src/HOL/HOL.thy
author paulson
Fri May 14 16:53:15 2004 +0200 (2004-05-14)
changeset 14749 9ccfd0f59e11
parent 14690 f61ea8bfa81e
child 14854 61bdf2ae4dc5
permissions -rw-r--r--
new atomize theorem
clasohm@923
     1
(*  Title:      HOL/HOL.thy
clasohm@923
     2
    ID:         $Id$
wenzelm@11750
     3
    Author:     Tobias Nipkow, Markus Wenzel, and Larry Paulson
wenzelm@12386
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
wenzelm@11750
     5
*)
clasohm@923
     6
wenzelm@11750
     7
header {* The basis of Higher-Order Logic *}
clasohm@923
     8
wenzelm@7357
     9
theory HOL = CPure
paulson@11451
    10
files ("HOL_lemmas.ML") ("cladata.ML") ("blastdata.ML") ("simpdata.ML"):
clasohm@923
    11
wenzelm@2260
    12
wenzelm@11750
    13
subsection {* Primitive logic *}
wenzelm@11750
    14
wenzelm@11750
    15
subsubsection {* Core syntax *}
wenzelm@2260
    16
wenzelm@12338
    17
classes type < logic
wenzelm@12338
    18
defaultsort type
wenzelm@3947
    19
wenzelm@12338
    20
global
clasohm@923
    21
wenzelm@7357
    22
typedecl bool
clasohm@923
    23
clasohm@923
    24
arities
wenzelm@12338
    25
  bool :: type
wenzelm@12338
    26
  fun :: (type, type) type
clasohm@923
    27
wenzelm@11750
    28
judgment
wenzelm@11750
    29
  Trueprop      :: "bool => prop"                   ("(_)" 5)
clasohm@923
    30
wenzelm@11750
    31
consts
wenzelm@7357
    32
  Not           :: "bool => bool"                   ("~ _" [40] 40)
wenzelm@7357
    33
  True          :: bool
wenzelm@7357
    34
  False         :: bool
wenzelm@7357
    35
  If            :: "[bool, 'a, 'a] => 'a"           ("(if (_)/ then (_)/ else (_))" 10)
wenzelm@3947
    36
  arbitrary     :: 'a
clasohm@923
    37
wenzelm@11432
    38
  The           :: "('a => bool) => 'a"
wenzelm@7357
    39
  All           :: "('a => bool) => bool"           (binder "ALL " 10)
wenzelm@7357
    40
  Ex            :: "('a => bool) => bool"           (binder "EX " 10)
wenzelm@7357
    41
  Ex1           :: "('a => bool) => bool"           (binder "EX! " 10)
wenzelm@7357
    42
  Let           :: "['a, 'a => 'b] => 'b"
clasohm@923
    43
wenzelm@7357
    44
  "="           :: "['a, 'a] => bool"               (infixl 50)
wenzelm@7357
    45
  &             :: "[bool, bool] => bool"           (infixr 35)
wenzelm@7357
    46
  "|"           :: "[bool, bool] => bool"           (infixr 30)
wenzelm@7357
    47
  -->           :: "[bool, bool] => bool"           (infixr 25)
clasohm@923
    48
wenzelm@10432
    49
local
wenzelm@10432
    50
wenzelm@2260
    51
wenzelm@11750
    52
subsubsection {* Additional concrete syntax *}
wenzelm@2260
    53
wenzelm@4868
    54
nonterminals
clasohm@923
    55
  letbinds  letbind
clasohm@923
    56
  case_syn  cases_syn
clasohm@923
    57
clasohm@923
    58
syntax
wenzelm@12650
    59
  "_not_equal"  :: "['a, 'a] => bool"                    (infixl "~=" 50)
wenzelm@11432
    60
  "_The"        :: "[pttrn, bool] => 'a"                 ("(3THE _./ _)" [0, 10] 10)
clasohm@923
    61
wenzelm@7357
    62
  "_bind"       :: "[pttrn, 'a] => letbind"              ("(2_ =/ _)" 10)
wenzelm@7357
    63
  ""            :: "letbind => letbinds"                 ("_")
wenzelm@7357
    64
  "_binds"      :: "[letbind, letbinds] => letbinds"     ("_;/ _")
wenzelm@7357
    65
  "_Let"        :: "[letbinds, 'a] => 'a"                ("(let (_)/ in (_))" 10)
clasohm@923
    66
wenzelm@9060
    67
  "_case_syntax":: "['a, cases_syn] => 'b"               ("(case _ of/ _)" 10)
wenzelm@9060
    68
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ =>/ _)" 10)
wenzelm@7357
    69
  ""            :: "case_syn => cases_syn"               ("_")
wenzelm@9060
    70
  "_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ | _")
clasohm@923
    71
clasohm@923
    72
translations
wenzelm@7238
    73
  "x ~= y"                == "~ (x = y)"
nipkow@13764
    74
  "THE x. P"              == "The (%x. P)"
clasohm@923
    75
  "_Let (_binds b bs) e"  == "_Let b (_Let bs e)"
nipkow@1114
    76
  "let x = a in e"        == "Let a (%x. e)"
clasohm@923
    77
nipkow@13763
    78
print_translation {*
nipkow@13763
    79
(* To avoid eta-contraction of body: *)
nipkow@13763
    80
[("The", fn [Abs abs] =>
nipkow@13763
    81
     let val (x,t) = atomic_abs_tr' abs
nipkow@13763
    82
     in Syntax.const "_The" $ x $ t end)]
nipkow@13763
    83
*}
nipkow@13763
    84
wenzelm@12633
    85
syntax (output)
wenzelm@11687
    86
  "="           :: "['a, 'a] => bool"                    (infix 50)
wenzelm@12650
    87
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "~=" 50)
wenzelm@2260
    88
wenzelm@12114
    89
syntax (xsymbols)
wenzelm@11687
    90
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
wenzelm@11687
    91
  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
wenzelm@11687
    92
  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
wenzelm@12114
    93
  "op -->"      :: "[bool, bool] => bool"                (infixr "\<longrightarrow>" 25)
wenzelm@12650
    94
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@11687
    95
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
wenzelm@11687
    96
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
wenzelm@11687
    97
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
wenzelm@11687
    98
  "_case1"      :: "['a, 'b] => case_syn"                ("(2_ \<Rightarrow>/ _)" 10)
schirmer@14361
    99
(*"_case2"      :: "[case_syn, cases_syn] => cases_syn"  ("_/ \<orelse> _")*)
wenzelm@2372
   100
wenzelm@12114
   101
syntax (xsymbols output)
wenzelm@12650
   102
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@3820
   103
wenzelm@6340
   104
syntax (HTML output)
kleing@14565
   105
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
wenzelm@11687
   106
  Not           :: "bool => bool"                        ("\<not> _" [40] 40)
kleing@14565
   107
  "op &"        :: "[bool, bool] => bool"                (infixr "\<and>" 35)
kleing@14565
   108
  "op |"        :: "[bool, bool] => bool"                (infixr "\<or>" 30)
kleing@14565
   109
  "_not_equal"  :: "['a, 'a] => bool"                    (infix "\<noteq>" 50)
kleing@14565
   110
  "ALL "        :: "[idts, bool] => bool"                ("(3\<forall>_./ _)" [0, 10] 10)
kleing@14565
   111
  "EX "         :: "[idts, bool] => bool"                ("(3\<exists>_./ _)" [0, 10] 10)
