252
      let
berghofe@5177
   253
        val _ $ (_ $ (cong_f $ _) $ _) = concl_of arg_cong;
wenzelm@6394
   254
        val sg = Theory.sign_of thy;
berghofe@5177
   255
        val rep_const = cterm_of sg
berghofe@5177
   256
          (Const (Sign.intern_const sg ("Rep_" ^ tname), T --> Univ_elT));
berghofe@7015
   257
        val cong' = standard (cterm_instantiate [(cterm_of sg cong_f, rep_const)] arg_cong);
berghofe@7015
   258
        val dist = standard (cterm_instantiate [(cterm_of sg distinct_f, rep_const)] distinct_lemma);
berghofe@5177
   259
        val (thy', defs', eqns', _) = foldl ((make_constr_def tname T) (length constrs))
berghofe@5661
   260
          ((add_path flat_names tname thy, defs, [], 1), constrs ~~ constr_syntax)
berghofe@5177
   261
      in
berghofe@5661
   262
        (parent_path flat_names thy', defs', eqns @ [eqns'],
berghofe@5177
   263
          rep_congs @ [cong'], dist_lemmas @ [dist])
berghofe@5177
   264
      end;
berghofe@5177
   265
berghofe@5177
   266
    val (thy4, constr_defs, constr_rep_eqns, rep_congs, dist_lemmas) = foldl dt_constr_defs
berghofe@5661
   267
      ((thy3 |> Theory.add_consts_i iso_decls |> parent_path flat_names, [], [], [], []),
berghofe@5177
   268
        hd descr ~~ new_type_names ~~ newTs ~~ constr_syntax);
berghofe@5177
   269
berghofe@5177
   270
    (*********** isomorphisms for new types (introduced by typedef) ***********)
berghofe@5177
   271
wenzelm@6427
   272
    val _ = message "Proving isomorphism properties ...";
berghofe@5177
   273
berghofe@5177
   274
    (* get axioms from theory *)
berghofe@5177
   275
berghofe@5177
   276
    val newT_iso_axms = map (fn s =>
wenzelm@7904
   277
      (get_thm thy4 ("Abs_" ^ s ^ "_inverse"),
wenzelm@7904
   278
       get_thm thy4 ("Rep_" ^ s ^ "_inverse"),
wenzelm@7904
   279
       get_thm thy4 ("Rep_" ^ s))) new_type_names;
berghofe@5177
   280
berghofe@5177
   281
    (*------------------------------------------------*)
berghofe@5177
   282
    (* prove additional theorems:                     *)
berghofe@5177
   283
    (*  inj_on dt_Abs_i rep_set_i  and  inj dt_Rep_i  *)
berghofe@5177
   284
    (*------------------------------------------------*)
berghofe@5177
   285
berghofe@5177
   286
    fun prove_newT_iso_inj_thm (((s, (thm1, thm2, _)), T), rep_set_name) =
berghofe@5177
   287
      let
wenzelm@6394
   288
        val sg = Theory.sign_of thy4;
berghofe@5177
   289
        val RepT = T --> Univ_elT;
berghofe@5177
   290
        val Rep_name = Sign.intern_const sg ("Rep_" ^ s);
berghofe@5177
   291
        val AbsT = Univ_elT --> T;
berghofe@5177
   292
        val Abs_name = Sign.intern_const sg ("Abs_" ^ s);
berghofe@5177
   293
paulson@6171
   294
        val inj_Abs_thm = 
paulson@6171
   295
	    prove_goalw_cterm [] 
paulson@6171
   296
	      (cterm_of sg
paulson@6171
   297
	       (HOLogic.mk_Trueprop 
wenzelm@11435
   298
		(Const ("Fun.inj_on", [AbsT, UnivT] ---> HOLogic.boolT) $
paulson@6171
   299
		 Const (Abs_name, AbsT) $ Const (rep_set_name, UnivT))))
berghofe@5177
   300
              (fn _ => [rtac inj_on_inverseI 1, etac thm1 1]);
berghofe@5177
   301
paulson@6171
   302
        val setT = HOLogic.mk_setT T
paulson@6171
   303
paulson@6171
   304
        val inj_Rep_thm =
paulson@6171
   305
	    prove_goalw_cterm []
paulson@6171
   306
