src/HOL/Auth/ZhouGollmann.thy
author haftmann
Fri Jun 17 16:12:49 2005 +0200 (2005-06-17)
changeset 16417 9bc16273c2d4
parent 15068 58d216b32199
child 20768 1d478c2d621f
permissions -rw-r--r--
migrated theory headers to new format
paulson@14145
     1
(*  Title:      HOL/Auth/ZhouGollmann
paulson@14145
     2
    ID:         $Id$
paulson@14145
     3
    Author:     Giampaolo Bella and L C Paulson, Cambridge Univ Computer Lab
paulson@14145
     4
    Copyright   2003  University of Cambridge
paulson@14145
     5
paulson@14145
     6
The protocol of
paulson@14145
     7
  Jianying Zhou and Dieter Gollmann,
paulson@14145
     8
  A Fair Non-Repudiation Protocol,
paulson@14145
     9
  Security and Privacy 1996 (Oakland)
paulson@14145
    10
  55-61
paulson@14145
    11
*)
paulson@14145
    12
haftmann@16417
    13
theory ZhouGollmann imports Public begin
paulson@14145
    14
paulson@14145
    15
syntax
paulson@14145
    16
  TTP :: agent
paulson@14145
    17
paulson@14145
    18
translations
paulson@14741
    19
  "TTP" == " Server "
paulson@14145
    20
paulson@14145
    21
syntax
paulson@14145
    22
  f_sub :: nat
paulson@14145
    23
  f_nro :: nat
paulson@14145
    24
  f_nrr :: nat
paulson@14145
    25
  f_con :: nat
paulson@14145
    26
paulson@14145
    27
translations
paulson@14741
    28
  "f_sub" == " 5 "
paulson@14741
    29
  "f_nro" == " 2 "
paulson@14741
    30
  "f_nrr" == " 3 "
paulson@14741
    31
  "f_con" == " 4 "
paulson@14145
    32
paulson@14145
    33
paulson@14145
    34
constdefs
paulson@14145
    35
  broken :: "agent set"    
paulson@14145
    36
    --{*the compromised honest agents; TTP is included as it's not allowed to
paulson@14145
    37
        use the protocol*}
paulson@14736
    38
   "broken == bad - {Spy}"
paulson@14145
    39
paulson@14145
    40
declare broken_def [simp]
paulson@14145
    41
paulson@14145
    42
consts  zg  :: "event list set"
paulson@14145
    43
paulson@14145
    44
inductive zg
paulson@14145
    45
  intros
paulson@14145
    46
paulson@14145
    47
  Nil:  "[] \<in> zg"
paulson@14145
    48
paulson@14145
    49
  Fake: "[| evsf \<in> zg;  X \<in> synth (analz (spies evsf)) |]
paulson@14145
    50
	 ==> Says Spy B X  # evsf \<in> zg"
paulson@14145
    51
paulson@14736
    52
Reception:  "[| evsr \<in> zg; Says A B X \<in> set evsr |] ==> Gets B X # evsr \<in> zg"
paulson@14145
    53
paulson@14145
    54
  (*L is fresh for honest agents.
paulson@14145
    55
    We don't require K to be fresh because we don't bother to prove secrecy!
