src/Pure/drule.ML
author wenzelm
Wed Jan 25 00:21:35 2006 +0100 (2006-01-25)
changeset 18777 9d98d5705433
parent 18732 c0511e120f17
child 18799 f137c5e971f5
permissions -rw-r--r--
abs_def: improved error;
wenzelm@252
     1
(*  Title:      Pure/drule.ML
clasohm@0
     2
    ID:         $Id$
wenzelm@252
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
wenzelm@3766
     6
Derived rules and other operations on theorems.
clasohm@0
     7
*)
clasohm@0
     8
berghofe@13606
     9
infix 0 RS RSN RL RLN MRS MRL OF COMP;
clasohm@0
    10
wenzelm@5903
    11
signature BASIC_DRULE =
wenzelm@3766
    12
sig
wenzelm@18179
    13
  val mk_implies: cterm * cterm -> cterm
wenzelm@18179
    14
  val list_implies: cterm list * cterm -> cterm
wenzelm@18179
    15
  val dest_implies: cterm -> cterm * cterm
wenzelm@18179
    16
  val dest_equals: cterm -> cterm * cterm
wenzelm@18179
    17
  val strip_imp_prems: cterm -> cterm list
wenzelm@18179
    18
  val strip_imp_concl: cterm -> cterm
wenzelm@18179
    19
  val cprems_of: thm -> cterm list
wenzelm@18179
    20
  val cterm_fun: (term -> term) -> (cterm -> cterm)
wenzelm@18179
    21
  val ctyp_fun: (typ -> typ) -> (ctyp -> ctyp)
wenzelm@18206
    22
  val read_insts: theory -> (indexname -> typ option) * (indexname -> sort option) ->
wenzelm@18206
    23
    (indexname -> typ option) * (indexname -> sort option) -> string list ->
wenzelm@18206
    24
    (indexname * string) list -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@4285
    25
  val types_sorts: thm -> (indexname-> typ option) * (indexname-> sort option)
wenzelm@18179
    26
  val strip_shyps_warning: thm -> thm
wenzelm@18179
    27
  val forall_intr_list: cterm list -> thm -> thm
wenzelm@18179
    28
  val forall_intr_frees: thm -> thm
wenzelm@18179
    29
  val forall_intr_vars: thm -> thm
wenzelm@18179
    30
  val forall_elim_list: cterm list -> thm -> thm
wenzelm@18179
    31
  val forall_elim_var: int -> thm -> thm
wenzelm@18179
    32
  val forall_elim_vars: int -> thm -> thm
wenzelm@18179
    33
  val gen_all: thm -> thm
wenzelm@18179
    34
  val lift_all: cterm -> thm -> thm
wenzelm@18179
    35
  val freeze_thaw: thm -> thm * (thm -> thm)
paulson@15495
    36
  val freeze_thaw_robust: thm -> thm * (int -> thm -> thm)
wenzelm@18179
    37
  val implies_elim_list: thm -> thm list -> thm
wenzelm@18179
    38
  val implies_intr_list: cterm list -> thm -> thm
wenzelm@18206
    39
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@18179
    40
  val zero_var_indexes: thm -> thm
wenzelm@18179
    41
  val implies_intr_hyps: thm -> thm
wenzelm@18179
    42
  val standard: thm -> thm
wenzelm@18179
    43
  val standard': thm -> thm
wenzelm@18179
    44
  val rotate_prems: int -> thm -> thm
wenzelm@18179
    45
  val rearrange_prems: int list -> thm -> thm
wenzelm@18179
    46
  val assume_ax: theory -> string -> thm
wenzelm@18179
    47
  val RSN: thm * (int * thm) -> thm
wenzelm@18179
    48
  val RS: thm * thm -> thm
wenzelm@18179
    49
  val RLN: thm list * (int * thm list) -> thm list
wenzelm@18179
    50
  val RL: thm list * thm list -> thm list
wenzelm@18179
    51
  val MRS: thm list * thm -> thm
wenzelm@18179
    52
  val MRL: thm list list * thm list -> thm list
wenzelm@18179
    53
  val OF: thm * thm list -> thm
wenzelm@18179
    54
  val compose: thm * int * thm -> thm list
wenzelm@18179
    55
  val COMP: thm * thm -> thm
wenzelm@16425
    56
  val read_instantiate_sg: theory -> (string*string)list -> thm -> thm
wenzelm@18179
    57
  val read_instantiate: (string*string)list -> thm -> thm
wenzelm@18179
    58
  val cterm_instantiate: (cterm*cterm)list -> thm -> thm
wenzelm@18179
    59
  val eq_thm_thy: thm * thm -> bool
wenzelm@18179
    60
  val eq_thm_prop: thm * thm -> bool
wenzelm@18179
    61
  val weak_eq_thm: thm * thm -> bool
wenzelm@18179
    62
  val size_of_thm: thm -> int
wenzelm@18179
    63
  val reflexive_thm: thm
wenzelm@18179
    64
  val symmetric_thm: thm
wenzelm@18179
    65
  val transitive_thm: thm
wenzelm@18179
    66
  val symmetric_fun: thm -> thm
wenzelm@18179
    67
  val extensional: thm -> thm
wenzelm@18179
    68
  val imp_cong: thm
wenzelm@18179
    69
  val swap_prems_eq: thm
wenzelm@18179
    70
  val equal_abs_elim: cterm  -> thm -> thm
wenzelm@4285
    71
  val equal_abs_elim_list: cterm list -> thm -> thm
wenzelm@18179
    72
  val asm_rl: thm
wenzelm@18179
    73
  val cut_rl: thm
wenzelm@18179
    74
  val revcut_rl: thm
wenzelm@18179
    75
  val thin_rl: thm
wenzelm@4285
    76
  val triv_forall_equality: thm
wenzelm@18179
    77
  val swap_prems_rl: thm
wenzelm@18179
    78
  val equal_intr_rule: thm
wenzelm@18179
    79
  val equal_elim_rule1: thm
wenzelm@18179
    80
  val inst: string -> string -> thm -> thm
wenzelm@18179
    81
  val instantiate': ctyp option list -> cterm option list -> thm -> thm
wenzelm@18179
    82
  val incr_indexes: thm -> thm -> thm
wenzelm@18179
    83
  val incr_indexes_wrt: int list -> ctyp list -> cterm list -> thm list -> thm -> thm
wenzelm@5903
    84
end;
wenzelm@5903
    85
wenzelm@5903
    86
signature DRULE =
wenzelm@5903
    87
sig
wenzelm@5903
    88
  include BASIC_DRULE
paulson@15949
    89
  val list_comb: cterm * cterm list -> cterm
berghofe@12908
    90
  val strip_comb: cterm -> cterm * cterm list
berghofe@15262
    91
  val strip_type: ctyp -> ctyp list * ctyp
paulson@15949
    92
  val beta_conv: cterm -> cterm -> cterm
wenzelm@15875
    93
  val plain_prop_of: thm -> term
wenzelm@15669
    94
  val add_used: thm -> string list -> string list
wenzelm@18225
    95
  val map_tags: (tag list -> tag list) -> thm -> thm
wenzelm@11975
    96
  val tag_rule: tag -> thm -> thm
wenzelm@11975