	      (cterm_of sg
paulson@6171
   307
	       (HOLogic.mk_Trueprop
wenzelm@11435
   308
		(Const ("Fun.inj_on", [RepT, setT] ---> HOLogic.boolT) $
wenzelm@11435
   309
		 Const (Rep_name, RepT) $ Const ("UNIV", setT))))
berghofe@5177
   310
              (fn _ => [rtac inj_inverseI 1, rtac thm2 1])
berghofe@5177
   311
paulson@6171
   312
      in (inj_Abs_thm, inj_Rep_thm) end;
berghofe@5177
   313
berghofe@5177
   314
    val newT_iso_inj_thms = map prove_newT_iso_inj_thm
berghofe@5177
   315
      (new_type_names ~~ newT_iso_axms ~~ newTs ~~
berghofe@5177
   316
        take (length newTs, rep_set_names));
berghofe@5177
   317
berghofe@5177
   318
    (********* isomorphisms between existing types and "unfolded" types *******)
berghofe@5177
   319
berghofe@5177
   320
    (*---------------------------------------------------------------------*)
berghofe@5177
   321
    (* isomorphisms are defined using primrec-combinators:                 *)
berghofe@5177
   322
    (* generate appropriate functions for instantiating primrec-combinator *)
berghofe@5177
   323
    (*                                                                     *)
berghofe@5177
   324
    (*   e.g.  dt_Rep_i = list_rec ... (%h t y. In1 ((Leaf h) $ y))        *)
berghofe@5177
   325
    (*                                                                     *)
berghofe@5177
   326
    (* also generate characteristic equations for isomorphisms             *)
berghofe@5177
   327
    (*                                                                     *)
berghofe@5177
   328
    (*   e.g.  dt_Rep_i (cons h t) = In1 ((dt_Rep_j h) $ (dt_Rep_i t))     *)
berghofe@5177
   329
    (*---------------------------------------------------------------------*)
berghofe@5177
   330
berghofe@5177
   331
    fun make_iso_def k ks n ((fs, eqns, i), (cname, cargs)) =
berghofe@5177
   332
      let
berghofe@5177
   333
        val argTs = map (typ_of_dtyp descr' sorts) cargs;
berghofe@5177
   334
        val T = nth_elem (k, recTs);
berghofe@5177
   335
        val rep_name = nth_elem (k, all_rep_names);
berghofe@5177
   336
        val rep_const = Const (rep_name, T --> Univ_elT);
berghofe@5177
   337
        val constr = Const (cname, argTs ---> T);
berghofe@5177
   338
berghofe@7015
   339
        fun process_arg ks' ((i2, i2', ts, Ts), dt) =
berghofe@5177
   340
          let val T' = typ_of_dtyp descr' sorts dt
berghofe@5177
   341
          in (case dt of
berghofe@5177
   342
              DtRec j => if j mem ks' then
berghofe@7015
   343
                  (i2 + 1, i2' + 1, ts @ [mk_Free "y" Univ_elT i2'], Ts @ [Univ_elT])
berghofe@5177
   344
                else
berghofe@5177
   345
                  (i2 + 1, i2', ts @ [Const (nth_elem (j, all_rep_names),
berghofe@7015
   346
                    T' --> Univ_elT) $ mk_Free "x" T' i2], Ts)
berghofe@7015
   347
            | (DtType ("fun", [_, DtRec j])) =>
berghofe@7015
   348
                let val ([T''], T''') = strip_type T'
berghofe@7015
   349
                in if j mem ks' then
berghofe@7015
   350
                    (i2 + 1, i2' + 1, ts @ [Lim $ mk_fun_inj T''
berghofe@7015
   351
                      (mk_Free "y" (T'' --> Univ_elT) i2')], Ts @ [T'' --> Univ_elT])
berghofe@7015
   352
                  else
berghofe@7015
   353
                    (i2 + 1, i2', ts @ [Lim $ mk_fun_inj T''