kleing@14565
   112
  "EX! "        :: "[idts, bool] => bool"                ("(3\<exists>!_./ _)" [0, 10] 10)
wenzelm@6340
   113
wenzelm@7238
   114
syntax (HOL)
wenzelm@7357
   115
  "ALL "        :: "[idts, bool] => bool"                ("(3! _./ _)" [0, 10] 10)
wenzelm@7357
   116
  "EX "         :: "[idts, bool] => bool"                ("(3? _./ _)" [0, 10] 10)
wenzelm@7357
   117
  "EX! "        :: "[idts, bool] => bool"                ("(3?! _./ _)" [0, 10] 10)
wenzelm@7238
   118
wenzelm@7238
   119
wenzelm@11750
   120
subsubsection {* Axioms and basic definitions *}
wenzelm@2260
   121
wenzelm@7357
   122
axioms
wenzelm@7357
   123
  eq_reflection: "(x=y) ==> (x==y)"
clasohm@923
   124
wenzelm@7357
   125
  refl:         "t = (t::'a)"
wenzelm@7357
   126
  subst:        "[| s = t; P(s) |] ==> P(t::'a)"
paulson@6289
   127
wenzelm@7357
   128
  ext:          "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)"
wenzelm@11750
   129
    -- {* Extensionality is built into the meta-logic, and this rule expresses *}
wenzelm@11750
   130
    -- {* a related property.  It is an eta-expanded version of the traditional *}
wenzelm@11750
   131
    -- {* rule, and similar to the ABS rule of HOL *}
paulson@6289
   132
wenzelm@11432
   133
  the_eq_trivial: "(THE x. x = a) = (a::'a)"
clasohm@923
   134
wenzelm@7357
   135
  impI:         "(P ==> Q) ==> P-->Q"
wenzelm@7357
   136
  mp:           "[| P-->Q;  P |] ==> Q"
clasohm@923
   137
clasohm@923
   138
defs
wenzelm@7357
   139
  True_def:     "True      == ((%x::bool. x) = (%x. x))"
wenzelm@7357
   140
  All_def:      "All(P)    == (P = (%x. True))"
paulson@11451
   141
  Ex_def:       "Ex(P)     == !Q. (!x. P x --> Q) --> Q"
wenzelm@7357
   142
  False_def:    "False     == (!P. P)"
wenzelm@7357
   143
  not_def:      "~ P       == P-->False"
wenzelm@7357
   144
  and_def:      "P & Q     == !R. (P-->Q-->R) --> R"
wenzelm@7357
   145
  or_def:       "P | Q     == !R. (P-->R) --> (Q-->R) --> R"
wenzelm@7357
   146
  Ex1_def:      "Ex1(P)    == ? x. P(x) & (! y. P(y) --> y=x)"
clasohm@923
   147
wenzelm@7357
   148
axioms
wenzelm@7357
   149
  iff:          "(P-->Q) --> (Q-->P) --> (P=Q)"
wenzelm@7357
   150
  True_or_False:  "(P=True) | (P=False)"
clasohm@923
   151
clasohm@923
   152
defs
wenzelm@7357
   153
  Let_def:      "Let s f == f(s)"
paulson@11451
   154
  if_def:       "If P x y == THE z::'a. (P=True --> z=x) & (P=False --> z=y)"
wenzelm@5069
   155
skalberg@14223
   156
finalconsts
skalberg@14223
   157
  "op ="
skalberg@14223
   158
  "op -->"
skalberg@14223
   159
  The
skalberg@14223
   160
  arbitrary
nipkow@3320
   161
wenzelm@11750
   162
subsubsection {* Generic algebraic operations *}
wenzelm@4868
   163
wenzelm@12338
   164
axclass zero < type
wenzelm@12338
   165
axclass one < type
wenzelm@12338
   166
axclass plus < type
wenzelm@12338
   167
axclass minus < type
wenzelm@12338
   168
axclass times < type
wenzelm@12338
   169
axclass inverse < type
wenzelm@11750
   170
wenzelm@11750
   171
global
wenzelm@11750
   172
wenzelm@11750
   173
consts
wenzelm@11750
   174
  "0"           :: "'a::zero"                       ("0")
wenzelm@11750
   175
  "1"           :: "'a::one"                        ("1")
wenzelm@11750
   176
  "+"           :: "['a::plus, 'a]  => 'a"          (infixl 65)
wenzelm@11750
   177
  -             :: "['a::minus, 'a] => 'a"          (infixl 65)
wenzelm@11750
   178
  uminus        :: "['a::minus] => 'a"              ("- _" [81] 80)
wenzelm@11750
   179
  *             :: "['a::times, 'a] => 'a"          (infixl 70)
wenzelm@11750
   180
wenzelm@13456
   181
syntax
wenzelm@13456
   182
  "_index1"  :: index    ("\<^sub>1")
wenzelm@13456
   183
translations
wenzelm@14690
   184
  (index) "\<^sub>1" => (index) "\<^bsub>\<struct>\<^esub>"
wenzelm@13456
   185
wenzelm@11750
   186
local
wenzelm@11750
   187
wenzelm@11750
   188
typed_print_translation {*
wenzelm@11750
   189
  let
wenzelm@11750
   190
    fun tr' c = (c, fn show_sorts => fn T => fn ts =>
wenzelm@11750
   191
      if T = dummyT orelse not (! show_types) andalso can Term.dest_Type T then raise Match
wenzelm@11750
   192
      else Syntax.const Syntax.constrainC $ Syntax.const c $ Syntax.term_of_typ show_sorts T);
wenzelm@11750
   193
  in [tr' "0", tr' "1"] end;
wenzelm@11750
   194
*} -- {* show types that are presumably too general *}
wenzelm@11750
   195
wenzelm@11750
   196
wenzelm@11750
   197
consts
wenzelm@11750
   198
  abs           :: "'a::minus => 'a"
wenzelm@11750
   199
  inverse       :: "'a::inverse => 'a"
wenzelm@11750
   200
  divide        :: "['a::inverse, 'a] => 'a"        (infixl "'/" 70)
wenzelm@11750
   201
wenzelm@11750
   202
syntax (xsymbols)
wenzelm@11750
   203
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
wenzelm@11750
   204
syntax (HTML output)
wenzelm@11750
   205
  abs :: "'a::minus => 'a"    ("\<bar>_\<bar>")
wenzelm@11750
   206
wenzelm@11750
   207
wenzelm@11750
   208
subsection {* Theory and package setup *}
wenzelm@11750
   209
wenzelm@11750
   210
subsubsection {* Basic lemmas *}
wenzelm@4868
   211
nipkow@9736
   212
use "HOL_lemmas.ML"
wenzelm@11687
   213
theorems case_split = case_split_thm [case_names True False]
wenzelm@9869
   214
wenzelm@12386
   215
wenzelm@12386
   216
subsubsection {* Intuitionistic Reasoning *}
wenzelm@12386
   217
wenzelm@12386
   218
lemma impE':
wenzelm@12937
   219
  assumes 1: "P --> Q"
wenzelm@12937
   220
    and 2: "Q ==> R"
wenzelm@12937
   221
    and 3: "P --> Q ==> P"
wenzelm@12937
   222
  shows R
wenzelm@12386
   223
proof -
wenzelm@12386
   224
  from 3 and 1 have P .
wenzelm@12386
   225
  with 1 have Q by (rule impE)
wenzelm@12386
   226
  with 2 show R .
wenzelm@12386
   227
qed
wenzelm@12386
   228
wenzelm@12386
   229
lemma allE':
wenzelm@12937
   230
  assumes 1: "ALL x. P x"
wenzelm@12937
   231
    and 2: "P x ==> ALL x. P x ==> Q"
wenzelm@12937
   232
  shows Q
wenzelm@12386
   233
proof -
wenzelm@12386
   234
  from 1 have "P x" by (rule spec)
wenzelm@12386
   235
  from this and 1 show Q by (rule 2)
wenzelm@12386
   236
qed
wenzelm@12386
   237
wenzelm@12937
   238
lemma notE':
wenzelm@12937
   239
  assumes 1: "~ P"
wenzelm@12937
   240
    and 2: "~ P ==> P"
wenzelm@12937
   241
  shows R
wenzelm@12386
   242
proof -
wenzelm@12386
   243
  from 2 and 1 have P .