    97
  val untag_rule: string -> thm -> thm
wenzelm@18732
    98
  val tag: tag -> attribute
wenzelm@18732
    99
  val untag: string -> attribute
wenzelm@11975
   100
  val get_kind: thm -> string
wenzelm@18732
   101
  val kind: string -> attribute
wenzelm@11975
   102
  val theoremK: string
wenzelm@11975
   103
  val lemmaK: string
wenzelm@11975
   104
  val corollaryK: string
wenzelm@11975
   105
  val internalK: string
wenzelm@18732
   106
  val kind_internal: attribute
wenzelm@11975
   107
  val has_internal: tag list -> bool
wenzelm@18468
   108
  val is_internal: thm -> bool
berghofe@17713
   109
  val flexflex_unique: thm -> thm
wenzelm@11975
   110
  val close_derivation: thm -> thm
wenzelm@12005
   111
  val local_standard: thm -> thm
wenzelm@11975
   112
  val compose_single: thm * int * thm -> thm
wenzelm@12373
   113
  val add_rule: thm -> thm list -> thm list
wenzelm@12373
   114
  val del_rule: thm -> thm list -> thm list
wenzelm@11975
   115
  val add_rules: thm list -> thm list -> thm list
wenzelm@11975
   116
  val del_rules: thm list -> thm list -> thm list
wenzelm@11975
   117
  val merge_rules: thm list * thm list -> thm list
wenzelm@18468
   118
  val imp_cong_rule: thm -> thm -> thm
skalberg@15001
   119
  val beta_eta_conversion: cterm -> thm
berghofe@15925
   120
  val eta_long_conversion: cterm -> thm
wenzelm@18468
   121
  val forall_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   122
  val concl_conv: int -> (cterm -> thm) -> cterm -> thm
wenzelm@18468
   123
  val prems_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18468
   124
  val conjunction_conv: int -> (int -> cterm -> thm) -> cterm -> thm
wenzelm@18179
   125
  val goals_conv: (int -> bool) -> (cterm -> thm) -> cterm -> thm
wenzelm@18179
   126
  val fconv_rule: (cterm -> thm) -> thm -> thm
wenzelm@11975
   127
  val norm_hhf_eq: thm
wenzelm@12800
   128
  val is_norm_hhf: term -> bool
wenzelm@16425
   129
  val norm_hhf: theory -> term -> term
wenzelm@18025
   130
  val protect: cterm -> cterm
wenzelm@18025
   131
  val protectI: thm
wenzelm@18025
   132
  val protectD: thm
wenzelm@18179
   133
  val protect_cong: thm
wenzelm@18025
   134
  val implies_intr_protected: cterm list -> thm -> thm
wenzelm@11975
   135
  val freeze_all: thm -> thm
wenzelm@11975
   136
  val tvars_of_terms: term list -> (indexname * sort) list
wenzelm@11975
   137
  val vars_of_terms: term list -> (indexname * typ) list
wenzelm@11975
   138
  val tvars_of: thm -> (indexname * sort) list
wenzelm@11975
   139
  val vars_of: thm -> (indexname * typ) list
wenzelm@18129
   140
  val tfrees_of: thm -> (string * sort) list
wenzelm@18129
   141
  val frees_of: thm -> (string * typ) list
wenzelm@18129
   142
  val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
berghofe@14081
   143
  val rename_bvars: (string * string) list -> thm -> thm
berghofe@14081
   144
  val rename_bvars': string option list -> thm -> thm
wenzelm@11975
   145
  val unvarifyT: thm -> thm
wenzelm@11975
   146
  val unvarify: thm -> thm
wenzelm@18129
   147
  val tvars_intr_list: string list -> thm -> (string * (indexname * sort)) list * thm
wenzelm@12297
   148
  val remdups_rl: thm
wenzelm@18225
   149
  val multi_resolve: thm list -> thm -> thm Seq.seq
wenzelm@18225
   150
  val multi_resolves: thm list -> thm list -> thm Seq.seq
wenzelm@11975
   151
  val conj_intr: thm -> thm -> thm
wenzelm@11975
   152
  val conj_intr_list: thm list -> thm
wenzelm@11975
   153
  val conj_elim: thm -> thm * thm
wenzelm@11975
   154
  val conj_elim_list: thm -> thm list
wenzelm@18498
   155
  val conj_elim_precise: int list -> thm -> thm list list
wenzelm@12135
   156
  val conj_intr_thm: thm
wenzelm@18206
   157
  val conj_curry: thm -> thm
berghofe@13325
   158
  val abs_def: thm -> thm
wenzelm@16425
   159
  val read_instantiate_sg': theory -> (indexname * string) list -> thm -> thm
berghofe@15797
   160
  val read_instantiate': (indexname * string) list -> thm -> thm
wenzelm@3766
   161
end;
clasohm@0
   162
wenzelm@5903
   163
structure Drule: DRULE =
clasohm@0
   164
struct
clasohm@0
   165
wenzelm@3991
   166
wenzelm@16682
   167
(** some cterm->cterm operations: faster than calling cterm_of! **)
lcp@708
   168
paulson@2004
   169
fun dest_implies ct =
wenzelm@16682
   170
  (case Thm.term_of ct of
wenzelm@16682
   171
    (Const ("==>", _) $ _ $ _) =>
wenzelm@16682
   172
      let val (ct1, ct2) = Thm.dest_comb ct
wenzelm@16682
   173
      in (#2 (Thm.dest_comb ct1), ct2) end
wenzelm@16682
   174
  | _ => raise TERM ("dest_implies", [term_of ct]));
clasohm@1703
   175
berghofe@10414
   176
fun dest_equals ct =
wenzelm@16682
   177
  (case Thm.term_of ct of
wenzelm@16682
   178
    (Const ("==", _) $ _ $ _) =>
wenzelm@16682
   179
      let val (ct1, ct2) = Thm.dest_comb ct
wenzelm@16682
   180
      in (#2 (Thm.dest_comb ct1), ct2) end
wenzelm@16682
   181
    | _ => raise TERM ("dest_equals", [term_of ct]));
berghofe@10414
   182
clasohm@1703
   183
lcp@708
   184
(* A1==>...An==>B  goes to  [A1,...,An], where B is not an implication *)
paulson@2004
   185
fun strip_imp_prems ct =
paulson@2004
   186
    let val (cA,cB) = dest_implies ct
paulson@2004
   187
    in  cA :: strip_imp_prems cB  end
lcp@708
   188
    handle TERM _ => [];
lcp@708
   189
paulson@2004
   190
(* A1==>...An==>B  goes to B, where B is not an implication *)
paulson@2004
   191
fun strip_imp_concl ct =
wenzelm@8328
   192
    case term_of ct of (Const("==>", _) $ _ $ _) =>
wenzelm@10767
   193
        strip_imp_concl (#2 (Thm.dest_comb ct))
paulson@2004
   194
  | _ => ct;
paulson@2004
   195
lcp@708
   196
(*The premises of a theorem, as a cterm list*)
berghofe@13659
   197