berghofe@7015
   354
                      (Const (o_name, [T''' --> Univ_elT, T', T''] ---> Univ_elT) $
berghofe@7015
   355
                        Const (nth_elem (j, all_rep_names), T''' --> Univ_elT) $
berghofe@7015
   356
                          mk_Free "x" T' i2)], Ts)
berghofe@7015
   357
                end
berghofe@7015
   358
            | _ => (i2 + 1, i2', ts @ [Leaf $ mk_inj T' (mk_Free "x" T' i2)], Ts))
berghofe@5177
   359
          end;
berghofe@5177
   360
berghofe@7015
   361
        val (i2, i2', ts, Ts) = foldl (process_arg ks) ((1, 1, [], []), cargs);
berghofe@5177
   362
        val xs = map (uncurry (mk_Free "x")) (argTs ~~ (1 upto (i2 - 1)));
berghofe@7015
   363
        val ys = map (uncurry (mk_Free "y")) (Ts ~~ (1 upto (i2' - 1)));
berghofe@5177
   364
        val f = list_abs_free (map dest_Free (xs @ ys), mk_univ_inj ts n i);
berghofe@5177
   365
berghofe@7015
   366
        val (_, _, ts', _) = foldl (process_arg []) ((1, 1, [], []), cargs);
berghofe@5177
   367
        val eqn = HOLogic.mk_Trueprop (HOLogic.mk_eq
berghofe@5177
   368
          (rep_const $ list_comb (constr, xs), mk_univ_inj ts' n i))
berghofe@5177
   369
berghofe@5177
   370
      in (fs @ [f], eqns @ [eqn], i + 1) end;
berghofe@5177
   371
berghofe@5177
   372
    (* define isomorphisms for all mutually recursive datatypes in list ds *)
berghofe@5177
   373
berghofe@5177
   374
    fun make_iso_defs (ds, (thy, char_thms)) =
berghofe@5177
   375
      let
berghofe@5177
   376
        val ks = map fst ds;
berghofe@5177
   377
        val (_, (tname, _, _)) = hd ds;
berghofe@5177
   378
        val {rec_rewrites, rec_names, ...} = the (Symtab.lookup (dt_info, tname));
berghofe@5177
   379
berghofe@5177
   380
        fun process_dt ((fs, eqns, isos), (k, (tname, _, constrs))) =
berghofe@5177
   381
          let
berghofe@5177
   382
            val (fs', eqns', _) = foldl (make_iso_def k ks (length constrs))
berghofe@5177
   383
              ((fs, eqns, 1), constrs);
berghofe@5177
   384
            val iso = (nth_elem (k, recTs), nth_elem (k, all_rep_names))
berghofe@5177
   385
          in (fs', eqns', isos @ [iso]) end;
berghofe@5177
   386
        
berghofe@5177
   387
        val (fs, eqns, isos) = foldl process_dt (([], [], []), ds);
berghofe@5177
   388
        val fTs = map fastype_of fs;
berghofe@5177
   389
        val defs = map (fn (rec_name, (T, iso_name)) => ((Sign.base_name iso_name) ^ "_def",
berghofe@5177
   390
          equals (T --> Univ_elT) $ Const (iso_name, T --> Univ_elT) $
berghofe@5177
   391
            list_comb (Const (rec_name, fTs @ [T] ---> Univ_elT), fs))) (rec_names ~~ isos);
wenzelm@9315
   392
        val (thy', def_thms) = (PureThy.add_defs_i false o map Thm.no_attributes) defs thy;
berghofe@5177
   393
berghofe@5177
   394
        (* prove characteristic equations *)
berghofe@5177
   395
oheimb@5553
   396
        val rewrites = def_thms @ (map mk_meta_eq rec_rewrites);
berghofe@5177
   397
        val char_thms' = map (fn eqn => prove_goalw_cterm rewrites
wenzelm@6394
   398
          (cterm_of (Theory.sign_of thy') eqn) (fn _ => [rtac refl 1])) eqns;
berghofe@5177
   399
berghofe@5177
   400
      in (thy', char_thms' @ char_thms) end;
berghofe@5177
   401
berghofe@5661
   402
    val (thy5, iso_char_thms) = foldr make_iso_defs
berghofe@5661
   403