wenzelm@12386
   244
  with 1 show R by (rule notE)
wenzelm@12386
   245
qed
wenzelm@12386
   246
wenzelm@12386
   247
lemmas [CPure.elim!] = disjE iffE FalseE conjE exE
wenzelm@12386
   248
  and [CPure.intro!] = iffI conjI impI TrueI notI allI refl
wenzelm@12386
   249
  and [CPure.elim 2] = allE notE' impE'
wenzelm@12386
   250
  and [CPure.intro] = exI disjI2 disjI1
wenzelm@12386
   251
wenzelm@12386
   252
lemmas [trans] = trans
wenzelm@12386
   253
  and [sym] = sym not_sym
wenzelm@12386
   254
  and [CPure.elim?] = iffD1 iffD2 impE
wenzelm@11750
   255
wenzelm@11438
   256
wenzelm@11750
   257
subsubsection {* Atomizing meta-level connectives *}
wenzelm@11750
   258
wenzelm@11750
   259
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)"
wenzelm@12003
   260
proof
wenzelm@9488
   261
  assume "!!x. P x"
wenzelm@10383
   262
  show "ALL x. P x" by (rule allI)
wenzelm@9488
   263
next
wenzelm@9488
   264
  assume "ALL x. P x"
wenzelm@10383
   265
  thus "!!x. P x" by (rule allE)
wenzelm@9488
   266
qed
wenzelm@9488
   267
wenzelm@11750
   268
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
wenzelm@12003
   269
proof
wenzelm@9488
   270
  assume r: "A ==> B"
wenzelm@10383
   271
  show "A --> B" by (rule impI) (rule r)
wenzelm@9488
   272
next
wenzelm@9488
   273
  assume "A --> B" and A
wenzelm@10383
   274
  thus B by (rule mp)
wenzelm@9488
   275
qed
wenzelm@9488
   276
paulson@14749
   277
lemma atomize_not: "(A ==> False) == Trueprop (~A)"
paulson@14749
   278
proof
paulson@14749
   279
  assume r: "A ==> False"
paulson@14749
   280
  show "~A" by (rule notI) (rule r)
paulson@14749
   281
next
paulson@14749
   282
  assume "~A" and A
paulson@14749
   283
  thus False by (rule notE)
paulson@14749
   284
qed
paulson@14749
   285
wenzelm@11750
   286
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
wenzelm@12003
   287
proof
wenzelm@10432
   288
  assume "x == y"
wenzelm@10432
   289
  show "x = y" by (unfold prems) (rule refl)
wenzelm@10432
   290
next
wenzelm@10432
   291
  assume "x = y"
wenzelm@10432
   292
  thus "x == y" by (rule eq_reflection)
wenzelm@10432
   293
qed
wenzelm@10432
   294
wenzelm@12023
   295
lemma atomize_conj [atomize]:
wenzelm@12023
   296
  "(!!C. (A ==> B ==> PROP C) ==> PROP C) == Trueprop (A & B)"
wenzelm@12003
   297
proof
wenzelm@11953
   298
  assume "!!C. (A ==> B ==> PROP C) ==> PROP C"
wenzelm@11953
   299
  show "A & B" by (rule conjI)
wenzelm@11953
   300
next
wenzelm@11953
   301
  fix C
wenzelm@11953
   302
  assume "A & B"
wenzelm@11953
   303
  assume "A ==> B ==> PROP C"
wenzelm@11953
   304
  thus "PROP C"
wenzelm@11953
   305
  proof this
wenzelm@11953
   306
    show A by (rule conjunct1)
wenzelm@11953
   307
    show B by (rule conjunct2)
wenzelm@11953
   308
  qed
wenzelm@11953
   309
qed
wenzelm@11953
   310
wenzelm@12386
   311
lemmas [symmetric, rulify] = atomize_all atomize_imp
wenzelm@12386
   312
wenzelm@11750
   313
wenzelm@11750
   314
subsubsection {* Classical Reasoner setup *}
wenzelm@9529
   315
wenzelm@10383
   316
use "cladata.ML"
wenzelm@10383
   317
setup hypsubst_setup
wenzelm@11977
   318
wenzelm@12386
   319
ML_setup {*
wenzelm@12386
   320
  Context.>> (ContextRules.addSWrapper (fn tac => hyp_subst_tac' ORELSE' tac));
wenzelm@12386
   321
*}
wenzelm@11977
   322
wenzelm@10383
   323
setup Classical.setup
wenzelm@10383
   324
setup clasetup
wenzelm@10383
   325
wenzelm@12386
   326
lemmas [intro?] = ext
wenzelm@12386
   327
  and [elim?] = ex1_implies_ex
wenzelm@11977
   328
wenzelm@9869
   329
use "blastdata.ML"
wenzelm@9869
   330
setup Blast.setup
wenzelm@4868
   331
wenzelm@11750
   332
wenzelm@11750
   333
subsubsection {* Simplifier setup *}
wenzelm@11750
   334
wenzelm@12281
   335
lemma meta_eq_to_obj_eq: "x == y ==> x = y"
wenzelm@12281
   336
proof -
wenzelm@12281
   337
  assume r: "x == y"
wenzelm@12281
   338
  show "x = y" by (unfold r) (rule refl)
wenzelm@12281
   339
qed
wenzelm@12281
   340
wenzelm@12281
   341
lemma eta_contract_eq: "(%s. f s) = f" ..
wenzelm@12281
   342
wenzelm@12281
   343
lemma simp_thms:
wenzelm@12937
   344
  shows not_not: "(~ ~ P) = P"
wenzelm@12937
   345
  and
berghofe@12436
   346
    "(P ~= Q) = (P = (~Q))"
berghofe@12436
   347
    "(P | ~P) = True"    "(~P | P) = True"
berghofe@12436
   348
    "((~P) = (~Q)) = (P=Q)"
wenzelm@12281
   349
    "(x = x) = True"
wenzelm@12281
   350
    "(~True) = False"  "(~False) = True"
berghofe@12436
   351
    "(~P) ~= P"  "P ~= (~P)"
wenzelm@12281
   352
    "(True=P) = P"  "(P=True) = P"  "(False=P) = (~P)"  "(P=False) = (~P)"
wenzelm@12281
   353
    "(True --> P) = P"  "(False --> P) = True"
wenzelm@12281
   354
    "(P --> True) = True"  "(P --> P) = True"
wenzelm@12281
   355
    "(P --> False) = (~P)"  "(P --> ~P) = (~P)"
wenzelm@12281
   356
    "(P & True) = P"  "(True & P) = P"
wenzelm@12281
   357
    "(P & False) = False"  "(False & P) = False"
wenzelm@12281
   358
    "(P & P) = P"  "(P & (P & Q)) = (P & Q)"
wenzelm@12281
   359
    "(P & ~P) = False"    "(~P & P) = False"
wenzelm@12281
   360
    "(P | True) = True"  "(True | P) = True"
wenzelm@12281
   361
    "(P | False) = P"  "(False | P) = P"
berghofe@12436
   362
    "(P | P) = P"  "(P | (P | Q)) = (P | Q)" and
wenzelm@12281
   363
    "(ALL x. P) = P"  "(EX x. P) = P"  "EX x. x=t"  "EX x. t=x"
wenzelm@12281
   364
    -- {* needed for the one-point-rule quantifier simplification procs *}
wenzelm@12281
   365
    -- {* essential for termination!! *} and
wenzelm@12281
   366
    "!!P. (EX x. x=t & P(x)) = P(t)"
wenzelm@12281
   367
    "!!P. (EX x. t=x & P(x)) = P(t)"
wenzelm@12281
   368
    "!!P. (ALL x. x=t --> P(x)) = P(t)"
wenzelm@12937
   369
    "!!P. (ALL x. t=x --> P(x)) = P(t)"
berghofe@12436
   370
  by (blast, blast, blast, blast, blast, rules+)
wenzelm@13421
   371
wenzelm@12281
   372
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))"
wenzelm@12354
   373
  by rules
wenzelm@12281
   374
wenzelm@12281
   375
lemma ex_simps:
wenzelm@12281
   376
  "!!P Q. (EX x. P x & Q)   = ((EX x. P x) & Q)"
wenzelm@12281
   377
  "!!P Q. (EX x. P & Q x)   = (P & (EX x. Q x))"
wenzelm@12281
   378
  "!!P Q. (EX x. P x | Q)   = ((EX x. P x) | Q)"
wenzelm@12281
   379
  "!!P Q. (EX x. P | Q x)   = (P | (EX x. Q x))"
wenzelm@12281
   380
  "!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)"
wenzelm@12281
   381
  "!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))"
wenzelm@12281
   382
  -- {* Miniscoping: pushing in existential quantifiers. *}
berghofe@12436
   383
  by (rules | blast)+
wenzelm@12281
   384
wenzelm@12281
   385
lemma all_simps:
wenzelm@12281
   386
  "!!P Q. (ALL x. P x & Q)   = ((ALL x. P x) & Q)"
wenzelm@12281
   387
  "!!P Q. (ALL x. P & Q x)   = (P & (ALL x. Q x))"
wenzelm@12281
   388
  "!!P Q. (ALL x. P x | Q)   = ((ALL x. P x) | Q)"
wenzelm@12281
   389
  "!!P Q. (ALL x. P | Q x)   = (P | (ALL x. Q x))"
wenzelm@12281
   390
  "!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)"
wenzelm@12281
   391
  "!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))"
wenzelm@12281
   392
  -- {* Miniscoping: pushing in universal quantifiers. *}
berghofe@12436
   393
  by (rules | blast)+
wenzelm@12281
   394
paulson@14201
   395
lemma disj_absorb: "(A | A) = A"
paulson@14201
   396
  by blast
paulson@14201
   397
paulson@14201
   398
lemma disj_left_absorb: "(A | (A | B)) = (A | B)"
paulson@14201
   399
  by blast
paulson@14201
   400
paulson@14201
   401
lemma conj_absorb: "(A & A) = A"
paulson@14201
