src/HOL/Nat.ML
author paulson
Tue Jul 27 17:19:31 1999 +0200 (1999-07-27)
changeset 7089 9bfb8e218b99
parent 7058 8dfea70eb6b7
child 8115 c802042066e8
permissions -rw-r--r--
expandshort and tidying
oheimb@2441
     1
(*  Title:      HOL/Nat.ML
clasohm@923
     2
    ID:         $Id$
nipkow@2608
     3
    Author:     Tobias Nipkow
nipkow@2608
     4
    Copyright   1997 TU Muenchen
clasohm@923
     5
*)
clasohm@923
     6
berghofe@5188
     7
(** conversion rules for nat_rec **)
berghofe@5188
     8
berghofe@5188
     9
val [nat_rec_0, nat_rec_Suc] = nat.recs;
berghofe@5188
    10
berghofe@5188
    11
(*These 2 rules ease the use of primitive recursion.  NOTE USE OF == *)
paulson@5316
    12
val prems = Goal
berghofe@5188
    13
    "[| !!n. f(n) == nat_rec c h n |] ==> f(0) = c";
berghofe@5188
    14
by (simp_tac (simpset() addsimps prems) 1);
berghofe@5188
    15
qed "def_nat_rec_0";
berghofe@5188
    16
paulson@5316
    17
val prems = Goal
berghofe@5188
    18
    "[| !!n. f(n) == nat_rec c h n |] ==> f(Suc(n)) = h n (f n)";
berghofe@5188
    19
by (simp_tac (simpset() addsimps prems) 1);
berghofe@5188
    20
qed "def_nat_rec_Suc";
berghofe@5188
    21
berghofe@5188
    22
val [nat_case_0, nat_case_Suc] = nat.cases;
berghofe@5188
    23
berghofe@5188
    24
Goal "n ~= 0 ==> EX m. n = Suc m";
berghofe@5188
    25
by (exhaust_tac "n" 1);
berghofe@5188
    26
by (REPEAT (Blast_tac 1));
berghofe@5188
    27
qed "not0_implies_Suc";
berghofe@5188
    28
paulson@5316
    29
Goal "m<n ==> n ~= 0";
berghofe@5188
    30
by (exhaust_tac "n" 1);
berghofe@5188
    31
by (ALLGOALS Asm_full_simp_tac);
berghofe@5188
    32
qed "gr_implies_not0";
berghofe@5188
    33
berghofe@5188
    34
Goal "(n ~= 0) = (0 < n)";
berghofe@5188
    35
by (exhaust_tac "n" 1);
paulson@7089
    36
by Auto_tac;
berghofe@5188
    37
qed "neq0_conv";
berghofe@5188
    38
AddIffs [neq0_conv];
berghofe@5188
    39
nipkow@5644
    40
Goal "(0 ~= n) = (0 < n)";
paulson@6301
    41
by (exhaust_tac "n" 1);
paulson@7089
    42
by Auto_tac;
nipkow@5644
    43
qed "zero_neq_conv";
nipkow@5644
    44
AddIffs [zero_neq_conv];
nipkow@5644
    45
berghofe@5188
    46
(*This theorem is useful with blast_tac: (n=0 ==> False) ==> 0<n *)
berghofe@5188
    47
bind_thm ("gr0I", [neq0_conv, notI] MRS iffD1);
berghofe@5188
    48
berghofe@5188
    49
Goal "(~(0 < n)) = (n=0)";
berghofe@5188
    50
by (rtac iffI 1);
berghofe@5188
    51
 by (etac swap 1);
berghofe@5188
    52
 by (ALLGOALS Asm_full_simp_tac);
berghofe@5188
    53
qed "not_gr0";
nipkow@6109
    54
AddIffs [not_gr0];
berghofe@5188
    55
paulson@6805
    56
(*Useful in certain inductive arguments*)
paulson@6805
    57