      (tl descr, (add_path flat_names big_name thy4, []));
berghofe@5177
   404
berghofe@5177
   405
    (* prove isomorphism properties *)
berghofe@5177
   406
berghofe@7015
   407
    fun mk_funs_inv thm =
berghofe@7015
   408
      let
berghofe@7015
   409
        val [_, t] = prems_of Funs_inv;
berghofe@7015
   410
        val [_ $ (_ $ _ $ R)] = Logic.strip_assums_hyp t;
berghofe@7015
   411
        val _ $ (_ $ (r $ (a $ _)) $ _) = Logic.strip_assums_concl t;
berghofe@7015
   412
        val [_ $ (_ $ _ $ R')] = prems_of thm;
berghofe@7015
   413
        val _ $ (_ $ (r' $ (a' $ _)) $ _) = concl_of thm;
berghofe@7015
   414
        val inv' = cterm_instantiate (map 
berghofe@7015
   415
          ((pairself (cterm_of (sign_of_thm thm))) o
berghofe@7015
   416
           (apsnd (map_term_types (incr_tvar 1))))
berghofe@7015
   417
             [(R, R'), (r, r'), (a, a')]) Funs_inv
berghofe@7015
   418
      in
berghofe@7015
   419
        rule_by_tactic (atac 2) (thm RSN (2, inv'))
berghofe@7015
   420
      end;
berghofe@7015
   421
berghofe@5177
   422
    (* prove  inj dt_Rep_i  and  dt_Rep_i x : dt_rep_set_i *)
berghofe@5177
   423
berghofe@5177
   424
    fun prove_iso_thms (ds, (inj_thms, elem_thms)) =
berghofe@5177
   425
      let
berghofe@5177
   426
        val (_, (tname, _, _)) = hd ds;
berghofe@5177
   427
        val {induction, ...} = the (Symtab.lookup (dt_info, tname));
berghofe@5177
   428
berghofe@5177
   429
        fun mk_ind_concl (i, _) =
berghofe@5177
   430
          let
berghofe@5177
   431
            val T = nth_elem (i, recTs);
berghofe@5177
   432
            val Rep_t = Const (nth_elem (i, all_rep_names), T --> Univ_elT);
berghofe@5177
   433
            val rep_set_name = nth_elem (i, rep_set_names)
berghofe@5177
   434
          in (HOLogic.all_const T $ Abs ("y", T, HOLogic.imp $
berghofe@5177
   435
                HOLogic.mk_eq (Rep_t $ mk_Free "x" T i, Rep_t $ Bound 0) $
berghofe@5177
   436
                  HOLogic.mk_eq (mk_Free "x" T i, Bound 0)),
berghofe@5177
   437
              HOLogic.mk_mem (Rep_t $ mk_Free "x" T i, Const (rep_set_name, UnivT)))
berghofe@5177
   438
          end;
berghofe@5177
   439
berghofe@5177
   440
        val (ind_concl1, ind_concl2) = ListPair.unzip (map mk_ind_concl ds);
berghofe@5177
   441
oheimb@5553
   442
        val rewrites = map mk_meta_eq iso_char_thms;
berghofe@11471
   443
        val inj_thms' = flat (map (fn r => [r RS injD, r RS inj_o])
berghofe@11471
   444
          (map snd newT_iso_inj_thms @ inj_thms));
berghofe@5177
   445
wenzelm@6394
   446
        val inj_thm = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5)
berghofe@5177
   447
          (HOLogic.mk_Trueprop (mk_conj ind_concl1))) (fn _ =>
berghofe@11951
   448
            [(indtac induction THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@5177
   449
             REPEAT (EVERY
berghofe@5177
   450
               [rtac allI 1, rtac impI 1,
berghofe@5177
   451
                exh_tac (exh_thm_of dt_info) 1,
berghofe@5177
   452
                REPEAT (EVERY
berghofe@5177
   453
                  [hyp_subst_tac 1,
berghofe@5177
   454
                   rewrite_goals_tac rewrites,
berghofe@5177
   455
                   REPEAT (dresolve_tac [In0_inject, In1_inject] 1),
berghofe@5177
   456
                   (eresolve_tac [In0_not_In1 RS notE, In1_not_In0 RS notE] 1)