   402
  by blast
paulson@14201
   403
paulson@14201
   404
lemma conj_left_absorb: "(A & (A & B)) = (A & B)"
paulson@14201
   405
  by blast
paulson@14201
   406
wenzelm@12281
   407
lemma eq_ac:
wenzelm@12937
   408
  shows eq_commute: "(a=b) = (b=a)"
wenzelm@12937
   409
    and eq_left_commute: "(P=(Q=R)) = (Q=(P=R))"
wenzelm@12937
   410
    and eq_assoc: "((P=Q)=R) = (P=(Q=R))" by (rules, blast+)
berghofe@12436
   411
lemma neq_commute: "(a~=b) = (b~=a)" by rules
wenzelm@12281
   412
wenzelm@12281
   413
lemma conj_comms:
wenzelm@12937
   414
  shows conj_commute: "(P&Q) = (Q&P)"
wenzelm@12937
   415
    and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by rules+
berghofe@12436
   416
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by rules
wenzelm@12281
   417
wenzelm@12281
   418
lemma disj_comms:
wenzelm@12937
   419
  shows disj_commute: "(P|Q) = (Q|P)"
wenzelm@12937
   420
    and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by rules+
berghofe@12436
   421
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by rules
wenzelm@12281
   422
berghofe@12436
   423
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by rules
berghofe@12436
   424
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by rules
wenzelm@12281
   425
berghofe@12436
   426
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by rules
berghofe@12436
   427
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by rules
wenzelm@12281
   428
berghofe@12436
   429
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by rules
berghofe@12436
   430
lemma imp_conjL: "((P&Q) -->R)  = (P --> (Q --> R))" by rules
berghofe@12436
   431
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by rules
wenzelm@12281
   432
wenzelm@12281
   433
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *}
wenzelm@12281
   434
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast
wenzelm@12281
   435
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast
wenzelm@12281
   436
wenzelm@12281
   437
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast
wenzelm@12281
   438
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast
wenzelm@12281
   439
berghofe@12436
   440
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by rules
wenzelm@12281
   441
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast
wenzelm@12281
   442
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast
wenzelm@12281
   443
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast
wenzelm@12281
   444
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast
wenzelm@12281
   445
lemma disj_not2: "(P | ~Q) = (Q --> P)"  -- {* changes orientation :-( *}
wenzelm@12281
   446
  by blast
wenzelm@12281
   447
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast
wenzelm@12281
   448
berghofe@12436
   449
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by rules
wenzelm@12281
   450
wenzelm@12281
   451
wenzelm@12281
   452
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q"
wenzelm@12281
   453
  -- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *}
wenzelm@12281
   454
  -- {* cases boil down to the same thing. *}
wenzelm@12281
   455
  by blast
wenzelm@12281
   456
wenzelm@12281
   457
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast
wenzelm@12281
   458
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast
berghofe@12436
   459
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by rules
berghofe@12436
   460
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by rules
wenzelm@12281
   461
berghofe@12436
   462
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by rules
berghofe@12436
   463
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by rules
wenzelm@12281
   464
wenzelm@12281
   465
text {*
wenzelm@12281
   466
  \medskip The @{text "&"} congruence rule: not included by default!
wenzelm@12281
   467
  May slow rewrite proofs down by as much as 50\% *}
wenzelm@12281
   468
wenzelm@12281
   469
lemma conj_cong:
wenzelm@12281
   470
    "(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))"
wenzelm@12354
   471
  by rules
wenzelm@12281
   472
wenzelm@12281
   473
lemma rev_conj_cong:
wenzelm@12281
   474
    "(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))"
wenzelm@12354
   475
  by rules
wenzelm@12281
   476
wenzelm@12281
   477
text {* The @{text "|"} congruence rule: not included by default! *}
wenzelm@12281
   478
wenzelm@12281
   479
lemma disj_cong:
wenzelm@12281
   480
    "(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))"
wenzelm@12281
   481
  by blast
wenzelm@12281
   482
wenzelm@12281
   483
lemma eq_sym_conv: "(x = y) = (y = x)"
wenzelm@12354
   484
  by rules
wenzelm@12281
   485
wenzelm@12281
   486
wenzelm@12281
   487
text {* \medskip if-then-else rules *}
wenzelm@12281
   488
wenzelm@12281
   489
lemma if_True: "(if True then x else y) = x"
wenzelm@12281
   490
  by (unfold if_def) blast
wenzelm@12281
   491
wenzelm@12281
   492
lemma if_False: "(if False then x else y) = y"
wenzelm@12281
   493
  by (unfold if_def) blast
wenzelm@12281
   494
wenzelm@12281
   495
lemma if_P: "P ==> (if P then x else y) = x"
wenzelm@12281
   496
  by (unfold if_def) blast
wenzelm@12281
   497
wenzelm@12281
   498
lemma if_not_P: "~P ==> (if P then x else y) = y"
wenzelm@12281
   499
  by (unfold if_def) blast
wenzelm@12281
   500
wenzelm@12281
   501
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
wenzelm@12281
   502
  apply (rule case_split [of Q])
wenzelm@12281
   503
   apply (subst if_P)
paulson@14208
   504
    prefer 3 apply (subst if_not_P, blast+)
wenzelm@12281
   505
  done
wenzelm@12281
   506
wenzelm@12281
   507
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))"
paulson@14208
   508
by (subst split_if, blast)
wenzelm@12281
   509
wenzelm@12281
   510
lemmas if_splits = split_if split_if_asm
wenzelm@12281
   511
wenzelm@12281
   512
lemma if_def2: "(if Q then x else y) = ((Q --> x) & (~ Q --> y))"
wenzelm@12281
   513
  by (rule split_if)
wenzelm@12281
   514
wenzelm@12281
   515
lemma if_cancel: "(if c then x else x) = x"
paulson@14208
   516
by (subst split_if, blast)
wenzelm@12281
   517
wenzelm@12281
   518
lemma if_eq_cancel: "(if x = y then y else x) = x"
paulson@14208
   519
by (subst split_if, blast)
wenzelm@12281
   520
wenzelm@12281
   521
lemma if_bool_eq_conj: "(if P then Q else R) = ((P-->Q) & (~P-->R))"
wenzelm@12281
   522
  -- {* This form is useful for expanding @{text if}s on the RIGHT of the @{text "==>"} symbol. *}
wenzelm@12281
   523
  by (rule split_if)
wenzelm@12281
   524
wenzelm@12281
   525
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))"
wenzelm@12281
   526
  -- {* And this form is useful for expanding @{text if}s on the LEFT. *}
paulson@14208
   527
  apply (subst split_if, blast)
wenzelm@12281
   528
  done
wenzelm@12281
   529
berghofe@12436
   530
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) rules
berghofe@12436
   531
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) rules
wenzelm@12281
   532
paulson@14201
   533
subsubsection {* Actual Installation of the Simplifier *}
paulson@14201
   534
wenzelm@9869
   535
use "simpdata.ML"
wenzelm@9869
   536
setup Simplifier.setup
wenzelm@9869
   537
setup "Simplifier.method_setup Splitter.split_modifiers" setup simpsetup
wenzelm@9869
   538
setup Splitter.setup setup Clasimp.setup
wenzelm@9869
   539
paulson@14201
   540
declare disj_absorb [simp] conj_absorb [simp] 
paulson@14201
   541
nipkow@13723
   542