Goal "(m < Suc n) = (m=0 | (EX j. m = Suc j & j < n))";
paulson@6805
    58
by (exhaust_tac "m" 1);
paulson@6805
    59
by Auto_tac;
paulson@6805
    60
qed "less_Suc_eq_0_disj";
paulson@6805
    61
paulson@7058
    62
Goalw [Least_nat_def]
paulson@7058
    63
 "[| ? n. P(Suc n); ~ P 0 |] ==> (LEAST n. P n) = Suc (LEAST m. P(Suc m))";
paulson@7058
    64
by (rtac select_equality 1);
paulson@7058
    65
by (fold_goals_tac [Least_nat_def]);
paulson@7058
    66
by (safe_tac (claset() addSEs [LeastI]));
paulson@7058
    67
by (rename_tac "j" 1);
paulson@7058
    68
by (exhaust_tac "j" 1);
paulson@7058
    69
by (Blast_tac 1);
paulson@7058
    70
by (blast_tac (claset() addDs [Suc_less_SucD, not_less_Least]) 1);
paulson@7058
    71
by (rename_tac "k n" 1);
paulson@7058
    72
by (exhaust_tac "k" 1);
paulson@7058
    73
by (Blast_tac 1);
paulson@7058
    74
by (hyp_subst_tac 1);
paulson@7058
    75
by (rewtac Least_nat_def);
paulson@7058
    76
by (rtac (select_equality RS arg_cong RS sym) 1);
paulson@7089
    77
by (blast_tac (claset() addDs [Suc_mono]) 1);
paulson@7089
    78
by (cut_inst_tac [("m","m")] less_linear 1);
paulson@7089
    79
by (blast_tac (claset() addIs [Suc_mono]) 1);
paulson@7058
    80
qed "Least_Suc";
berghofe@5188
    81
paulson@7058
    82
val prems = Goal "[| P 0; P 1; !!k. P k ==> P (Suc (Suc k)) |] ==> P n";
paulson@7058
    83
by (rtac less_induct 1);
paulson@7058
    84
by (exhaust_tac "n" 1);
paulson@7089
    85
by (exhaust_tac "nat" 2);
paulson@7089
    86
by (ALLGOALS (blast_tac (claset() addIs prems@[less_trans])));
paulson@7058
    87
qed "nat_induct2";
berghofe@5188
    88
wenzelm@5069
    89
Goal "min 0 n = 0";
paulson@3023
    90
by (rtac min_leastL 1);
nipkow@5983
    91
by (Simp_tac 1);
nipkow@2608
    92
qed "min_0L";
nipkow@1301
    93
wenzelm@5069
    94
Goal "min n 0 = 0";
paulson@3023
    95
by (rtac min_leastR 1);
nipkow@5983
    96
by (Simp_tac 1);
nipkow@2608
    97
qed "min_0R";
clasohm@923
    98
wenzelm@5069
    99
Goalw [min_def] "min (Suc m) (Suc n) = Suc(min m n)";
paulson@3023
   100
by (Simp_tac 1);
nipkow@2608
   101
qed "min_Suc_Suc";
oheimb@1660
   102
nipkow@2608
   103
Addsimps [min_0L,min_0R,min_Suc_Suc];
nipkow@6433
   104
nipkow@6433
   105
Goalw [max_def] "max 0 n = n";
nipkow@6433
   106
by (Simp_tac 1);
nipkow@6433
   107
qed "max_0L";
nipkow@6433
   108
nipkow@6433
   109
Goalw [max_def] "max n 0 = n";
nipkow@6433
   110
by (Simp_tac 1);
nipkow@6433
   111
qed "max_0R";
nipkow@6433
   112
nipkow@6433
   113
Goalw [max_def] "max (Suc m) (Suc n) = Suc(max m n)";
nipkow@6433
   114
by (Simp_tac 1);
nipkow@6433
   115
qed "max_Suc_Suc";
nipkow@6433
   116
nipkow@6433
   117
Addsimps [max_0L,max_0R,max_Suc_Suc];