berghofe@5177
   457
                   ORELSE (EVERY
berghofe@11951
   458
                     [REPEAT (eresolve_tac (Scons_inject :: sum_case_inject ::
berghofe@11951
   459
                        map make_elim (inj_thms' @
berghofe@11951
   460
                          [Leaf_inject, Lim_inject, Inl_inject, Inr_inject])) 1),
berghofe@7015
   461
                      REPEAT ((EVERY [etac allE 1, dtac mp 1, atac 1]) ORELSE
berghofe@7015
   462
                              (dtac inj_fun_lemma 1 THEN atac 1)),
berghofe@11951
   463
                      REPEAT (hyp_subst_tac 1),
berghofe@5177
   464
                      rtac refl 1])])])]);
berghofe@5177
   465
paulson@6171
   466
        val inj_thms'' = map (fn r => r RS datatype_injI)
paulson@6171
   467
                             (split_conj_thm inj_thm);
berghofe@5177
   468
paulson@6171
   469
        val elem_thm = 
paulson@6171
   470
	    prove_goalw_cterm []
wenzelm@6394
   471
	      (cterm_of (Theory.sign_of thy5)
paulson@6171
   472
	       (HOLogic.mk_Trueprop (mk_conj ind_concl2)))
paulson@6171
   473
	      (fn _ =>
berghofe@11951
   474
	       [(indtac induction THEN_ALL_NEW ObjectLogic.atomize_tac) 1,
berghofe@7015
   475
		rewrite_goals_tac (o_def :: rewrites),
paulson@6171
   476
		REPEAT (EVERY
paulson@6171
   477
			[resolve_tac rep_intrs 1,
berghofe@7015
   478
			 REPEAT (FIRST [atac 1, etac spec 1,
berghofe@7015
   479
				 resolve_tac (FunsI :: elem_thms) 1])])]);
berghofe@5177
   480
berghofe@11471
   481
      in (inj_thms'' @ inj_thms, elem_thms @ (split_conj_thm elem_thm))
berghofe@11471
   482
      end;
berghofe@11471
   483
berghofe@11471
   484
    val (iso_inj_thms_unfolded, iso_elem_thms) = foldr prove_iso_thms
berghofe@11471
   485
      (tl descr, ([], map #3 newT_iso_axms));
berghofe@11471
   486
    val iso_inj_thms = map snd newT_iso_inj_thms @ iso_inj_thms_unfolded;
berghofe@11471
   487
berghofe@11471
   488
    (* prove  x : dt_rep_set_i --> x : range dt_Rep_i *)
berghofe@11471
   489
berghofe@11471
   490
    fun mk_iso_t (((set_name, iso_name), i), T) =
berghofe@11471
   491
      let val isoT = T --> Univ_elT
berghofe@11471
   492
      in HOLogic.imp $ 
berghofe@11471
   493
        HOLogic.mk_mem (mk_Free "x" Univ_elT i, Const (set_name, UnivT)) $
berghofe@11471
   494
          (if i < length newTs then Const ("True", HOLogic.boolT)
berghofe@11471
   495
           else HOLogic.mk_mem (mk_Free "x" Univ_elT i,
berghofe@11471
   496
             Const ("image", [isoT, HOLogic.mk_setT T] ---> UnivT) $
berghofe@11471
   497
               Const (iso_name, isoT) $ Const ("UNIV", HOLogic.mk_setT T)))
berghofe@5177
   498
      end;
berghofe@5177
   499
berghofe@11471
   500
    val iso_t = HOLogic.mk_Trueprop (mk_conj (map mk_iso_t
berghofe@11471
   501
      (rep_set_names ~~ all_rep_names ~~ (0 upto (length descr' - 1)) ~~ recTs)));
berghofe@11471
   502
berghofe@11471
   503
    (* all the theorems are proved by one single simultaneous induction *)
berghofe@11471
   504
berghofe@11471
   505
    val iso_thms = if length descr = 1 then [] else
berghofe@11471
   506
      drop (length newTs, split_conj_thm
berghofe@11471
   507
        (prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) iso_t) (fn _ =>
berghofe@11471
   508
           [indtac rep_induct 1,