lemma ex1_eq[iff]: "EX! x. x = t" "EX! x. t = x"
nipkow@13723
   543
by blast+
nipkow@13723
   544
berghofe@13638
   545
theorem choice_eq: "(ALL x. EX! y. P x y) = (EX! f. ALL x. P x (f x))"
berghofe@13638
   546
  apply (rule iffI)
berghofe@13638
   547
  apply (rule_tac a = "%x. THE y. P x y" in ex1I)
berghofe@13638
   548
  apply (fast dest!: theI')
berghofe@13638
   549
  apply (fast intro: ext the1_equality [symmetric])
berghofe@13638
   550
  apply (erule ex1E)
berghofe@13638
   551
  apply (rule allI)
berghofe@13638
   552
  apply (rule ex1I)
berghofe@13638
   553
  apply (erule spec)
berghofe@13638
   554
  apply (erule_tac x = "%z. if z = x then y else f z" in allE)
berghofe@13638
   555
  apply (erule impE)
berghofe@13638
   556
  apply (rule allI)
berghofe@13638
   557
  apply (rule_tac P = "xa = x" in case_split_thm)
paulson@14208
   558
  apply (drule_tac [3] x = x in fun_cong, simp_all)
berghofe@13638
   559
  done
berghofe@13638
   560
nipkow@13438
   561
text{*Needs only HOL-lemmas:*}
nipkow@13438
   562
lemma mk_left_commute:
nipkow@13438
   563
  assumes a: "\<And>x y z. f (f x y) z = f x (f y z)" and
nipkow@13438
   564
          c: "\<And>x y. f x y = f y x"
nipkow@13438
   565
  shows "f x (f y z) = f y (f x z)"
nipkow@13438
   566
by(rule trans[OF trans[OF c a] arg_cong[OF c, of "f y"]])
nipkow@13438
   567
wenzelm@11750
   568
wenzelm@11824
   569
subsubsection {* Generic cases and induction *}
wenzelm@11824
   570
wenzelm@11824
   571
constdefs
wenzelm@11989
   572
  induct_forall :: "('a => bool) => bool"
wenzelm@11989
   573
  "induct_forall P == \<forall>x. P x"
wenzelm@11989
   574
  induct_implies :: "bool => bool => bool"
wenzelm@11989
   575
  "induct_implies A B == A --> B"
wenzelm@11989
   576
  induct_equal :: "'a => 'a => bool"
wenzelm@11989
   577
  "induct_equal x y == x = y"
wenzelm@11989
   578
  induct_conj :: "bool => bool => bool"
wenzelm@11989
   579
  "induct_conj A B == A & B"
wenzelm@11824
   580
wenzelm@11989
   581
lemma induct_forall_eq: "(!!x. P x) == Trueprop (induct_forall (\<lambda>x. P x))"
wenzelm@11989
   582
  by (simp only: atomize_all induct_forall_def)
wenzelm@11824
   583
wenzelm@11989
   584
lemma induct_implies_eq: "(A ==> B) == Trueprop (induct_implies A B)"
wenzelm@11989
   585
  by (simp only: atomize_imp induct_implies_def)
wenzelm@11824
   586
wenzelm@11989
   587
lemma induct_equal_eq: "(x == y) == Trueprop (induct_equal x y)"
wenzelm@11989
   588
  by (simp only: atomize_eq induct_equal_def)
wenzelm@11824
   589
wenzelm@11989
   590
lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) =
wenzelm@11989
   591
    induct_conj (induct_forall A) (induct_forall B)"
wenzelm@12354
   592
  by (unfold induct_forall_def induct_conj_def) rules
wenzelm@11824
   593
wenzelm@11989
   594
lemma induct_implies_conj: "induct_implies C (induct_conj A B) =
wenzelm@11989
   595
    induct_conj (induct_implies C A) (induct_implies C B)"
wenzelm@12354
   596
  by (unfold induct_implies_def induct_conj_def) rules
wenzelm@11989
   597
berghofe@13598
   598
lemma induct_conj_curry: "(induct_conj A B ==> PROP C) == (A ==> B ==> PROP C)"
berghofe@13598
   599
proof
berghofe@13598
   600
  assume r: "induct_conj A B ==> PROP C" and A B
berghofe@13598
   601
  show "PROP C" by (rule r) (simp! add: induct_conj_def)
berghofe@13598
   602
next
berghofe@13598
   603
  assume r: "A ==> B ==> PROP C" and "induct_conj A B"
berghofe@13598
   604
  show "PROP C" by (rule r) (simp! add: induct_conj_def)+
berghofe@13598
   605
qed
wenzelm@11824
   606
wenzelm@11989
   607
lemma induct_impliesI: "(A ==> B) ==> induct_implies A B"
wenzelm@11989
   608
  by (simp add: induct_implies_def)
wenzelm@11824
   609
wenzelm@12161
   610
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq
wenzelm@12161
   611
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq
wenzelm@12161
   612
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def induct_conj_def
wenzelm@11989
   613
lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry
wenzelm@11824
   614
wenzelm@11989
   615
hide const induct_forall induct_implies induct_equal induct_conj
wenzelm@11824
   616
wenzelm@11824
   617
wenzelm@11824
   618
text {* Method setup. *}
wenzelm@11824
   619
wenzelm@11824
   620
ML {*
wenzelm@11824
   621
  structure InductMethod = InductMethodFun
wenzelm@11824
   622
  (struct
wenzelm@11824
   623
    val dest_concls = HOLogic.dest_concls;
wenzelm@11824
   624
    val cases_default = thm "case_split";
wenzelm@11989
   625
    val local_impI = thm "induct_impliesI";
wenzelm@11824
   626
    val conjI = thm "conjI";
wenzelm@11989
   627
    val atomize = thms "induct_atomize";
wenzelm@11989
   628
    val rulify1 = thms "induct_rulify1";
wenzelm@11989
   629
    val rulify2 = thms "induct_rulify2";
wenzelm@12240
   630
    val localize = [Thm.symmetric (thm "induct_implies_def")];
wenzelm@11824
   631
  end);
wenzelm@11824
   632
*}
wenzelm@11824
   633
wenzelm@11824
   634
setup InductMethod.setup
wenzelm@11824
   635
wenzelm@11824
   636
wenzelm@11750
   637
subsection {* Order signatures and orders *}
wenzelm@11750
   638
wenzelm@11750
   639
axclass
wenzelm@12338
   640
  ord < type
wenzelm@11750
   641
wenzelm@11750
   642
syntax
wenzelm@11750
   643
  "op <"        :: "['a::ord, 'a] => bool"             ("op <")
wenzelm@11750
   644
  "op <="       :: "['a::ord, 'a] => bool"             ("op <=")
wenzelm@11750
   645
wenzelm@11750
   646
global
wenzelm@11750
   647
wenzelm@11750
   648
consts
wenzelm@11750
   649
  "op <"        :: "['a::ord, 'a] => bool"             ("(_/ < _)"  [50, 51] 50)
wenzelm@11750
   650
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ <= _)" [50, 51] 50)
wenzelm@11750
   651
wenzelm@11750
   652
local
wenzelm@11750
   653
wenzelm@12114
   654
syntax (xsymbols)
wenzelm@11750
   655
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
wenzelm@11750
   656
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
wenzelm@11750
   657
kleing@14565
   658
syntax (HTML output)
kleing@14565
   659
  "op <="       :: "['a::ord, 'a] => bool"             ("op \<le>")
kleing@14565
   660
  "op <="       :: "['a::ord, 'a] => bool"             ("(_/ \<le> _)"  [50, 51] 50)
kleing@14565
   661
wenzelm@11750
   662
paulson@14295
   663
lemma Not_eq_iff: "((~P) = (~Q)) = (P = Q)"
paulson@14295
   664
by blast
paulson@14295
   665
wenzelm@11750
   666
subsubsection {* Monotonicity *}
wenzelm@11750
   667
wenzelm@13412
   668
locale mono =
wenzelm@13412
   669
  fixes f
wenzelm@13412
   670
  assumes mono: "A <= B ==> f A <= f B"
wenzelm@11750
   671
wenzelm@13421
   672
lemmas monoI [intro?] = mono.intro
wenzelm@13412
   673
  and monoD [dest?] = mono.mono
wenzelm@11750
   674
wenzelm@11750
   675
constdefs
wenzelm@11750
   676
  min :: "['a::ord, 'a] => 'a"
wenzelm@11750
   677
  "min a b == (if a <= b then a else b)"
wenzelm@11750
   678
  max :: "['a::ord, 'a] => 'a"
wenzelm@11750
   679
  "max a b == (if a <= b then b else a)"
wenzelm@11750
   680
wenzelm@11750
   681
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"
wenzelm@11750
   682
  by (simp add: min_def)
wenzelm@11750
   683
wenzelm@11750
   684
lemma min_of_mono:
wenzelm@11750
   685
    "ALL x y. (f x <= f y) = (x <= y) ==> min (f m) (f n) = f (min m n)"
wenzelm@11750
   686
  by (simp add: min_def)
wenzelm@11750
   687
wenzelm@11750
   688
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"
wenzelm@11750
   689
  by (simp add: max_def)
wenzelm@11750
   690
wenzelm@11750
   691
lemma max_of_mono:
wenzelm@11750
   692
    "ALL x y. (f x <= f y) = (x <= y) ==> max (f m) (f n) = f (max m n)"
wenzelm@11750
   693
  by (simp add: max_def)
wenzelm@11750
   694
wenzelm@11750
   695
wenzelm@11750
   696
subsubsection "Orders"
wenzelm@11750
   697
wenzelm@11750
   698
axclass order < ord
wenzelm@11750
   699
  order_refl [iff]: "x <= x"
wenzelm@11750
   700
  order_trans: "x <= y ==> y <= z ==> x <= z"
wenzelm@11750
   701
  order_antisym: "x <= y ==> y <= x ==> x = y"
wenzelm@11750
   702
  order_less_le: "(x < y) = (x <= y & x ~= y)"
wenzelm@11750
   703
wenzelm@11750
   704
wenzelm@11750
   705
text {* Reflexivity. *}
wenzelm@11750
   706
wenzelm@11750
   707
lemma order_eq_refl: "!!x::'a::order. x = y ==> x <= y"
wenzelm@11750
   708
    -- {* This form is useful with the classical reasoner. *}
wenzelm@11750
   709
  apply (erule ssubst)
wenzelm@11750
   710
  apply (rule order_refl)
wenzelm@11750
   711
  done
wenzelm@11750
   712
nipkow@13553
   713
lemma order_less_irrefl [iff]: "~ x < (x::'a::order)"
wenzelm@11750
   714
  by (simp add: order_less_le)
wenzelm@11750
   715
wenzelm@11750
   716
lemma order_le_less: "((x::'a::order) <= y) = (x < y | x = y)"
wenzelm@11750
   717
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
paulson@14208
   718
  apply (simp add: order_less_le, blast)
wenzelm@11750
   719
  done
wenzelm@11750
   720
wenzelm@11750
   721
lemmas order_le_imp_less_or_eq = order_le_less [THEN iffD1, standard]
wenzelm@11750
   722
wenzelm@11750
   723
lemma order_less_imp_le: "!!x::'a::order. x < y ==> x <= y"
wenzelm@11750
   724
  by (simp add: order_less_le)
wenzelm@11750
   725
wenzelm@11750
   726
wenzelm@11750
   727
text {* Asymmetry. *}
wenzelm@11750
   728
wenzelm@11750
   729
lemma order_less_not_sym: "(x::'a::order) < y ==> ~ (y < x)"
wenzelm@11750
   730
  by (simp add: order_less_le order_antisym)
wenzelm@11750
   731
wenzelm@11750
   732
lemma order_less_asym: "x < (y::'a::order) ==> (~P ==> y < x) ==> P"
wenzelm@11750
   733
  apply (drule order_less_not_sym)
paulson@14208
   734
  apply (erule contrapos_np, simp)
wenzelm@11750
   735
  done
wenzelm@11750
   736
paulson@14295
   737
lemma order_eq_iff: "!!x::'a::order. (x = y) = (x \<le> y & y \<le> x)"  
paulson@14295
   738
by (blast intro: order_antisym)
paulson@14295
   739
wenzelm@11750
   740
wenzelm@11750
   741
text {* Transitivity. *}
wenzelm@11750
   742
wenzelm@11750
   743
lemma order_less_trans: "!!x::'a::order. [| x < y; y < z |] ==> x < z"
wenzelm@11750
   744
  apply (simp add: order_less_le)
wenzelm@11750
   745
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   746
  done
wenzelm@11750
   747
wenzelm@11750
   748
lemma order_le_less_trans: "!!x::'a::order. [| x <= y; y < z |] ==> x < z"
wenzelm@11750
   749
  apply (simp add: order_less_le)
wenzelm@11750
   750
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   751
  done
wenzelm@11750
   752
wenzelm@11750
   753
lemma order_less_le_trans: "!!x::'a::order. [| x < y; y <= z |] ==> x < z"
wenzelm@11750
   754
  apply (simp add: order_less_le)
wenzelm@11750
   755
  apply (blast intro: order_trans order_antisym)
wenzelm@11750
   756
  done
wenzelm@11750
   757
wenzelm@11750
   758
wenzelm@11750
   759
text {* Useful for simplification, but too risky to include by default. *}
wenzelm@11750
   760
wenzelm@11750
   761
lemma order_less_imp_not_less: "(x::'a::order) < y ==>  (~ y < x) = True"
wenzelm@11750
   762
  by (blast elim: order_less_asym)
wenzelm@11750
   763
wenzelm@11750
   764
lemma order_less_imp_triv: "(x::'a::order) < y ==>  (y < x --> P) = True"
wenzelm@11750
   765
  by (blast elim: order_less_asym)
wenzelm@11750
   766
wenzelm@11750
   767
lemma order_less_imp_not_eq: "(x::'a::order) < y ==>  (x = y) = False"
wenzelm@11750
   768
  by auto
wenzelm@11750
   769
wenzelm@11750
   770
lemma order_less_imp_not_eq2: "(x::'a::order) < y ==>  (y = x) = False"
wenzelm@11750
   771
  by auto
wenzelm@11750
   772
wenzelm@11750
   773
wenzelm@11750
   774
text {* Other operators. *}
wenzelm@11750
   775
wenzelm@11750
   776
lemma min_leastR: "(!!x::'a::order. least <= x) ==> min x least = least"
wenzelm@11750
   777
  apply (simp add: min_def)
wenzelm@11750
   778
  apply (blast intro: order_antisym)
wenzelm@11750
   779
  done
wenzelm@11750
   780
wenzelm@11750
   781
lemma max_leastR: "(!!x::'a::order. least <= x) ==> max x least = x"
wenzelm@11750
   782
  apply (simp add: max_def)
wenzelm@11750
   783
  apply (blast intro: order_antisym)
wenzelm@11750
   784
  done
wenzelm@11750
   785
wenzelm@11750
   786
wenzelm@11750
   787
subsubsection {* Least value operator *}
wenzelm@11750
   788
wenzelm@11750
   789
constdefs
wenzelm@11750
   790
  Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
wenzelm@11750
   791
  "Least P == THE x. P x & (ALL y. P y --> x <= y)"
wenzelm@11750
   792
    -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
wenzelm@11750
   793
wenzelm@11750
   794
lemma LeastI2:
wenzelm@11750
   795
  "[| P (x::'a::order);
wenzelm@11750
   796
      !!y. P y ==> x <= y;
wenzelm@11750
   797
      !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]
wenzelm@12281
   798
   ==> Q (Least P)"
wenzelm@11750
   799
  apply (unfold Least_def)
wenzelm@11750
   800
  apply (rule theI2)
wenzelm@11750
   801
    apply (blast intro: order_antisym)+
wenzelm@11750
   802
  done
wenzelm@11750
   803
wenzelm@11750
   804
lemma Least_equality:
wenzelm@12281
   805
    "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"
wenzelm@11750
   806
  apply (simp add: Least_def)
wenzelm@11750
   807
  apply (rule the_equality)
wenzelm@11750
   808
  apply (auto intro!: order_antisym)
wenzelm@11750
   809
  done
wenzelm@11750
   810
wenzelm@11750
   811
wenzelm@11750
   812
subsubsection "Linear / total orders"
wenzelm@11750
   813
wenzelm@11750
   814
axclass linorder < order
wenzelm@11750
   815
  linorder_linear: "x <= y | y <= x"
wenzelm@11750
   816
wenzelm@11750
   817
lemma linorder_less_linear: "!!x::'a::linorder. x<y | x=y | y<x"
wenzelm@11750
   818
  apply (simp add: order_less_le)
paulson@14208
   819
  apply (insert linorder_linear, blast)
wenzelm@11750
   820
  done
wenzelm@11750
   821
paulson@14365
   822
lemma linorder_le_cases [case_names le ge]:
paulson@14365
   823
    "((x::'a::linorder) \<le> y ==> P) ==> (y \<le> x ==> P) ==> P"
paulson@14365
   824
  by (insert linorder_linear, blast)
paulson@14365
   825
wenzelm@11750
   826
lemma linorder_cases [case_names less equal greater]:
wenzelm@11750
   827
    "((x::'a::linorder) < y ==> P) ==> (x = y ==> P) ==> (y < x ==> P) ==> P"
paulson@14365
   828
  by (insert linorder_less_linear, blast)
wenzelm@11750
   829
wenzelm@11750
   830
lemma linorder_not_less: "!!x::'a::linorder. (~ x < y) = (y <= x)"
wenzelm@11750
   831
  apply (simp add: order_less_le)
wenzelm@11750
   832
  apply (insert linorder_linear)
wenzelm@11750
   833
  apply (blast intro: order_antisym)
wenzelm@11750
   834
  done
wenzelm@11750
   835
wenzelm@11750
   836
lemma linorder_not_le: "!!x::'a::linorder. (~ x <= y) = (y < x)"
wenzelm@11750
   837
  apply (simp add: order_less_le)
wenzelm@11750
   838
  apply (insert linorder_linear)
wenzelm@11750
   839
  apply (blast intro: order_antisym)
wenzelm@11750
   840
  done
wenzelm@11750
   841
wenzelm@11750
   842
lemma linorder_neq_iff: "!!x::'a::linorder. (x ~= y) = (x<y | y<x)"
paulson@14208
   843
by (cut_tac x = x and y = y in linorder_less_linear, auto)
wenzelm@11750
   844
wenzelm@11750
   845