val cprems_of = strip_imp_prems o cprop_of;
lcp@708
   198
berghofe@15797
   199
fun cterm_fun f ct =
wenzelm@16425
   200
  let val {t, thy, ...} = Thm.rep_cterm ct
wenzelm@16425
   201
  in Thm.cterm_of thy (f t) end;
berghofe@15797
   202
berghofe@15797
   203
fun ctyp_fun f cT =
wenzelm@16425
   204
  let val {T, thy, ...} = Thm.rep_ctyp cT
wenzelm@16425
   205
  in Thm.ctyp_of thy (f T) end;
berghofe@15797
   206
wenzelm@16425
   207
val implies = cterm_of ProtoPure.thy Term.implies;
paulson@9547
   208
paulson@9547
   209
(*cterm version of mk_implies*)
wenzelm@10767
   210
fun mk_implies(A,B) = Thm.capply (Thm.capply implies A) B;
paulson@9547
   211
paulson@9547
   212
(*cterm version of list_implies: [A1,...,An], B  goes to [|A1;==>;An|]==>B *)
paulson@9547
   213
fun list_implies([], B) = B
paulson@9547
   214
  | list_implies(A::AS, B) = mk_implies (A, list_implies(AS,B));
paulson@9547
   215
paulson@15949
   216
(*cterm version of list_comb: maps  (f, [t1,...,tn])  to  f(t1,...,tn) *)
paulson@15949
   217
fun list_comb (f, []) = f
paulson@15949
   218
  | list_comb (f, t::ts) = list_comb (Thm.capply f t, ts);
paulson@15949
   219
berghofe@12908
   220
(*cterm version of strip_comb: maps  f(t1,...,tn)  to  (f, [t1,...,tn]) *)
wenzelm@18179
   221
fun strip_comb ct =
berghofe@12908
   222
  let
berghofe@12908
   223
    fun stripc (p as (ct, cts)) =
berghofe@12908
   224
      let val (ct1, ct2) = Thm.dest_comb ct
berghofe@12908
   225
      in stripc (ct1, ct2 :: cts) end handle CTERM _ => p
berghofe@12908
   226
  in stripc (ct, []) end;
berghofe@12908
   227
berghofe@15262
   228
(* cterm version of strip_type: maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T) *)
berghofe@15262
   229
fun strip_type cT = (case Thm.typ_of cT of
berghofe@15262
   230
    Type ("fun", _) =>
berghofe@15262
   231
      let
berghofe@15262
   232
        val [cT1, cT2] = Thm.dest_ctyp cT;
berghofe@15262
   233
        val (cTs, cT') = strip_type cT2
berghofe@15262
   234
      in (cT1 :: cTs, cT') end
berghofe@15262
   235
  | _ => ([], cT));
berghofe@15262
   236
paulson@15949
   237
(*Beta-conversion for cterms, where x is an abstraction. Simply returns the rhs
paulson@15949
   238
  of the meta-equality returned by the beta_conversion rule.*)
wenzelm@18179
   239
fun beta_conv x y =
paulson@15949
   240
    #2 (Thm.dest_comb (cprop_of (Thm.beta_conversion false (Thm.capply x y))));
paulson@15949
   241
wenzelm@15875
   242
fun plain_prop_of raw_thm =
wenzelm@15875
   243
  let
wenzelm@15875
   244
    val thm = Thm.strip_shyps raw_thm;
wenzelm@15875
   245
    fun err msg = raise THM ("plain_prop_of: " ^ msg, 0, [thm]);
wenzelm@15875
   246
    val {hyps, prop, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15875
   247
  in
wenzelm@15875
   248
    if not (null hyps) then
wenzelm@15875
   249
      err "theorem may not contain hypotheses"
wenzelm@15875
   250
    else if not (null (Thm.extra_shyps thm)) then
wenzelm@15875
   251
      err "theorem may not contain sort hypotheses"
wenzelm@15875
   252
    else if not (null tpairs) then
wenzelm@15875
   253
      err "theorem may not contain flex-flex pairs"
wenzelm@15875
   254
    else prop
wenzelm@15875
   255
  end;
wenzelm@15875
   256
wenzelm@15875
   257
lcp@708
   258
lcp@229
   259
(** reading of instantiations **)
lcp@229
   260
lcp@229
   261
fun absent ixn =
lcp@229
   262
  error("No such variable in term: " ^ Syntax.string_of_vname ixn);
lcp@229
   263
lcp@229
   264
fun inst_failure ixn =
lcp@229
   265
  error("Instantiation of " ^ Syntax.string_of_vname ixn ^ " fails");
lcp@229
   266
wenzelm@16425
   267
fun read_insts thy (rtypes,rsorts) (types,sorts) used insts =
wenzelm@10403
   268
let
berghofe@15442
   269
    fun is_tv ((a, _), _) =
berghofe@15442
   270
      (case Symbol.explode a of "'" :: _ => true | _ => false);
skalberg@15570
   271
    val (tvs, vs) = List.partition is_tv insts;
berghofe@15797
   272
    fun sort_of ixn = case rsorts ixn of SOME S => S | NONE => absent ixn;
berghofe@15442
   273
    fun readT (ixn, st) =
berghofe@15797
   274
        let val S = sort_of ixn;
wenzelm@16425
   275
            val T = Sign.read_typ (thy,sorts) st;
wenzelm@16425
   276
        in if Sign.typ_instance thy (T, TVar(ixn,S)) then (ixn,T)
nipkow@4281
   277
           else inst_failure ixn
nipkow@4281
   278
        end
nipkow@4281
   279
    val tye = map readT tvs;
nipkow@4281
   280
    fun mkty(ixn,st) = (case rtypes ixn of
skalberg@15531
   281
                          SOME T => (ixn,(st,typ_subst_TVars tye T))
skalberg@15531
   282
                        | NONE => absent ixn);
nipkow@4281
   283
    val ixnsTs = map mkty vs;
nipkow@4281
   284
    val ixns = map fst ixnsTs
nipkow@4281
   285
    and sTs  = map snd ixnsTs
wenzelm@16425
   286
    val (cts,tye2) = read_def_cterms(thy,types,sorts) used false sTs;
nipkow@4281
   287
    fun mkcVar(ixn,T) =
nipkow@4281
   288
        let val U = typ_subst_TVars tye2 T
wenzelm@16425
   289
        in cterm_of thy (Var(ixn,U)) end
nipkow@4281
   290
    val ixnTs = ListPair.zip(ixns, map snd sTs)
wenzelm@16425
   291
in (map (fn (ixn, T) => (ctyp_of thy (TVar (ixn, sort_of ixn)),
wenzelm@16425
   292
      ctyp_of thy T)) (tye2 @ tye),
nipkow@4281
   293
    ListPair.zip(map mkcVar ixnTs,cts))
nipkow@4281
   294
end;
lcp@229
   295
lcp@229
   296
wenzelm@252
   297
(*** Find the type (sort) associated with a (T)Var or (T)Free in a term
clasohm@0
   298
     Used for establishing default types (of variables) and sorts (of
clasohm@0
   299
     type variables) when reading another term.
clasohm@0
   300
     Index -1 indicates that a (T)Free rather than a (T)Var is wanted.