berghofe@11471
   509
            REPEAT (rtac TrueI 1),
berghofe@11471
   510
            REPEAT (EVERY
berghofe@11471
   511
              [rewrite_goals_tac [mk_meta_eq Collect_mem_eq],
berghofe@11471
   512
               REPEAT (etac Funs_IntE 1),
berghofe@11471
   513
               REPEAT (eresolve_tac (rangeE ::
berghofe@11471
   514
                 map (fn r => r RS Funs_rangeE) iso_inj_thms_unfolded) 1),
berghofe@11471
   515
               REPEAT (eresolve_tac (map (fn (iso, _, _) => iso RS subst) newT_iso_axms @
berghofe@11471
   516
                 map (fn (iso, _, _) => mk_funs_inv iso RS subst) newT_iso_axms) 1),
berghofe@11471
   517
               TRY (hyp_subst_tac 1),
berghofe@11471
   518
               rtac (sym RS range_eqI) 1,
berghofe@11471
   519
               resolve_tac iso_char_thms 1])])));
wenzelm@11435
   520
wenzelm@11435
   521
    val Abs_inverse_thms' =
wenzelm@11435
   522
      map #1 newT_iso_axms @
berghofe@11471
   523
      map2 (fn (r_inj, r) => f_myinv_f OF [r_inj, r RS mp])
berghofe@11471
   524
        (iso_inj_thms_unfolded, iso_thms);
wenzelm@11435
   525
wenzelm@11435
   526
    val Abs_inverse_thms = map (fn r => r RS subst) (Abs_inverse_thms' @
wenzelm@11435
   527
      map mk_funs_inv Abs_inverse_thms');
berghofe@5177
   528
berghofe@5177
   529
    (******************* freeness theorems for constructors *******************)
berghofe@5177
   530
wenzelm@6427
   531
    val _ = message "Proving freeness of constructors ...";
berghofe@5177
   532
berghofe@5177
   533
    (* prove theorem  Rep_i (Constr_j ...) = Inj_j ...  *)
berghofe@5177
   534
    
berghofe@5177
   535
    fun prove_constr_rep_thm eqn =
berghofe@5177
   536
      let
berghofe@5177
   537
        val inj_thms = map (fn (r, _) => r RS inj_onD) newT_iso_inj_thms;
berghofe@7015
   538
        val rewrites = o_def :: constr_defs @ (map (mk_meta_eq o #2) newT_iso_axms)
wenzelm@6394
   539
      in prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) eqn) (fn _ =>
berghofe@5177
   540
        [resolve_tac inj_thms 1,
berghofe@5177
   541
         rewrite_goals_tac rewrites,
berghofe@5177
   542
         rtac refl 1,
berghofe@5177
   543
         resolve_tac rep_intrs 2,
berghofe@7015
   544
         REPEAT (resolve_tac (FunsI :: iso_elem_thms) 1)])
berghofe@5177
   545
      end;
berghofe@5177
   546
berghofe@5177
   547
    (*--------------------------------------------------------------*)
berghofe@5177
   548
    (* constr_rep_thms and rep_congs are used to prove distinctness *)
berghofe@7015
   549
    (* of constructors.                                             *)
berghofe@5177
   550
    (*--------------------------------------------------------------*)
berghofe@5177
   551
berghofe@5177
   552
    val constr_rep_thms = map (map prove_constr_rep_thm) constr_rep_eqns;
berghofe@5177
   553
berghofe@5177
   554
    val dist_rewrites = map (fn (rep_thms, dist_lemma) =>
berghofe@5177
   555
      dist_lemma::(rep_thms @ [In0_eq, In1_eq, In0_not_In1, In1_not_In0]))
berghofe@5177
   556
        (constr_rep_thms ~~ dist_lemmas);
berghofe@5177
   557
berghofe@7015
   558
    fun prove_distinct_thms (_, []) = []
berghofe@7015
   559
      | prove_distinct_thms (dist_rewrites', t::_::ts) =
berghofe@7015
   560
          let
berghofe@7015
   561