paulson@14145
    56
    We just assume that the protocol's objective is to deliver K fairly,
paulson@14145
    57
    rather than to keep M secret.*)
paulson@14145
    58
  ZG1: "[| evs1 \<in> zg;  Nonce L \<notin> used evs1; C = Crypt K (Number m);
paulson@14145
    59
	   K \<in> symKeys;
paulson@14145
    60
	   NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|}|]
paulson@14145
    61
       ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} # evs1 \<in> zg"
paulson@14145
    62
paulson@14145
    63
  (*B must check that NRO is A's signature to learn the sender's name*)
paulson@14145
    64
  ZG2: "[| evs2 \<in> zg;
paulson@14145
    65
	   Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs2;
paulson@14145
    66
	   NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14145
    67
	   NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|}|]
paulson@14145
    68
       ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} # evs2  \<in>  zg"
paulson@14145
    69
paulson@14736
    70
  (*A must check that NRR is B's signature to learn the sender's name;
paulson@14736
    71
    without spy, the matching label would be enough*)
paulson@14145
    72
  ZG3: "[| evs3 \<in> zg; C = Crypt K M; K \<in> symKeys;
paulson@14145
    73
	   Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs3;
paulson@14145
    74
	   Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs3;
paulson@14145
    75
	   NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14145
    76
	   sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|}|]
paulson@14145
    77
       ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
paulson@14145
    78
	     # evs3 \<in> zg"
paulson@14145
    79
paulson@14145
    80
 (*TTP checks that sub_K is A's signature to learn who issued K, then
paulson@14145
    81
   gives credentials to A and B.  The Notes event models the availability of
paulson@14736
    82
   the credentials, but the act of fetching them is not modelled.  We also
paulson@14736
    83
   give con_K to the Spy. This makes the threat model more dangerous, while 
paulson@14736
    84
   also allowing lemma @{text Crypt_used_imp_spies} to omit the condition
paulson@14736
    85
   @{term "K \<noteq> priK TTP"}. *)
paulson@14145
    86
  ZG4: "[| evs4 \<in> zg; K \<in> symKeys;
paulson@14145
    87
	   Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
paulson@14145
    88
	     \<in> set evs4;
paulson@14145
    89
	   sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
    90
	   con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
paulson@14145
    91
				      Nonce L, Key K|}|]
paulson@14736
    92
       ==> Says TTP Spy con_K
paulson@14736
    93
           #
paulson@14736
    94
	   Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
paulson@14736
    95
	   # evs4 \<in> zg"
paulson@14145
    96
paulson@14145
    97
paulson@14145
    98
declare Says_imp_knows_Spy [THEN analz.Inj, dest]
paulson@14145
    99
declare Fake_parts_insert_in_Un  [dest]
paulson@14145
   100
declare analz_into_parts [dest]
paulson@14145
   101
paulson@14145
   102
declare symKey_neq_priEK [simp]
paulson@14145
   103
declare symKey_neq_priEK [THEN not_sym, simp]
paulson@14145
   104
paulson@14145
   105
paulson@14146
   106
text{*A "possibility property": there are traces that reach the end*}
paulson@14146
   107
lemma "[|A \<noteq> B; TTP \<noteq> A; TTP \<noteq> B; K \<in> symKeys|] ==>
paulson@14146
   108
     \<exists>L. \<exists>evs \<in> zg.
paulson@14146
   109
           Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K,
paulson@14146
   110
               Crypt (priK TTP) {|Number f_con, Agent A, Agent B, Nonce L, Key K|} |}
paulson@14146
   111
               \<in> set evs"
paulson@14146
   112
apply (intro exI bexI)
paulson@14146
   113
apply (rule_tac [2] zg.Nil
paulson@14146
   114
                    [THEN zg.ZG1, THEN zg.Reception [of _ A B],
paulson@14146
   115
                     THEN zg.ZG2, THEN zg.Reception [of _ B A],
paulson@14146
   116
                     THEN zg.ZG3, THEN zg.Reception [of _ A TTP], 
paulson@14146
   117
                     THEN zg.ZG4])
paulson@14146
   118
apply (possibility, auto)
paulson@14146
   119
done
paulson@14146
   120
paulson@14145
   121
subsection {*Basic Lemmas*}
paulson@14145
   122
paulson@14145
   123
lemma Gets_imp_Says:
paulson@14145
   124
     "[| Gets B X \<in> set evs; evs \<in> zg |] ==> \<exists>A. Says A B X \<in> set evs"
paulson@14145