clasohm@0
   301
***)
clasohm@0
   302
clasohm@0
   303
fun types_sorts thm =
wenzelm@15669
   304
    let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm;
wenzelm@15669
   305
        (* bogus term! *)
wenzelm@18179
   306
        val big = Term.list_comb
paulson@15949
   307
                    (Term.list_comb (prop, hyps), Thm.terms_of_tpairs tpairs);
wenzelm@252
   308
        val vars = map dest_Var (term_vars big);
wenzelm@252
   309
        val frees = map dest_Free (term_frees big);
wenzelm@252
   310
        val tvars = term_tvars big;
wenzelm@252
   311
        val tfrees = term_tfrees big;
haftmann@17325
   312
        fun typ(a,i) = if i<0 then AList.lookup (op =) frees a else AList.lookup (op =) vars (a,i);
haftmann@17325
   313
        fun sort(a,i) = if i<0 then AList.lookup (op =) tfrees a else AList.lookup (op =) tvars (a,i);
clasohm@0
   314
    in (typ,sort) end;
clasohm@0
   315
wenzelm@15669
   316
fun add_used thm used =
wenzelm@15669
   317
  let val {prop, hyps, tpairs, ...} = Thm.rep_thm thm in
wenzelm@15669
   318
    add_term_tvarnames (prop, used)
wenzelm@15669
   319
    |> fold (curry add_term_tvarnames) hyps
wenzelm@15669
   320
    |> fold (curry add_term_tvarnames) (Thm.terms_of_tpairs tpairs)
wenzelm@15669
   321
  end;
wenzelm@15669
   322
wenzelm@7636
   323
wenzelm@9455
   324
wenzelm@18732
   325
(** theorem tags **)
wenzelm@9455
   326
wenzelm@9455
   327
(* add / delete tags *)
wenzelm@9455
   328
wenzelm@9455
   329
fun map_tags f thm =
wenzelm@9455
   330
  Thm.put_name_tags (Thm.name_of_thm thm, f (#2 (Thm.get_name_tags thm))) thm;
wenzelm@9455
   331
wenzelm@9455
   332
fun tag_rule tg = map_tags (fn tgs => if tg mem tgs then tgs else tgs @ [tg]);
wenzelm@9455
   333
fun untag_rule s = map_tags (filter_out (equal s o #1));
wenzelm@9455
   334
wenzelm@18732
   335
fun tag tg x = Thm.rule_attribute (K (tag_rule tg)) x;
wenzelm@18732
   336
fun untag s x = Thm.rule_attribute (K (untag_rule s)) x;
wenzelm@9455
   337
wenzelm@9455
   338
fun simple_tag name x = tag (name, []) x;
wenzelm@9455
   339
wenzelm@11741
   340
wenzelm@11741
   341
(* theorem kinds *)
wenzelm@11741
   342
wenzelm@11741
   343
val theoremK = "theorem";
wenzelm@11741
   344
val lemmaK = "lemma";
wenzelm@11741
   345
val corollaryK = "corollary";
wenzelm@11741
   346
val internalK = "internal";
wenzelm@9455
   347
wenzelm@11741
   348
fun get_kind thm =
haftmann@17325
   349
  (case AList.lookup (op =) ((#2 o Thm.get_name_tags) thm) "kind" of
skalberg@15531
   350
    SOME (k :: _) => k
wenzelm@11741
   351
  | _ => "unknown");
wenzelm@11741
   352
wenzelm@11741
   353
fun kind_rule k = tag_rule ("kind", [k]) o untag_rule "kind";
wenzelm@18732
   354
fun kind k x = if k = "" then x else Thm.rule_attribute (K (kind_rule k)) x;
wenzelm@11741
   355
fun kind_internal x = kind internalK x;
wenzelm@18468
   356
fun has_internal tags = exists (fn ("kind", [k]) => k = internalK | _ => false) tags;
wenzelm@18468
   357
val is_internal = has_internal o Thm.tags_of_thm;
wenzelm@9455
   358
wenzelm@9455
   359
wenzelm@9455
   360
clasohm@0
   361
(** Standardization of rules **)
clasohm@0
   362
wenzelm@18025
   363
(*vars in left-to-right order*)
wenzelm@18025
   364
fun tvars_of_terms ts = rev (fold Term.add_tvars ts []);
wenzelm@18025
   365
fun vars_of_terms ts = rev (fold Term.add_vars ts []);
wenzelm@18025
   366
fun tvars_of thm = tvars_of_terms [Thm.full_prop_of thm];
wenzelm@18025
   367
fun vars_of thm = vars_of_terms [Thm.full_prop_of thm];
wenzelm@18025
   368
wenzelm@18129
   369
fun fold_terms f th =
wenzelm@18129
   370
  let val {hyps, tpairs, prop, ...} = Thm.rep_thm th
wenzelm@18129
   371
  in f prop #> fold (fn (t, u) => f t #> f u) tpairs #> fold f hyps end;
wenzelm@18129
   372
wenzelm@18129
   373
fun tfrees_of th = rev (fold_terms Term.add_tfrees th []);
wenzelm@18129
   374
fun frees_of th = rev (fold_terms Term.add_frees th []);
wenzelm@18129
   375
wenzelm@7636
   376
(*Strip extraneous shyps as far as possible*)
wenzelm@7636
   377
fun strip_shyps_warning thm =
wenzelm@7636
   378
  let
wenzelm@16425
   379
    val str_of_sort = Pretty.str_of o Sign.pretty_sort (Thm.theory_of_thm thm);
wenzelm@7636
   380
    val thm' = Thm.strip_shyps thm;
wenzelm@7636
   381
    val xshyps = Thm.extra_shyps thm';
wenzelm@7636
   382
  in
wenzelm@7636
   383
    if null xshyps then ()
wenzelm@7636
   384
    else warning ("Pending sort hypotheses: " ^ commas (map str_of_sort xshyps));
wenzelm@7636
   385
    thm'
wenzelm@7636
   386
  end;
wenzelm@7636
   387
clasohm@0
   388
(*Generalization over a list of variables, IGNORING bad ones*)
clasohm@0
   389
fun forall_intr_list [] th = th
clasohm@0
   390
  | forall_intr_list (y::ys) th =
wenzelm@252
   391
        let val gth = forall_intr_list ys th
wenzelm@252
   392
        in  forall_intr y gth   handle THM _ =>  gth  end;
clasohm@0
   393
clasohm@0
   394
(*Generalization over all suitable Free variables*)
clasohm@0
   395
fun forall_intr_frees th =
wenzelm@16425
   396
    let val {prop,thy,...} = rep_thm th
clasohm@0
   397
    in  forall_intr_list
wenzelm@16983
   398
         (map (cterm_of thy) (sort Term.term_ord (term_frees prop)))
clasohm@0
   399
         th
clasohm@0
   400
    end;
clasohm@0
   401
wenzelm@18535
   402
(*Generalization over Vars -- canonical order*)
wenzelm@18535
   403
fun forall_intr_vars th =
wenzelm@18535
   404
  let val cert = Thm.cterm_of (Thm.theory_of_thm th)
wenzelm@18535
   405
  in forall_intr_list (map (cert o Var) (vars_of th)) th end;
wenzelm@18535
   406
wenzelm@7898
   407
val forall_elim_var = PureThy.forall_elim_var;
wenzelm@7898
   408
val forall_elim_vars = PureThy.forall_elim_vars;
clasohm@0
   409
wenzelm@18025
   410
fun outer_params t =
wenzelm@18025
   411
  let
wenzelm@18025
   412
    val vs = Term.strip_all_vars t;
wenzelm@18375
   413
    val xs = Term.variantlist (map (perhaps (try Syntax.dest_skolem) o #1) vs, []);
wenzelm@18025
   414
  in xs ~~ map #2 vs end;
wenzelm@18025
   415
wenzelm@18025
   416
(*generalize outermost parameters*)
wenzelm@18025
   417
fun gen_all th =
wenzelm@12719
   418
  let
wenzelm@18025
   419
    val {thy, prop, maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   420
    val cert = Thm.cterm_of thy;
wenzelm@18025
   421
    fun elim (x, T) = Thm.forall_elim (cert (Var ((x, maxidx + 1), T)));
wenzelm@18025
   422
  in fold elim (outer_params prop) th end;
wenzelm@18025
   423
wenzelm@18025
   424
(*lift vars wrt. outermost goal parameters
wenzelm@18118
   425
  -- reverses the effect of gen_all modulo higher-order unification*)
wenzelm@18025
   426
fun lift_all goal th =
wenzelm@18025
   427
  let
wenzelm@18025
   428
    val thy = Theory.merge (Thm.theory_of_cterm goal, Thm.theory_of_thm th);
wenzelm@18025
   429
    val cert = Thm.cterm_of thy;
wenzelm@18025
   430
    val {maxidx, ...} = Thm.rep_thm th;
wenzelm@18025
   431
    val ps = outer_params (Thm.term_of goal)
wenzelm@18025
   432
      |> map (fn (x, T) => Var ((x, maxidx + 1), Logic.incr_tvar (maxidx + 1) T));
wenzelm@18025
   433
    val Ts = map Term.fastype_of ps;
wenzelm@18025
   434
    val inst = vars_of th |> map (fn (xi, T) =>
wenzelm@18025
   435
      (cert (Var (xi, T)), cert (Term.list_comb (Var (xi, Ts ---> T), ps))));
wenzelm@18025
   436
  in
wenzelm@18025
   437
    th |> Thm.instantiate ([], inst)
wenzelm@18025
   438
    |> fold_rev (Thm.forall_intr o cert) ps
wenzelm@18025
   439
  end;
wenzelm@18025
   440
wenzelm@9554
   441
wenzelm@16949
   442
(*specialization over a list of cterms*)
wenzelm@16949
   443
val forall_elim_list = fold forall_elim;
clasohm@0
   444
wenzelm@16949
   445
(*maps A1,...,An |- B  to  [| A1;...;An |] ==> B*)
wenzelm@16949
   446
val implies_intr_list = fold_rev implies_intr;
clasohm@0
   447
wenzelm@16949
   448
(*maps [| A1;...;An |] ==> B and [A1,...,An]  to  B*)
skalberg@15570
   449
fun implies_elim_list impth ths = Library.foldl (uncurry implies_elim) (impth,ths);
clasohm@0
   450
clasohm@0
   451
(*Reset Var indexes to zero, renaming to preserve distinctness*)
wenzelm@252
   452
fun zero_var_indexes th =
wenzelm@16949
   453
  let
wenzelm@16949
   454
    val thy = Thm.theory_of_thm th;
wenzelm@16949
   455
    val certT = Thm.ctyp_of thy and cert = Thm.cterm_of thy;
wenzelm@16949
   456
    val (instT, inst) = Term.zero_var_indexes_inst (Thm.full_prop_of th);
wenzelm@16949
   457
    val cinstT = map (fn (v, T) => (certT (TVar v), certT T)) instT;
wenzelm@16949
   458
    val cinst = map (fn (v, t) => (cert (Var v), cert t)) inst;
wenzelm@16949
   459
  in Thm.adjust_maxidx_thm (Thm.instantiate (cinstT, cinst) th) end;
clasohm@0
   460
clasohm@0
   461
paulson@14394
   462
(** Standard form of object-rule: no hypotheses, flexflex constraints,
paulson@14394
   463
    Frees, or outer quantifiers; all generality expressed by Vars of index 0.**)
wenzelm@10515
   464
wenzelm@16595
   465
(*Discharge all hypotheses.*)
wenzelm@16595
   466
fun implies_intr_hyps th =
wenzelm@16595
   467
  fold Thm.implies_intr (#hyps (Thm.crep_thm th)) th;
wenzelm@16595
   468
paulson@14394
   469
(*Squash a theorem's flexflex constraints provided it can be done uniquely.