lemma linorder_neqE: "x ~= (y::'a::linorder) ==> (x < y ==> R) ==> (y < x ==> R) ==> R"
paulson@14208
   846
by (simp add: linorder_neq_iff, blast)
wenzelm@11750
   847
wenzelm@11750
   848
wenzelm@11750
   849
subsubsection "Min and max on (linear) orders"
wenzelm@11750
   850
wenzelm@11750
   851
lemma min_same [simp]: "min (x::'a::order) x = x"
wenzelm@11750
   852
  by (simp add: min_def)
wenzelm@11750
   853
wenzelm@11750
   854
lemma max_same [simp]: "max (x::'a::order) x = x"
wenzelm@11750
   855
  by (simp add: max_def)
wenzelm@11750
   856
wenzelm@11750
   857
lemma le_max_iff_disj: "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)"
wenzelm@11750
   858
  apply (simp add: max_def)
wenzelm@11750
   859
  apply (insert linorder_linear)
wenzelm@11750
   860
  apply (blast intro: order_trans)
wenzelm@11750
   861
  done
wenzelm@11750
   862
wenzelm@11750
   863
lemma le_maxI1: "(x::'a::linorder) <= max x y"
wenzelm@11750
   864
  by (simp add: le_max_iff_disj)
wenzelm@11750
   865
wenzelm@11750
   866
lemma le_maxI2: "(y::'a::linorder) <= max x y"
wenzelm@11750
   867
    -- {* CANNOT use with @{text "[intro!]"} because blast will give PROOF FAILED. *}
wenzelm@11750
   868
  by (simp add: le_max_iff_disj)
wenzelm@11750
   869
wenzelm@11750
   870
lemma less_max_iff_disj: "!!z::'a::linorder. (z < max x y) = (z < x | z < y)"
wenzelm@11750
   871
  apply (simp add: max_def order_le_less)
wenzelm@11750
   872
  apply (insert linorder_less_linear)
wenzelm@11750
   873
  apply (blast intro: order_less_trans)
wenzelm@11750
   874
  done
wenzelm@11750
   875
wenzelm@11750
   876
lemma max_le_iff_conj [simp]:
wenzelm@11750
   877
    "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)"
wenzelm@11750
   878
  apply (simp add: max_def)
wenzelm@11750
   879
  apply (insert linorder_linear)
wenzelm@11750
   880
  apply (blast intro: order_trans)
wenzelm@11750
   881
  done
wenzelm@11750
   882
wenzelm@11750
   883
lemma max_less_iff_conj [simp]:
wenzelm@11750
   884
    "!!z::'a::linorder. (max x y < z) = (x < z & y < z)"
wenzelm@11750
   885
  apply (simp add: order_le_less max_def)
wenzelm@11750
   886
  apply (insert linorder_less_linear)
wenzelm@11750
   887
  apply (blast intro: order_less_trans)
wenzelm@11750
   888
  done
wenzelm@11750
   889
wenzelm@11750
   890
lemma le_min_iff_conj [simp]:
wenzelm@11750
   891
    "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)"
wenzelm@12892
   892
    -- {* @{text "[iff]"} screws up a @{text blast} in MiniML *}
wenzelm@11750
   893
  apply (simp add: min_def)
wenzelm@11750
   894
  apply (insert linorder_linear)
wenzelm@11750
   895
  apply (blast intro: order_trans)
wenzelm@11750
   896
  done
wenzelm@11750
   897
wenzelm@11750
   898
lemma min_less_iff_conj [simp]:
wenzelm@11750
   899
    "!!z::'a::linorder. (z < min x y) = (z < x & z < y)"
wenzelm@11750
   900
  apply (simp add: order_le_less min_def)
wenzelm@11750
   901
  apply (insert linorder_less_linear)
wenzelm@11750
   902
  apply (blast intro: order_less_trans)
wenzelm@11750
   903
  done
wenzelm@11750
   904
wenzelm@11750
   905
lemma min_le_iff_disj: "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)"
wenzelm@11750
   906
  apply (simp add: min_def)
wenzelm@11750
   907
  apply (insert linorder_linear)
wenzelm@11750
   908
  apply (blast intro: order_trans)
wenzelm@11750
   909
  done
wenzelm@11750
   910
wenzelm@11750
   911
lemma min_less_iff_disj: "!!z::'a::linorder. (min x y < z) = (x < z | y < z)"
wenzelm@11750
   912
  apply (simp add: min_def order_le_less)
wenzelm@11750
   913
  apply (insert linorder_less_linear)
wenzelm@11750
   914
  apply (blast intro: order_less_trans)
wenzelm@11750
   915
  done
wenzelm@11750
   916
nipkow@13438
   917
lemma max_assoc: "!!x::'a::linorder. max (max x y) z = max x (max y z)"
nipkow@13438
   918
apply(simp add:max_def)
nipkow@13438
   919
apply(rule conjI)
nipkow@13438
   920
apply(blast intro:order_trans)
nipkow@13438
   921
apply(simp add:linorder_not_le)
nipkow@13438
   922
apply(blast dest: order_less_trans order_le_less_trans)
nipkow@13438
   923
done
nipkow@13438
   924
nipkow@13438
   925
lemma max_commute: "!!x::'a::linorder. max x y = max y x"
nipkow@13438
   926
apply(simp add:max_def)
nipkow@13438
   927
apply(rule conjI)
nipkow@13438
   928
apply(blast intro:order_antisym)
nipkow@13438
   929
apply(simp add:linorder_not_le)
nipkow@13438
   930
apply(blast dest: order_less_trans)
nipkow@13438
   931
done
nipkow@13438
   932
nipkow@13438
   933
lemmas max_ac = max_assoc max_commute
nipkow@13438
   934
                mk_left_commute[of max,OF max_assoc max_commute]
nipkow@13438
   935
nipkow@13438
   936
lemma min_assoc: "!!x::'a::linorder. min (min x y) z = min x (min y z)"
nipkow@13438
   937
apply(simp add:min_def)
nipkow@13438
   938
apply(rule conjI)
nipkow@13438
   939
apply(blast intro:order_trans)
nipkow@13438
   940
apply(simp add:linorder_not_le)
nipkow@13438
   941
apply(blast dest: order_less_trans order_le_less_trans)
nipkow@13438
   942
done
nipkow@13438
   943
nipkow@13438
   944
lemma min_commute: "!!x::'a::linorder. min x y = min y x"
nipkow@13438
   945
apply(simp add:min_def)
nipkow@13438
   946
apply(rule conjI)
nipkow@13438
   947
apply(blast intro:order_antisym)
nipkow@13438
   948
apply(simp add:linorder_not_le)
nipkow@13438
   949
apply(blast dest: order_less_trans)
nipkow@13438
   950
done
nipkow@13438
   951
nipkow@13438
   952
lemmas min_ac = min_assoc min_commute
nipkow@13438
   953
                mk_left_commute[of min,OF min_assoc min_commute]
nipkow@13438
   954
wenzelm@11750
   955
lemma split_min:
wenzelm@11750
   956
    "P (min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))"
wenzelm@11750
   957
  by (simp add: min_def)
wenzelm@11750
   958
wenzelm@11750
   959
lemma split_max:
wenzelm@11750
   960
    "P (max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))"
wenzelm@11750
   961
  by (simp add: max_def)
wenzelm@11750
   962
wenzelm@11750
   963
ballarin@14398
   964
subsubsection {* Transitivity rules for calculational reasoning *}
ballarin@14398
   965
ballarin@14398
   966
ballarin@14398
   967
lemma order_neq_le_trans: "a ~= b ==> (a::'a::order) <= b ==> a < b"
ballarin@14398
   968
  by (simp add: order_less_le)
ballarin@14398
   969
ballarin@14398
   970
lemma order_le_neq_trans: "(a::'a::order) <= b ==> a ~= b ==> a < b"
ballarin@14398
   971
  by (simp add: order_less_le)
ballarin@14398
   972
ballarin@14398
   973
lemma order_less_asym': "(a::'a::order) < b ==> b < a ==> P"
ballarin@14398
   974
  by (rule order_less_asym)
ballarin@14398
   975
ballarin@14398
   976
ballarin@14444
   977
subsubsection {* Setup of transitivity reasoner as Solver *}
ballarin@14398
   978
ballarin@14398
   979
lemma less_imp_neq: "[| (x::'a::order) < y |] ==> x ~= y"
ballarin@14398
   980
  by (erule contrapos_pn, erule subst, rule order_less_irrefl)
ballarin@14398
   981
ballarin@14398
   982
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y"
ballarin@14398
   983
  by (erule subst, erule ssubst, assumption)
ballarin@14398
   984
ballarin@14398
   985
ML_setup {*
ballarin@14398
   986
ballarin@14398
   987
structure Trans_Tac = Trans_Tac_Fun (
ballarin@14398
   988
  struct
ballarin@14398
   989
    val less_reflE = thm "order_less_irrefl" RS thm "notE";
ballarin@14398
   990
    val le_refl = thm "order_refl";
ballarin@14398
   991
    val less_imp_le = thm "order_less_imp_le";
ballarin@14398
   992
    val not_lessI = thm "linorder_not_less" RS thm "iffD2";