   125
apply (erule rev_mp)
paulson@14145
   126
apply (erule zg.induct, auto)
paulson@14145
   127
done
paulson@14145
   128
paulson@14145
   129
lemma Gets_imp_knows_Spy:
paulson@14145
   130
     "[| Gets B X \<in> set evs; evs \<in> zg |]  ==> X \<in> spies evs"
paulson@14145
   131
by (blast dest!: Gets_imp_Says Says_imp_knows_Spy)
paulson@14145
   132
paulson@14145
   133
paulson@14145
   134
text{*Lets us replace proofs about @{term "used evs"} by simpler proofs 
paulson@14145
   135
about @{term "parts (spies evs)"}.*}
paulson@14145
   136
lemma Crypt_used_imp_spies:
paulson@14736
   137
     "[| Crypt K X \<in> used evs; evs \<in> zg |]
paulson@14145
   138
      ==> Crypt K X \<in> parts (spies evs)"
paulson@14145
   139
apply (erule rev_mp)
paulson@14145
   140
apply (erule zg.induct)
paulson@14145
   141
apply (simp_all add: parts_insert_knows_A) 
paulson@14145
   142
done
paulson@14145
   143
paulson@14145
   144
lemma Notes_TTP_imp_Gets:
paulson@14145
   145
     "[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K |}
paulson@14145
   146
           \<in> set evs;
paulson@14145
   147
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
   148
        evs \<in> zg|]
paulson@14145
   149
    ==> Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@14145
   150
apply (erule rev_mp)
paulson@14145
   151
apply (erule zg.induct, auto)
paulson@14145
   152
done
paulson@14145
   153
paulson@14145
   154
text{*For reasoning about C, which is encrypted in message ZG2*}
paulson@14145
   155
lemma ZG2_msg_in_parts_spies:
paulson@14145
   156
     "[|Gets B {|F, B', L, C, X|} \<in> set evs; evs \<in> zg|]
paulson@14145
   157
      ==> C \<in> parts (spies evs)"
paulson@14145
   158
by (blast dest: Gets_imp_Says)
paulson@14145
   159
paulson@14145
   160
(*classical regularity lemma on priK*)
paulson@14145
   161
lemma Spy_see_priK [simp]:
paulson@14145
   162
     "evs \<in> zg ==> (Key (priK A) \<in> parts (spies evs)) = (A \<in> bad)"
paulson@14145
   163
apply (erule zg.induct)
paulson@14145
   164
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)
paulson@14145
   165
done
paulson@14145
   166
paulson@14145
   167
text{*So that blast can use it too*}
paulson@14145
   168
declare  Spy_see_priK [THEN [2] rev_iffD1, dest!]
paulson@14145
   169
paulson@14145
   170
lemma Spy_analz_priK [simp]:
paulson@14145
   171
     "evs \<in> zg ==> (Key (priK A) \<in> analz (spies evs)) = (A \<in> bad)"
paulson@14145
   172
by auto 
paulson@14145
   173
paulson@14145
   174
paulson@14741
   175
subsection{*About NRO: Validity for @{term B}*}
paulson@14145
   176
paulson@14145
   177
text{*Below we prove that if @{term NRO} exists then @{term A} definitely
paulson@14741
   178
sent it, provided @{term A} is not broken.*}
paulson@14145
   179
paulson@14145
   180
text{*Strong conclusion for a good agent*}
paulson@15068
   181
lemma NRO_validity_good:
paulson@14741
   182
     "[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14741
   183
        NRO \<in> parts (spies evs);
paulson@14741
   184
        A \<notin> bad;  evs \<in> zg |]
paulson@14145
   185
     ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
paulson@14145
   186
apply clarify
paulson@14145
   187
apply (erule rev_mp)
paulson@14145
   188
apply (erule zg.induct)
paulson@14145
   189
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)  
paulson@14145
   190
done
paulson@14145
   191
paulson@14741
   192
lemma NRO_sender:
paulson@14741
   193
     "[|Says A' B {|n, b, l, C, Crypt (priK A) X|} \<in> set evs; evs \<in> zg|]
paulson@14741
   194
    ==> A' \<in> {A,Spy}"
paulson@14741
   195
apply (erule rev_mp)  
paulson@14741
   196
apply (erule zg.induct, simp_all)
paulson@14145
   197
done
paulson@14145
   198
paulson@14741
   199
text{*Holds also for @{term "A = Spy"}!*}
paulson@15068
   200
theorem NRO_validity:
paulson@15047
   201
     "[|Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs;
paulson@14741
   202
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14741
   203
        A \<notin> broken;  evs \<in> zg |]
paulson@14741
   204
     ==> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
paulson@15047
   205
apply (drule Gets_imp_Says, assumption) 
paulson@14741
   206
apply clarify 
paulson@14741
   207
apply (frule NRO_sender, auto)
paulson@15047
   208
txt{*We are left with the case where the sender is @{term Spy} and not
paulson@15047
   209
  equal to @{term A}, because @{term "A \<notin> bad"}. 