paulson@14394
   470
  This step can lose information.*)
paulson@14387
   471
fun flexflex_unique th =
berghofe@17713
   472
  if null (tpairs_of th) then th else
paulson@14387
   473
    case Seq.chop (2, flexflex_rule th) of
paulson@14387
   474
      ([th],_) => th
paulson@14387
   475
    | ([],_)   => raise THM("flexflex_unique: impossible constraints", 0, [th])
paulson@14387
   476
    |      _   => raise THM("flexflex_unique: multiple unifiers", 0, [th]);
paulson@14387
   477
wenzelm@10515
   478
fun close_derivation thm =
wenzelm@10515
   479
  if Thm.get_name_tags thm = ("", []) then Thm.name_thm ("", thm)
wenzelm@10515
   480
  else thm;
wenzelm@10515
   481
wenzelm@16949
   482
val standard' =
wenzelm@16949
   483
  implies_intr_hyps
wenzelm@16949
   484
  #> forall_intr_frees
wenzelm@16949
   485
  #> `(#maxidx o Thm.rep_thm)
wenzelm@16949
   486
  #-> (fn maxidx =>
wenzelm@16949
   487
    forall_elim_vars (maxidx + 1)
wenzelm@16949
   488
    #> strip_shyps_warning
wenzelm@16949
   489
    #> zero_var_indexes
wenzelm@16949
   490
    #> Thm.varifyT
wenzelm@16949
   491
    #> Thm.compress);
wenzelm@1218
   492
wenzelm@16949
   493
val standard =
wenzelm@16949
   494
  flexflex_unique
wenzelm@16949
   495
  #> standard'
wenzelm@16949
   496
  #> close_derivation;
berghofe@11512
   497
wenzelm@16949
   498
val local_standard =
wenzelm@16949
   499
  strip_shyps
wenzelm@16949
   500
  #> zero_var_indexes
wenzelm@16949
   501
  #> Thm.compress
wenzelm@16949
   502
  #> close_derivation;
wenzelm@12005
   503
clasohm@0
   504
wenzelm@8328
   505
(*Convert all Vars in a theorem to Frees.  Also return a function for
paulson@4610
   506
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.
paulson@4610
   507
  Similar code in type/freeze_thaw*)
paulson@15495
   508
paulson@15495
   509
fun freeze_thaw_robust th =
paulson@15495
   510
 let val fth = freezeT th
wenzelm@16425
   511
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@15495
   512
 in
skalberg@15574
   513
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@15495
   514
       [] => (fth, fn i => fn x => x)   (*No vars: nothing to do!*)
paulson@15495
   515
     | vars =>
paulson@15495
   516
         let fun newName (Var(ix,_), pairs) =
paulson@15495
   517
                   let val v = gensym (string_of_indexname ix)
paulson@15495
   518
                   in  ((ix,v)::pairs)  end;
skalberg@15574
   519
             val alist = foldr newName [] vars
paulson@15495
   520
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   521
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   522
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
paulson@15495
   523
             val insts = map mk_inst vars
paulson@15495
   524
             fun thaw i th' = (*i is non-negative increment for Var indexes*)
paulson@15495
   525
                 th' |> forall_intr_list (map #2 insts)
paulson@15495
   526
                     |> forall_elim_list (map (Thm.cterm_incr_indexes i o #1) insts)
paulson@15495
   527
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@15495
   528
 end;
paulson@15495
   529
paulson@15495
   530
(*Basic version of the function above. No option to rename Vars apart in thaw.
paulson@15495
   531
  The Frees created from Vars have nice names.*)
paulson@4610
   532
fun freeze_thaw th =
paulson@7248
   533
 let val fth = freezeT th
wenzelm@16425
   534
     val {prop, tpairs, thy, ...} = rep_thm fth
paulson@7248
   535
 in
skalberg@15574
   536
   case foldr add_term_vars [] (prop :: Thm.terms_of_tpairs tpairs) of
paulson@7248
   537
       [] => (fth, fn x => x)
paulson@7248
   538
     | vars =>
wenzelm@8328
   539
         let fun newName (Var(ix,_), (pairs,used)) =
wenzelm@8328
   540
                   let val v = variant used (string_of_indexname ix)
wenzelm@8328
   541
                   in  ((ix,v)::pairs, v::used)  end;
skalberg@15574
   542
             val (alist, _) = foldr newName ([], Library.foldr add_term_names
skalberg@15574
   543
               (prop :: Thm.terms_of_tpairs tpairs, [])) vars
wenzelm@8328
   544
             fun mk_inst (Var(v,T)) =
wenzelm@16425
   545
                 (cterm_of thy (Var(v,T)),
haftmann@17325
   546
                  cterm_of thy (Free(((the o AList.lookup (op =) alist) v), T)))
wenzelm@8328
   547
             val insts = map mk_inst vars
wenzelm@8328
   548
             fun thaw th' =
wenzelm@8328
   549
                 th' |> forall_intr_list (map #2 insts)
wenzelm@8328
   550
                     |> forall_elim_list (map #1 insts)
wenzelm@8328
   551
         in  (Thm.instantiate ([],insts) fth, thaw)  end
paulson@7248
   552
 end;
paulson@4610
   553
paulson@7248
   554
(*Rotates a rule's premises to the left by k*)
paulson@7248
   555
val rotate_prems = permute_prems 0;
paulson@4610
   556
oheimb@11163
   557
(* permute prems, where the i-th position in the argument list (counting from 0)
oheimb@11163
   558
   gives the position within the original thm to be transferred to position i.