            val dist_thm = prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) t) (fn _ =>
berghofe@7015
   562
              [simp_tac (HOL_ss addsimps dist_rewrites') 1])
berghofe@7015
   563
          in dist_thm::(standard (dist_thm RS not_sym))::
berghofe@7015
   564
            (prove_distinct_thms (dist_rewrites', ts))
berghofe@7015
   565
          end;
berghofe@7015
   566
berghofe@7015
   567
    val distinct_thms = map prove_distinct_thms (dist_rewrites ~~
berghofe@7015
   568
      DatatypeProp.make_distincts new_type_names descr sorts thy5);
berghofe@7015
   569
berghofe@7015
   570
    val simproc_dists = map (fn ((((_, (_, _, constrs)), rep_thms), congr), dists) =>
berghofe@7015
   571
      if length constrs < !DatatypeProp.dtK then FewConstrs dists
berghofe@7015
   572
      else ManyConstrs (congr, HOL_basic_ss addsimps rep_thms)) (hd descr ~~
berghofe@7015
   573
        constr_rep_thms ~~ rep_congs ~~ distinct_thms);
berghofe@7015
   574
berghofe@5177
   575
    (* prove injectivity of constructors *)
berghofe@5177
   576
berghofe@5177
   577
    fun prove_constr_inj_thm rep_thms t =
berghofe@7015
   578
      let val inj_thms = Scons_inject::sum_case_inject::(map make_elim
berghofe@5177
   579
        ((map (fn r => r RS injD) iso_inj_thms) @
berghofe@7015
   580
          [In0_inject, In1_inject, Leaf_inject, Inl_inject, Inr_inject, Lim_inject]))
wenzelm@6394
   581
      in prove_goalw_cterm [] (cterm_of (Theory.sign_of thy5) t) (fn _ =>
berghofe@5177
   582
        [rtac iffI 1,
berghofe@5177
   583
         REPEAT (etac conjE 2), hyp_subst_tac 2, rtac refl 2,
berghofe@5177
   584
         dresolve_tac rep_congs 1, dtac box_equals 1,
wenzelm@7499
   585
         REPEAT (resolve_tac rep_thms 1), rewtac o_def,
berghofe@5177
   586
         REPEAT (eresolve_tac inj_thms 1),
berghofe@7015
   587
         REPEAT (ares_tac [conjI] 1 ORELSE (EVERY [rtac ext 1, dtac fun_cong 1,
berghofe@7015
   588
                  eresolve_tac inj_thms 1, atac 1]))])
berghofe@5177
   589
      end;
berghofe@5177
   590
berghofe@5177
   591
    val constr_inject = map (fn (ts, thms) => map (prove_constr_inj_thm thms) ts)
berghofe@5177
   592
      ((DatatypeProp.make_injs descr sorts) ~~ constr_rep_thms);
berghofe@5177
   593
berghofe@8479
   594
    val (thy6, (constr_inject', distinct_thms'))= thy5 |> parent_path flat_names |>
berghofe@8479
   595
      store_thmss "inject" new_type_names constr_inject |>>>
berghofe@8479
   596
      store_thmss "distinct" new_type_names distinct_thms;
berghofe@5177
   597
berghofe@5177
   598
    (*************************** induction theorem ****************************)
berghofe@5177
   599
wenzelm@6427
   600
    val _ = message "Proving induction rule for datatypes ...";
berghofe@5177
   601
berghofe@5177
   602
    val Rep_inverse_thms = (map (fn (_, iso, _) => iso RS subst) newT_iso_axms) @
berghofe@11471
   603
      (map (fn r => r RS myinv_f_f RS subst) iso_inj_thms_unfolded);
berghofe@11471
   604
    val Rep_inverse_thms' = map (fn r => r RS myinv_f_f) iso_inj_thms_unfolded;
berghofe@5177
   605
berghofe@5177
   606
    fun mk_indrule_lemma ((prems, concls), ((i, _), T)) =
berghofe@5177
   607
      let
berghofe@5177
   608
        val Rep_t = Const (nth_elem (i, all_rep_names), T --> Univ_elT) $
berghofe@5177
   609
          mk_Free "x" T i;
berghofe@5177
   610
berghofe@5177
   611