paulson@15068
   210
  Thus theorem @{text NRO_validity_good} applies.*}
paulson@15068
   211
apply (blast dest: NRO_validity_good [OF refl])
paulson@14145
   212
done
paulson@14145
   213
paulson@14145
   214
paulson@14741
   215
subsection{*About NRR: Validity for @{term A}*}
paulson@14145
   216
paulson@14145
   217
text{*Below we prove that if @{term NRR} exists then @{term B} definitely
paulson@14145
   218
sent it, provided @{term B} is not broken.*}
paulson@14145
   219
paulson@14145
   220
text{*Strong conclusion for a good agent*}
paulson@15068
   221
lemma NRR_validity_good:
paulson@14741
   222
     "[|NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14741
   223
        NRR \<in> parts (spies evs);
paulson@14741
   224
        B \<notin> bad;  evs \<in> zg |]
paulson@14145
   225
     ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14145
   226
apply clarify
paulson@14145
   227
apply (erule rev_mp)
paulson@14741
   228
apply (erule zg.induct) 
paulson@14145
   229
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto)  
paulson@14145
   230
done
paulson@14145
   231
paulson@14741
   232
lemma NRR_sender:
paulson@14741
   233
     "[|Says B' A {|n, a, l, Crypt (priK B) X|} \<in> set evs; evs \<in> zg|]
paulson@14741
   234
    ==> B' \<in> {B,Spy}"
paulson@14741
   235
apply (erule rev_mp)  
paulson@14741
   236
apply (erule zg.induct, simp_all)
paulson@14145
   237
done
paulson@14145
   238
paulson@14741
   239
text{*Holds also for @{term "B = Spy"}!*}
paulson@15068
   240
theorem NRR_validity:
paulson@14741
   241
     "[|Says B' A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs;
paulson@14741
   242
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14741
   243
        B \<notin> broken; evs \<in> zg|]
paulson@14741
   244
    ==> Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14741
   245
apply clarify 
paulson@14741
   246
apply (frule NRR_sender, auto)
paulson@14741
   247
txt{*We are left with the case where @{term "B' = Spy"} and  @{term "B' \<noteq> B"},
paulson@15068
   248
  i.e. @{term "B \<notin> bad"}, when we can apply @{text NRR_validity_good}.*}
paulson@15068
   249
 apply (blast dest: NRR_validity_good [OF refl])
paulson@14145
   250
done
paulson@14145
   251
paulson@14145
   252
paulson@14145
   253
subsection{*Proofs About @{term sub_K}*}
paulson@14145
   254
paulson@14145
   255
text{*Below we prove that if @{term sub_K} exists then @{term A} definitely
paulson@14145
   256
sent it, provided @{term A} is not broken.  *}
paulson@14145
   257
paulson@14145
   258
text{*Strong conclusion for a good agent*}
paulson@15068
   259
lemma sub_K_validity_good:
paulson@14741
   260
     "[|sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14741
   261
        sub_K \<in> parts (spies evs);
paulson@14741
   262
        A \<notin> bad;  evs \<in> zg |]
paulson@14145
   263
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@14741
   264
apply clarify
paulson@14145
   265
apply (erule rev_mp)
paulson@14145
   266
apply (erule zg.induct)
paulson@14145
   267
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   268
txt{*Fake*} 
paulson@14145
   269
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14145
   270
done
paulson@14145
   271
paulson@14741
   272
lemma sub_K_sender:
paulson@14741
   273
     "[|Says A' TTP {|n, b, l, k, Crypt (priK A) X|} \<in> set evs;  evs \<in> zg|]
paulson@14741
   274
    ==> A' \<in> {A,Spy}"
paulson@14741
   275
apply (erule rev_mp)  
paulson@14741
   276
apply (erule zg.induct, simp_all)
paulson@14145
   277
done
paulson@14145
   278
paulson@14741
   279
text{*Holds also for @{term "A = Spy"}!*}
paulson@15068
   280
theorem sub_K_validity:
paulson@15047
   281
     "[|Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs;
paulson@14741
   282