oheimb@11163
   559
   Any remaining trailing positions are left unchanged. *)
oheimb@11163
   560
val rearrange_prems = let
oheimb@11163
   561
  fun rearr new []      thm = thm
wenzelm@11815
   562
  |   rearr new (p::ps) thm = rearr (new+1)
oheimb@11163
   563
     (map (fn q => if new<=q andalso q<p then q+1 else q) ps)
oheimb@11163
   564
     (permute_prems (new+1) (new-p) (permute_prems new (p-new) thm))
oheimb@11163
   565
  in rearr 0 end;
paulson@4610
   566
wenzelm@252
   567
(*Assume a new formula, read following the same conventions as axioms.
clasohm@0
   568
  Generalizes over Free variables,
clasohm@0
   569
  creates the assumption, and then strips quantifiers.
clasohm@0
   570
  Example is [| ALL x:?A. ?P(x) |] ==> [| ?P(?a) |]
wenzelm@252
   571
             [ !(A,P,a)[| ALL x:A. P(x) |] ==> [| P(a) |] ]    *)
clasohm@0
   572
fun assume_ax thy sP =
wenzelm@16425
   573
  let val prop = Logic.close_form (term_of (read_cterm thy (sP, propT)))
wenzelm@16425
   574
  in forall_elim_vars 0 (Thm.assume (cterm_of thy prop)) end;
clasohm@0
   575
wenzelm@252
   576
(*Resolution: exactly one resolvent must be produced.*)
clasohm@0
   577
fun tha RSN (i,thb) =
wenzelm@4270
   578
  case Seq.chop (2, biresolution false [(false,tha)] i thb) of
clasohm@0
   579
      ([th],_) => th
clasohm@0
   580
    | ([],_)   => raise THM("RSN: no unifiers", i, [tha,thb])
clasohm@0
   581
    |      _   => raise THM("RSN: multiple unifiers", i, [tha,thb]);
clasohm@0
   582
clasohm@0
   583
(*resolution: P==>Q, Q==>R gives P==>R. *)
clasohm@0
   584
fun tha RS thb = tha RSN (1,thb);
clasohm@0
   585
clasohm@0
   586
(*For joining lists of rules*)
wenzelm@252
   587
fun thas RLN (i,thbs) =
clasohm@0
   588
  let val resolve = biresolution false (map (pair false) thas) i
wenzelm@4270
   589
      fun resb thb = Seq.list_of (resolve thb) handle THM _ => []
paulson@2672
   590
  in  List.concat (map resb thbs)  end;
clasohm@0
   591
clasohm@0
   592
fun thas RL thbs = thas RLN (1,thbs);
clasohm@0
   593
lcp@11
   594
(*Resolve a list of rules against bottom_rl from right to left;
lcp@11
   595
  makes proof trees*)
wenzelm@252
   596
fun rls MRS bottom_rl =
lcp@11
   597
  let fun rs_aux i [] = bottom_rl
wenzelm@252
   598
        | rs_aux i (rl::rls) = rl RSN (i, rs_aux (i+1) rls)
lcp@11
   599
  in  rs_aux 1 rls  end;
lcp@11
   600
lcp@11
   601
(*As above, but for rule lists*)
wenzelm@252
   602
fun rlss MRL bottom_rls =
lcp@11
   603
  let fun rs_aux i [] = bottom_rls
wenzelm@252
   604
        | rs_aux i (rls::rlss) = rls RLN (i, rs_aux (i+1) rlss)
lcp@11
   605
  in  rs_aux 1 rlss  end;
lcp@11
   606
wenzelm@9288
   607
(*A version of MRS with more appropriate argument order*)
wenzelm@9288
   608
fun bottom_rl OF rls = rls MRS bottom_rl;
wenzelm@9288
   609
wenzelm@252
   610
(*compose Q and [...,Qi,Q(i+1),...]==>R to [...,Q(i+1),...]==>R
clasohm@0
   611
  with no lifting or renaming!  Q may contain ==> or meta-quants
clasohm@0
   612
  ALWAYS deletes premise i *)
wenzelm@252
   613
fun compose(tha,i,thb) =
wenzelm@4270
   614
    Seq.list_of (bicompose false (false,tha,0) i thb);
clasohm@0
   615
wenzelm@6946
   616
fun compose_single (tha,i,thb) =
wenzelm@6946
   617
  (case compose (tha,i,thb) of
wenzelm@6946
   618
    [th] => th
wenzelm@6946
   619
  | _ => raise THM ("compose: unique result expected", i, [tha,thb]));
wenzelm@6946
   620
clasohm@0
   621
(*compose Q and [Q1,Q2,...,Qk]==>R to [Q2,...,Qk]==>R getting unique result*)
clasohm@0
   622
fun tha COMP thb =
clasohm@0
   623
    case compose(tha,1,thb) of
wenzelm@252
   624
        [th] => th
clasohm@0
   625
      | _ =>   raise THM("COMP", 1, [tha,thb]);
clasohm@0
   626
wenzelm@13105
   627
wenzelm@4016
   628
(** theorem equality **)
clasohm@0
   629
wenzelm@16425
   630
(*True if the two theorems have the same theory.*)
wenzelm@16425
   631
val eq_thm_thy = eq_thy o pairself Thm.theory_of_thm;
paulson@13650
   632
paulson@13650
   633
(*True if the two theorems have the same prop field, ignoring hyps, der, etc.*)
wenzelm@16720
   634
val eq_thm_prop = op aconv o pairself Thm.full_prop_of;
clasohm@0
   635
clasohm@0
   636
(*Useful "distance" function for BEST_FIRST*)
wenzelm@16720
   637
val size_of_thm = size_of_term o Thm.full_prop_of;
clasohm@0
   638
wenzelm@9829
   639
(*maintain lists of theorems --- preserving canonical order*)
wenzelm@13105
   640
fun del_rules rs rules = Library.gen_rems eq_thm_prop (rules, rs);
wenzelm@9862
   641
fun add_rules rs rules = rs @ del_rules rs rules;
wenzelm@12373
   642
val del_rule = del_rules o single;
wenzelm@12373
   643
val add_rule = add_rules o single;
wenzelm@13105
   644
fun merge_rules (rules1, rules2) = gen_merge_lists' eq_thm_prop rules1 rules2;
wenzelm@9829
   645
wenzelm@18535
   646
(*weak_eq_thm: ignores variable renaming and (some) type variable renaming*)
wenzelm@13105
   647
val weak_eq_thm = Thm.eq_thm o pairself (forall_intr_vars o freezeT);
lcp@1194
   648
lcp@1194
   649
clasohm@0
   650
(*** Meta-Rewriting Rules ***)
clasohm@0
   651
wenzelm@16425
   652
fun read_prop s = read_cterm ProtoPure.thy (s, propT);
paulson@4610
   653
wenzelm@9455
   654
fun store_thm name thm = hd (PureThy.smart_store_thms (name, [thm]));
wenzelm@9455
   655
fun store_standard_thm name thm = store_thm name (standard thm);
wenzelm@12135
   656
fun store_thm_open name thm = hd (PureThy.smart_store_thms_open (name, [thm]));
wenzelm@12135
   657
fun store_standard_thm_open name thm = store_thm_open name (standard' thm);
wenzelm@4016
   658
clasohm@0
   659
val reflexive_thm =
wenzelm@16425
   660
  let val cx = cterm_of ProtoPure.thy (Var(("x",0),TVar(("'a",0),[])))
wenzelm@12135
   661
  in store_standard_thm_open "reflexive" (Thm.reflexive cx) end;
clasohm@0
   662
clasohm@0
   663
val symmetric_thm =
wenzelm@14854
   664
  let val xy = read_prop "x == y"
wenzelm@16595
   665
  in store_standard_thm_open "symmetric" (Thm.implies_intr xy (Thm.symmetric (Thm.assume xy))) end;
clasohm@0
   666
clasohm@0
   667
val transitive_thm =
wenzelm@14854
   668
  let val xy = read_prop "x == y"