ballarin@14398
   993
    val not_leI = thm "linorder_not_le" RS thm "iffD2";
ballarin@14398
   994
    val not_lessD = thm "linorder_not_less" RS thm "iffD1";
ballarin@14398
   995
    val not_leD = thm "linorder_not_le" RS thm "iffD1";
ballarin@14398
   996
    val eqI = thm "order_antisym";
ballarin@14398
   997
    val eqD1 = thm "order_eq_refl";
ballarin@14398
   998
    val eqD2 = thm "sym" RS thm "order_eq_refl";
ballarin@14398
   999
    val less_trans = thm "order_less_trans";
ballarin@14398
  1000
    val less_le_trans = thm "order_less_le_trans";
ballarin@14398
  1001
    val le_less_trans = thm "order_le_less_trans";
ballarin@14398
  1002
    val le_trans = thm "order_trans";
ballarin@14398
  1003
    val le_neq_trans = thm "order_le_neq_trans";
ballarin@14398
  1004
    val neq_le_trans = thm "order_neq_le_trans";
ballarin@14398
  1005
    val less_imp_neq = thm "less_imp_neq";
ballarin@14398
  1006
    val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq";
ballarin@14398
  1007
ballarin@14398
  1008
    fun decomp_gen sort sign (Trueprop $ t) =
ballarin@14398
  1009
      let fun of_sort t = Sign.of_sort sign (type_of t, sort)
ballarin@14398
  1010
      fun dec (Const ("Not", _) $ t) = (
ballarin@14398
  1011
              case dec t of
ballarin@14398
  1012
                None => None
ballarin@14398
  1013
              | Some (t1, rel, t2) => Some (t1, "~" ^ rel, t2))
ballarin@14398
  1014
            | dec (Const ("op =",  _) $ t1 $ t2) = 
ballarin@14398
  1015
                if of_sort t1
ballarin@14398
  1016
                then Some (t1, "=", t2)
ballarin@14398
  1017
                else None
ballarin@14398
  1018
            | dec (Const ("op <=",  _) $ t1 $ t2) = 
ballarin@14398
  1019
                if of_sort t1
ballarin@14398
  1020
                then Some (t1, "<=", t2)
ballarin@14398
  1021
                else None
ballarin@14398
  1022
            | dec (Const ("op <",  _) $ t1 $ t2) = 
ballarin@14398
  1023
                if of_sort t1
ballarin@14398
  1024
                then Some (t1, "<", t2)
ballarin@14398
  1025
                else None
ballarin@14398
  1026
            | dec _ = None
ballarin@14398
  1027
      in dec t end;
ballarin@14398
  1028
ballarin@14398
  1029
    val decomp_part = decomp_gen ["HOL.order"];
ballarin@14398
  1030
    val decomp_lin = decomp_gen ["HOL.linorder"];
ballarin@14398
  1031
ballarin@14398
  1032
  end);  (* struct *)
ballarin@14398
  1033
wenzelm@14590
  1034
simpset_ref() := simpset ()
ballarin@14398
  1035
    addSolver (mk_solver "Trans_linear" (fn _ => Trans_Tac.linear_tac))
ballarin@14398
  1036
    addSolver (mk_solver "Trans_partial" (fn _ => Trans_Tac.partial_tac));
ballarin@14444
  1037
  (* Adding the transitivity reasoners also as safe solvers showed a slight
ballarin@14444
  1038
     speed up, but the reasoning strength appears to be not higher (at least
ballarin@14444
  1039
     no breaking of additional proofs in the entire HOL distribution, as
ballarin@14444
  1040
     of 5 March 2004, was observed). *)
ballarin@14398
  1041
*}
ballarin@14398
  1042
ballarin@14398
  1043
(* Optional methods
ballarin@14398
  1044
ballarin@14398
  1045
method_setup trans_partial =
ballarin@14398
  1046
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trans_tac_partial)) *}
ballarin@14398
  1047
  {* simple transitivity reasoner *}	    
ballarin@14398
  1048
method_setup trans_linear =
ballarin@14398
  1049
  {* Method.no_args (Method.SIMPLE_METHOD' HEADGOAL (trans_tac_linear)) *}
ballarin@14398
  1050
  {* simple transitivity reasoner *}
ballarin@14398
  1051
*)
ballarin@14398
  1052
ballarin@14444
  1053
(*
ballarin@14444
  1054
declare order.order_refl [simp del] order_less_irrefl [simp del]
ballarin@14444
  1055
*)
ballarin@14444
  1056
wenzelm@11750
  1057
subsubsection "Bounded quantifiers"
wenzelm@11750
  1058
wenzelm@11750
  1059
syntax
wenzelm@11750
  1060
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3ALL _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
  1061
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3EX _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
  1062
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3ALL _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
  1063
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3EX _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
  1064
wenzelm@12114
  1065
syntax (xsymbols)
wenzelm@11750
  1066
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
  1067
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
  1068
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@11750
  1069
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
wenzelm@11750
  1070
wenzelm@11750
  1071
syntax (HOL)
wenzelm@11750
  1072
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3! _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
  1073
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3? _<_./ _)"  [0, 0, 10] 10)
wenzelm@11750
  1074
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3! _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
  1075
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3? _<=_./ _)" [0, 0, 10] 10)
wenzelm@11750
  1076
kleing@14565
  1077
syntax (HTML output)
kleing@14565
  1078
  "_lessAll" :: "[idt, 'a, bool] => bool"   ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
kleing@14565
  1079
  "_lessEx"  :: "[idt, 'a, bool] => bool"   ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
kleing@14565
  1080
  "_leAll"   :: "[idt, 'a, bool] => bool"   ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
kleing@14565
  1081
  "_leEx"    :: "[idt, 'a, bool] => bool"   ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
kleing@14565
  1082
wenzelm@11750
  1083
translations
wenzelm@11750
  1084
 "ALL x<y. P"   =>  "ALL x. x < y --> P"
wenzelm@11750
  1085
 "EX x<y. P"    =>  "EX x. x < y  & P"
wenzelm@11750
  1086
 "ALL x<=y. P"  =>  "ALL x. x <= y --> P"
wenzelm@11750
  1087
 "EX x<=y. P"   =>  "EX x. x <= y & P"
wenzelm@11750
  1088
kleing@14357
  1089
print_translation {*
kleing@14357
  1090
let
kleing@14357
  1091
  fun all_tr' [Const ("_bound",_) $ Free (v,_), 
kleing@14357
  1092
               Const("op -->",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
kleing@14357
  1093
  (if v=v' then Syntax.const "_lessAll" $ Syntax.mark_bound v' $ n $ P else raise Match)
kleing@14357
  1094
kleing@14357
  1095
  | all_tr' [Const ("_bound",_) $ Free (v,_), 
kleing@14357
  1096
               Const("op -->",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
kleing@14357
  1097
  (if v=v' then Syntax.const "_leAll" $ Syntax.mark_bound v' $ n $ P else raise Match);
kleing@14357
  1098
kleing@14357
  1099
  fun ex_tr' [Const ("_bound",_) $ Free (v,_), 
kleing@14357
  1100
               Const("op &",_) $ (Const ("op <",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
kleing@14357
  1101
  (if v=v' then Syntax.const "_lessEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
kleing@14357
  1102
kleing@14357
  1103
  | ex_tr' [Const ("_bound",_) $ Free (v,_), 
kleing@14357
  1104
               Const("op &",_) $ (Const ("op <=",_) $ (Const ("_bound",_) $ Free (v',_)) $ n ) $ P] = 
kleing@14357
  1105
  (if v=v' then Syntax.const "_leEx" $ Syntax.mark_bound v' $ n $ P else raise Match)
kleing@14357
  1106
in
kleing@14357
  1107
[("ALL ", all_tr'), ("EX ", ex_tr')]
clasohm@923
  1108
end
kleing@14357
  1109
*}
kleing@14357
  1110
kleing@14357
  1111
end