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14741
   283
        A \<notin> broken;  evs \<in> zg |]
paulson@14741
   284
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@15047
   285
apply (drule Gets_imp_Says, assumption) 
paulson@14741
   286
apply clarify 
paulson@14741
   287
apply (frule sub_K_sender, auto)
paulson@15047
   288
txt{*We are left with the case where the sender is @{term Spy} and not
paulson@15047
   289
  equal to @{term A}, because @{term "A \<notin> bad"}. 
paulson@15068
   290
  Thus theorem @{text sub_K_validity_good} applies.*}
paulson@15068
   291
apply (blast dest: sub_K_validity_good [OF refl])
paulson@14145
   292
done
paulson@14145
   293
paulson@14145
   294
paulson@14741
   295
paulson@14145
   296
subsection{*Proofs About @{term con_K}*}
paulson@14145
   297
paulson@14145
   298
text{*Below we prove that if @{term con_K} exists, then @{term TTP} has it,
paulson@14145
   299
and therefore @{term A} and @{term B}) can get it too.  Moreover, we know
paulson@14145
   300
that @{term A} sent @{term sub_K}*}
paulson@14145
   301
paulson@15068
   302
lemma con_K_validity:
paulson@14145
   303
     "[|con_K \<in> used evs;
paulson@14145
   304
        con_K = Crypt (priK TTP)
paulson@14145
   305
                  {|Number f_con, Agent A, Agent B, Nonce L, Key K|};
paulson@14145
   306
        evs \<in> zg |]
paulson@14145
   307
    ==> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
paulson@14145
   308
          \<in> set evs"
paulson@14145
   309
apply clarify
paulson@14145
   310
apply (erule rev_mp)
paulson@14145
   311
apply (erule zg.induct)
paulson@14145
   312
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   313
txt{*Fake*}
paulson@14145
   314
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14741
   315
txt{*ZG2*} 
paulson@14145
   316
apply (blast dest: parts_cut)
paulson@14145
   317
done
paulson@14145
   318
paulson@14145
   319
text{*If @{term TTP} holds @{term con_K} then @{term A} sent
paulson@14736
   320
 @{term sub_K}.  We assume that @{term A} is not broken.  Importantly, nothing
paulson@14736
   321
  needs to be assumed about the form of @{term con_K}!*}
paulson@14145
   322
lemma Notes_TTP_imp_Says_A:
paulson@14145
   323
     "[|Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
paulson@14145
   324
           \<in> set evs;
paulson@14145
   325
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
   326
        A \<notin> broken; evs \<in> zg|]
paulson@14741
   327
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@14741
   328
apply clarify
paulson@14741
   329
apply (erule rev_mp)
paulson@14741
   330
apply (erule zg.induct)
paulson@14741
   331
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14741
   332
txt{*ZG4*}
paulson@15047
   333
apply clarify 
paulson@15068
   334
apply (rule sub_K_validity, auto) 
paulson@14741
   335
done
paulson@14145
   336
paulson@14736
   337
text{*If @{term con_K} exists, then @{term A} sent @{term sub_K}.  We again
paulson@14736
   338
   assume that @{term A} is not broken. *}
paulson@15068
   339
theorem B_sub_K_validity:
paulson@14145
   340
     "[|con_K \<in> used evs;
paulson@14145
   341
        con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
paulson@14145
   342
                                   Nonce L, Key K|};
paulson@14145
   343
        sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14741
   344
        A \<notin> broken; evs \<in> zg|]
paulson@14741
   345
     ==> Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} \<in> set evs"
paulson@15068
   346
by (blast dest: con_K_validity Notes_TTP_imp_Says_A)
paulson@14145
   347
paulson@14145
   348
paulson@14145
   349
subsection{*Proving fairness*}
paulson@14145
   350
paulson@14145
   351
text{*Cannot prove that, if @{term B} has NRO, then  @{term A} has her NRR.