wenzelm@14854
   669
      val yz = read_prop "y == z"
clasohm@0
   670
      val xythm = Thm.assume xy and yzthm = Thm.assume yz
wenzelm@12135
   671
  in store_standard_thm_open "transitive" (Thm.implies_intr yz (Thm.transitive xythm yzthm)) end;
clasohm@0
   672
nipkow@4679
   673
fun symmetric_fun thm = thm RS symmetric_thm;
nipkow@4679
   674
berghofe@11512
   675
fun extensional eq =
berghofe@11512
   676
  let val eq' =
berghofe@11512
   677
    abstract_rule "x" (snd (Thm.dest_comb (fst (dest_equals (cprop_of eq))))) eq
berghofe@11512
   678
  in equal_elim (eta_conversion (cprop_of eq')) eq' end;
berghofe@11512
   679
berghofe@10414
   680
val imp_cong =
berghofe@10414
   681
  let
berghofe@10414
   682
    val ABC = read_prop "PROP A ==> PROP B == PROP C"
berghofe@10414
   683
    val AB = read_prop "PROP A ==> PROP B"
berghofe@10414
   684
    val AC = read_prop "PROP A ==> PROP C"
berghofe@10414
   685
    val A = read_prop "PROP A"
berghofe@10414
   686
  in
wenzelm@12135
   687
    store_standard_thm_open "imp_cong" (implies_intr ABC (equal_intr
berghofe@10414
   688
      (implies_intr AB (implies_intr A
berghofe@10414
   689
        (equal_elim (implies_elim (assume ABC) (assume A))
berghofe@10414
   690
          (implies_elim (assume AB) (assume A)))))
berghofe@10414
   691
      (implies_intr AC (implies_intr A
berghofe@10414
   692
        (equal_elim (symmetric (implies_elim (assume ABC) (assume A)))
berghofe@10414
   693
          (implies_elim (assume AC) (assume A)))))))
berghofe@10414
   694
  end;
berghofe@10414
   695
berghofe@10414
   696
val swap_prems_eq =
berghofe@10414
   697
  let
berghofe@10414
   698
    val ABC = read_prop "PROP A ==> PROP B ==> PROP C"
berghofe@10414
   699
    val BAC = read_prop "PROP B ==> PROP A ==> PROP C"
berghofe@10414
   700
    val A = read_prop "PROP A"
berghofe@10414
   701
    val B = read_prop "PROP B"
berghofe@10414
   702
  in
wenzelm@12135
   703
    store_standard_thm_open "swap_prems_eq" (equal_intr
berghofe@10414
   704
      (implies_intr ABC (implies_intr B (implies_intr A
berghofe@10414
   705
        (implies_elim (implies_elim (assume ABC) (assume A)) (assume B)))))
berghofe@10414
   706
      (implies_intr BAC (implies_intr A (implies_intr B
berghofe@10414
   707
        (implies_elim (implies_elim (assume BAC) (assume B)) (assume A))))))
berghofe@10414
   708
  end;
lcp@229
   709
wenzelm@18468
   710
val imp_cong_rule = combination o combination (reflexive implies);
clasohm@0
   711
skalberg@15001
   712
local
skalberg@15001
   713
  val dest_eq = dest_equals o cprop_of
skalberg@15001
   714
  val rhs_of = snd o dest_eq
skalberg@15001
   715
in
skalberg@15001
   716
fun beta_eta_conversion t =
skalberg@15001
   717
  let val thm = beta_conversion true t
skalberg@15001
   718
  in transitive thm (eta_conversion (rhs_of thm)) end
skalberg@15001
   719
end;
skalberg@15001
   720
berghofe@15925
   721
fun eta_long_conversion ct = transitive (beta_eta_conversion ct)
berghofe@15925
   722
  (symmetric (beta_eta_conversion (cterm_fun (Pattern.eta_long []) ct)));
berghofe@15925
   723
wenzelm@18337
   724
val abs_def =
wenzelm@18337
   725
  let
wenzelm@18337
   726
    fun contract_lhs th =
wenzelm@18337
   727
      Thm.transitive (Thm.symmetric (beta_eta_conversion (fst (dest_equals (cprop_of th))))) th;
wenzelm@18777
   728
    fun abstract cx th = Thm.abstract_rule
wenzelm@18777
   729
        (case Thm.term_of cx of Var ((x, _), _) => x | Free (x, _) => x | _ => "x") cx th
wenzelm@18777
   730
      handle THM _ => raise THM ("Malformed definitional equation", 0, [th]);
wenzelm@18337
   731
  in
wenzelm@18337
   732
    contract_lhs
wenzelm@18337
   733
    #> `(snd o strip_comb o fst o dest_equals o cprop_of)
wenzelm@18337
   734
    #-> fold_rev abstract
wenzelm@18337
   735
    #> contract_lhs
wenzelm@18337
   736
  end;
wenzelm@18337
   737
wenzelm@18468
   738
(*rewrite B in !!x1 ... xn. B*)
wenzelm@18251
   739
fun forall_conv 0 cv ct = cv ct
wenzelm@18251
   740
  | forall_conv n cv ct =
wenzelm@18468
   741
      (case try Thm.dest_comb ct of
wenzelm@18468
   742
        NONE => cv ct
wenzelm@18468
   743
      | SOME (A, B) =>
wenzelm@18468
   744
          (case (term_of A, term_of B) of
wenzelm@18468
   745
            (Const ("all", _), Abs (x, _, _)) =>
wenzelm@18468
   746
              let val (v, B') = Thm.dest_abs (SOME (gensym "all_")) B in
wenzelm@18468
   747
                Thm.combination (Thm.reflexive A)
wenzelm@18468
   748
                  (Thm.abstract_rule x v (forall_conv (n - 1) cv B'))
wenzelm@18468
   749
              end
wenzelm@18468
   750
          | _ => cv ct));
wenzelm@18468
   751
wenzelm@18468
   752
(*rewrite B in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   753
fun concl_conv 0 cv ct = cv ct
wenzelm@18468
   754
  | concl_conv n cv ct =
wenzelm@18468
   755
      (case try dest_implies ct of
wenzelm@18468
   756
        NONE => cv ct
wenzelm@18468
   757
      | SOME (A, B) => imp_cong_rule (reflexive A) (concl_conv (n - 1) cv B));
skalberg@15001
   758
wenzelm@18468
   759
(*rewrite the A's in A1 ==> ... ==> An ==> B*)
wenzelm@18468
   760
fun prems_conv 0 _ = reflexive
wenzelm@18468
   761
  | prems_conv n cv =
wenzelm@18468
   762
      let
wenzelm@18468
   763
        fun conv i ct =
wenzelm@18468
   764
          if i = n + 1 then reflexive ct
wenzelm@18468
   765
          else
wenzelm@18468
   766
            (case try dest_implies ct of
wenzelm@18468
   767
              NONE => reflexive ct
wenzelm@18468
   768
            | SOME (A, B) => imp_cong_rule (cv i A) (conv (i + 1) B));
wenzelm@18468
   769
  in conv 1 end;
wenzelm@18468
   770
wenzelm@18468
   771
(*rewrite the A's in A1 && ... && An*)
wenzelm@18468
   772
fun conjunction_conv 0 _ = reflexive
wenzelm@18468
   773
  | conjunction_conv n cv =
wenzelm@18468
   774
      let
wenzelm@18468
   775
        fun conv i ct =
wenzelm@18468
   776
          if i <> n andalso can Logic.dest_conjunction (term_of ct) then
wenzelm@18468
   777
            forall_conv 1
wenzelm@18468
   778