        val Abs_t = if i < length newTs then
wenzelm@6394
   612
            Const (Sign.intern_const (Theory.sign_of thy6)
berghofe@5177
   613
              ("Abs_" ^ (nth_elem (i, new_type_names))), Univ_elT --> T)
wenzelm@11435
   614
          else Const ("Inductive.myinv", [T --> Univ_elT, Univ_elT] ---> T) $
berghofe@5177
   615
            Const (nth_elem (i, all_rep_names), T --> Univ_elT)
berghofe@5177
   616
berghofe@5177
   617
      in (prems @ [HOLogic.imp $ HOLogic.mk_mem (Rep_t,
berghofe@5177
   618
            Const (nth_elem (i, rep_set_names), UnivT)) $
berghofe@5177
   619
              (mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ (Abs_t $ Rep_t))],
berghofe@5177
   620
          concls @ [mk_Free "P" (T --> HOLogic.boolT) (i + 1) $ mk_Free "x" T i])
berghofe@5177
   621
      end;
berghofe@5177
   622
berghofe@5177
   623
    val (indrule_lemma_prems, indrule_lemma_concls) =
berghofe@5177
   624
      foldl mk_indrule_lemma (([], []), (descr' ~~ recTs));
berghofe@5177
   625
wenzelm@6394
   626
    val cert = cterm_of (Theory.sign_of thy6);
berghofe@5177
   627
berghofe@5177
   628
    val indrule_lemma = prove_goalw_cterm [] (cert
berghofe@5177
   629
      (Logic.mk_implies
berghofe@5177
   630
        (HOLogic.mk_Trueprop (mk_conj indrule_lemma_prems),
berghofe@5177
   631
         HOLogic.mk_Trueprop (mk_conj indrule_lemma_concls)))) (fn prems =>
berghofe@5177
   632
           [cut_facts_tac prems 1, REPEAT (etac conjE 1),
berghofe@5177
   633
            REPEAT (EVERY
berghofe@5177
   634
              [TRY (rtac conjI 1), resolve_tac Rep_inverse_thms 1,
berghofe@5177
   635
               etac mp 1, resolve_tac iso_elem_thms 1])]);
berghofe@5177
   636
wenzelm@8305
   637
    val Ps = map head_of (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of indrule_lemma)));
berghofe@5177
   638
    val frees = if length Ps = 1 then [Free ("P", snd (dest_Var (hd Ps)))] else
berghofe@5177
   639
      map (Free o apfst fst o dest_Var) Ps;
berghofe@5177
   640
    val indrule_lemma' = cterm_instantiate (map cert Ps ~~ map cert frees) indrule_lemma;
berghofe@5177
   641
berghofe@13340
   642
    val dt_induct = prove_goalw_cterm [] (cert
berghofe@5177
   643
      (DatatypeProp.make_ind descr sorts)) (fn prems =>
berghofe@5177
   644
        [rtac indrule_lemma' 1, indtac rep_induct 1,
berghofe@5177
   645
         EVERY (map (fn (prem, r) => (EVERY
berghofe@7015
   646
           [REPEAT (eresolve_tac (Funs_IntE::Abs_inverse_thms) 1),
berghofe@5177
   647
            simp_tac (HOL_basic_ss addsimps ((symmetric r)::Rep_inverse_thms')) 1,
wenzelm@7499
   648
            DEPTH_SOLVE_1 (ares_tac [prem] 1 ORELSE (EVERY [rewtac o_def,
berghofe@13340
   649
              dtac FunsD 1, etac CollectD 1]))]))
berghofe@7015
   650
                (prems ~~ (constr_defs @ (map mk_meta_eq iso_char_thms))))]);
berghofe@5177
   651
wenzelm@8436
   652
    val (thy7, [dt_induct']) = thy6 |>
berghofe@5661
   653
      Theory.add_path big_name |>
berghofe@13340
   654
      PureThy.add_thms [(("induct", dt_induct), [case_names_induct])] |>>
berghofe@5661
   655
      Theory.parent_path;
berghofe@5177
   656
berghofe@8479
   657
  in (thy7, constr_inject', distinct_thms', dist_rewrites, simproc_dists, dt_induct')
berghofe@5177
   658
  end;
berghofe@5177
   659
berghofe@5177
   660
end;