paulson@14145
   352
It would appear that @{term B} has a small advantage, though it is
paulson@14145
   353
useless to win disputes: @{term B} needs to present @{term con_K} as well.*}
paulson@14145
   354
paulson@14145
   355
text{*Strange: unicity of the label protects @{term A}?*}
paulson@14145
   356
lemma A_unicity: 
paulson@14145
   357
     "[|NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
paulson@14145
   358
        NRO \<in> parts (spies evs);
paulson@14145
   359
        Says A B {|Number f_nro, Agent B, Nonce L, Crypt K M', NRO'|}
paulson@14145
   360
          \<in> set evs;
paulson@14145
   361
        A \<notin> bad; evs \<in> zg |]
paulson@14145
   362
     ==> M'=M"
paulson@14145
   363
apply clarify
paulson@14145
   364
apply (erule rev_mp)
paulson@14145
   365
apply (erule rev_mp)
paulson@14145
   366
apply (erule zg.induct)
paulson@14145
   367
apply (frule_tac [5] ZG2_msg_in_parts_spies, auto) 
paulson@14145
   368
txt{*ZG1: freshness*}
paulson@14145
   369
apply (blast dest: parts.Body) 
paulson@14145
   370
done
paulson@14145
   371
paulson@14145
   372
paulson@14145
   373
text{*Fairness lemma: if @{term sub_K} exists, then @{term A} holds 
paulson@14145
   374
NRR.  Relies on unicity of labels.*}
paulson@14145
   375
lemma sub_K_implies_NRR:
paulson@14741
   376
     "[| NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
paulson@14741
   377
         NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
paulson@14741
   378
         sub_K \<in> parts (spies evs);
paulson@14145
   379
         NRO \<in> parts (spies evs);
paulson@14145
   380
         sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
paulson@14145
   381
         A \<notin> bad;  evs \<in> zg |]
paulson@14145
   382
     ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14145
   383
apply clarify
paulson@14145
   384
apply (erule rev_mp)
paulson@14145
   385
apply (erule rev_mp)
paulson@14145
   386
apply (erule zg.induct)
paulson@14145
   387
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   388
txt{*Fake*}
paulson@14145
   389
apply blast 
paulson@14145
   390
txt{*ZG1: freshness*}
paulson@14145
   391
apply (blast dest: parts.Body) 
paulson@14741
   392
txt{*ZG3*} 
paulson@14145
   393
apply (blast dest: A_unicity [OF refl]) 
paulson@14145
   394
done
paulson@14145
   395
paulson@14145
   396
paulson@14145
   397
lemma Crypt_used_imp_L_used:
paulson@14145
   398
     "[| Crypt (priK TTP) {|F, A, B, L, K|} \<in> used evs; evs \<in> zg |]
paulson@14145
   399
      ==> L \<in> used evs"
paulson@14145
   400
apply (erule rev_mp)
paulson@14145
   401
apply (erule zg.induct, auto)
paulson@14145
   402
txt{*Fake*}
paulson@14145
   403
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14145
   404
txt{*ZG2: freshness*}
paulson@14145
   405
apply (blast dest: parts.Body) 
paulson@14145
   406
done
paulson@14145
   407
paulson@14145
   408
paulson@14145
   409
text{*Fairness for @{term A}: if @{term con_K} and @{term NRO} exist, 
paulson@14145
   410
then @{term A} holds NRR.  @{term A} must be uncompromised, but there is no
paulson@14145
   411
assumption about @{term B}.*}
paulson@14145
   412
theorem A_fairness_NRO:
paulson@14145
   413
     "[|con_K \<in> used evs;
paulson@14145
   414
        NRO \<in> parts (spies evs);
paulson@14145
   415
        con_K = Crypt (priK TTP)
paulson@14145
   416
                      {|Number f_con, Agent A, Agent B, Nonce L, Key K|};
paulson@14145
   417
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Crypt K M|};
paulson@14145
   418
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Crypt K M|};
paulson@14145
   419
        A \<notin> bad;  evs \<in> zg |]
paulson@14145
   420
    ==> Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} \<in> set evs"
paulson@14145
   421
apply clarify
paulson@14145
   422
apply (erule rev_mp)
paulson@14145
   423
apply (erule rev_mp)
paulson@14145
   424
apply (erule zg.induct)
paulson@14145
   425
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   426
   txt{*Fake*}
paulson@14145
   427
   apply (simp add: parts_insert_knows_A) 
paulson@14145
   428
   apply (blast dest: Fake_parts_sing_imp_Un) 
paulson@14145
   429
  txt{*ZG1*}
paulson@14145
   430
  apply (blast dest: Crypt_used_imp_L_used) 
paulson@14145
   431
 txt{*ZG2*}
paulson@14145
   432
 apply (blast dest: parts_cut)
paulson@14741
   433
txt{*ZG4*} 
paulson@14741
   434
apply (blast intro: sub_K_implies_NRR [OF refl] 
paulson@14145
   435
             dest: Gets_imp_knows_Spy [THEN parts.Inj])
paulson@14145
   436
done
paulson@14145
   437
paulson@14145
   438
text{*Fairness for @{term B}: NRR exists at all, then @{term B} holds NRO.
paulson@14145
   439
@{term B} must be uncompromised, but there is no assumption about @{term
paulson@14145
   440
A}. *}
paulson@14145
   441
theorem B_fairness_NRR:
paulson@14145
   442
     "[|NRR \<in> used evs;
paulson@14145
   443
        NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|};
paulson@14145
   444
        NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|};
paulson@14145
   445
        B \<notin> bad; evs \<in> zg |]
paulson@14145
   446
    ==> Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} \<in> set evs"
paulson@14145
   447
apply clarify
paulson@14145
   448
apply (erule rev_mp)
paulson@14145
   449
apply (erule zg.induct)
paulson@14145
   450
apply (frule_tac [5] ZG2_msg_in_parts_spies, simp_all)
paulson@14145
   451
txt{*Fake*}
paulson@14145
   452
apply (blast dest!: Fake_parts_sing_imp_Un)
paulson@14145
   453
txt{*ZG2*}
paulson@14145
   454
apply (blast dest: parts_cut)
paulson@14145
   455
done
paulson@14145
   456
paulson@14145
   457
paulson@14145
   458
text{*If @{term con_K} exists at all, then @{term B} can get it, by @{text
paulson@15068
   459
con_K_validity}.  Cannot conclude that also NRO is available to @{term B},
paulson@14145
   460
because if @{term A} were unfair, @{term A} could build message 3 without
paulson@14145
   461
building message 1, which contains NRO. *}
paulson@14145
   462
paulson@14145
   463
end