              (prems_conv 1 (K (prems_conv 2 (fn 1 => cv i | 2 => conv (i + 1))))) ct
wenzelm@18468
   779
          else cv i ct;
wenzelm@18468
   780
      in conv 1 end;
wenzelm@18468
   781
wenzelm@18468
   782
wenzelm@18468
   783
fun goals_conv pred cv = prems_conv ~1 (fn i => if pred i then cv else reflexive);
skalberg@15001
   784
fun fconv_rule cv th = equal_elim (cv (cprop_of th)) th;
skalberg@15001
   785
wenzelm@18468
   786
wenzelm@15669
   787
(*** Some useful meta-theorems ***)
clasohm@0
   788
clasohm@0
   789
(*The rule V/V, obtains assumption solving for eresolve_tac*)
wenzelm@12135
   790
val asm_rl = store_standard_thm_open "asm_rl" (Thm.trivial (read_prop "PROP ?psi"));
wenzelm@7380
   791
val _ = store_thm "_" asm_rl;
clasohm@0
   792
clasohm@0
   793
(*Meta-level cut rule: [| V==>W; V |] ==> W *)
wenzelm@4016
   794
val cut_rl =
wenzelm@12135
   795
  store_standard_thm_open "cut_rl"
wenzelm@9455
   796
    (Thm.trivial (read_prop "PROP ?psi ==> PROP ?theta"));
clasohm@0
   797
wenzelm@252
   798
(*Generalized elim rule for one conclusion; cut_rl with reversed premises:
clasohm@0
   799
     [| PROP V;  PROP V ==> PROP W |] ==> PROP W *)
clasohm@0
   800
val revcut_rl =
paulson@4610
   801
  let val V = read_prop "PROP V"
paulson@4610
   802
      and VW = read_prop "PROP V ==> PROP W";
wenzelm@4016
   803
  in
wenzelm@12135
   804
    store_standard_thm_open "revcut_rl"
wenzelm@4016
   805
      (implies_intr V (implies_intr VW (implies_elim (assume VW) (assume V))))
clasohm@0
   806
  end;
clasohm@0
   807
lcp@668
   808
(*for deleting an unwanted assumption*)
lcp@668
   809
val thin_rl =
paulson@4610
   810
  let val V = read_prop "PROP V"
paulson@4610
   811
      and W = read_prop "PROP W";
wenzelm@12135
   812
  in store_standard_thm_open "thin_rl" (implies_intr V (implies_intr W (assume W))) end;
lcp@668
   813
clasohm@0
   814
(* (!!x. PROP ?V) == PROP ?V       Allows removal of redundant parameters*)
clasohm@0
   815
val triv_forall_equality =
paulson@4610
   816
  let val V  = read_prop "PROP V"
paulson@4610
   817
      and QV = read_prop "!!x::'a. PROP V"
wenzelm@16425
   818
      and x  = read_cterm ProtoPure.thy ("x", TypeInfer.logicT);
wenzelm@4016
   819
  in
wenzelm@12135
   820
    store_standard_thm_open "triv_forall_equality"
berghofe@11512
   821
      (equal_intr (implies_intr QV (forall_elim x (assume QV)))
berghofe@11512
   822
        (implies_intr V  (forall_intr x (assume V))))
clasohm@0
   823
  end;
clasohm@0
   824
nipkow@1756
   825
(* (PROP ?PhiA ==> PROP ?PhiB ==> PROP ?Psi) ==>
nipkow@1756
   826
   (PROP ?PhiB ==> PROP ?PhiA ==> PROP ?Psi)
nipkow@1756
   827
   `thm COMP swap_prems_rl' swaps the first two premises of `thm'
nipkow@1756
   828
*)
nipkow@1756
   829
val swap_prems_rl =
paulson@4610
   830
  let val cmajor = read_prop "PROP PhiA ==> PROP PhiB ==> PROP Psi";
nipkow@1756
   831
      val major = assume cmajor;
paulson@4610
   832
      val cminor1 = read_prop "PROP PhiA";
nipkow@1756
   833
      val minor1 = assume cminor1;
paulson@4610
   834
      val cminor2 = read_prop "PROP PhiB";
nipkow@1756
   835
      val minor2 = assume cminor2;
wenzelm@12135
   836
  in store_standard_thm_open "swap_prems_rl"
nipkow@1756
   837
       (implies_intr cmajor (implies_intr cminor2 (implies_intr cminor1
nipkow@1756
   838
         (implies_elim (implies_elim major minor1) minor2))))
nipkow@1756
   839
  end;
nipkow@1756
   840
nipkow@3653
   841
(* [| PROP ?phi ==> PROP ?psi; PROP ?psi ==> PROP ?phi |]
nipkow@3653
   842
   ==> PROP ?phi == PROP ?psi
wenzelm@8328
   843
   Introduction rule for == as a meta-theorem.
nipkow@3653
   844
*)
nipkow@3653
   845
val equal_intr_rule =
paulson@4610
   846
  let val PQ = read_prop "PROP phi ==> PROP psi"
paulson@4610
   847
      and QP = read_prop "PROP psi ==> PROP phi"
wenzelm@4016
   848
  in
wenzelm@12135
   849
    store_standard_thm_open "equal_intr_rule"
wenzelm@4016
   850
      (implies_intr PQ (implies_intr QP (equal_intr (assume PQ) (assume QP))))
nipkow@3653
   851
  end;
nipkow@3653
   852
wenzelm@13368
   853
(* [| PROP ?phi == PROP ?psi; PROP ?phi |] ==> PROP ?psi *)
wenzelm@13368
   854
val equal_elim_rule1 =
wenzelm@13368
   855
  let val eq = read_prop "PROP phi == PROP psi"
wenzelm@13368
   856
      and P = read_prop "PROP phi"
wenzelm@13368
   857
  in store_standard_thm_open "equal_elim_rule1"
wenzelm@13368
   858
    (Thm.equal_elim (assume eq) (assume P) |> implies_intr_list [eq, P])
wenzelm@13368
   859
  end;
wenzelm@4285
   860
wenzelm@12297
   861
(* "[| PROP ?phi; PROP ?phi; PROP ?psi |] ==> PROP ?psi" *)
wenzelm@12297
   862
wenzelm@12297
   863
val remdups_rl =
wenzelm@12297
   864
  let val P = read_prop "PROP phi" and Q = read_prop "PROP psi";
wenzelm@12297
   865
  in store_standard_thm_open "remdups_rl" (implies_intr_list [P, P, Q] (Thm.assume Q)) end;
wenzelm@12297
   866
wenzelm@12297
   867
wenzelm@9554
   868
(*(PROP ?phi ==> (!!x. PROP ?psi(x))) == (!!x. PROP ?phi ==> PROP ?psi(x))
wenzelm@12297
   869
  Rewrite rule for HHF normalization.*)
wenzelm@9554
   870
wenzelm@9554
   871
val norm_hhf_eq =
wenzelm@9554
   872
  let
wenzelm@16425
   873
    val cert = Thm.cterm_of ProtoPure.thy;
wenzelm@14854
   874
    val aT = TFree ("'a", []);
wenzelm@9554
   875
    val all = Term.all aT;
wenzelm@9554
   876
    val x = Free ("x", aT);
wenzelm@9554
   877
    val phi = Free ("phi", propT);
wenzelm@9554
   878
    val psi = Free ("psi", aT --> propT);
wenzelm@9554
   879
wenzelm@9554
   880
    val cx = cert x;
wenzelm@9554
   881
    val cphi = cert phi;
wenzelm@9554
   882
    val lhs = cert (Logic.mk_implies (phi, all $ Abs ("x", aT, psi $ Bound 0)));
wenzelm@9554
   883
    val rhs = cert (all $ Abs ("x", aT, Logic.mk_implies (phi, psi $ Bound 0)));
wenzelm@9554
   884
  in
wenzelm@9554
   885
    Thm.equal_intr
wenzelm@9554
   886
      (Thm.implies_elim (Thm.assume lhs) (Thm.assume cphi)
wenzelm@9554
   887
        |> Thm.forall_elim cx
wenzelm@9554
   888
        |> Thm.implies_intr cphi
wenzelm@9554
   889
        |> Thm.forall_intr cx
wenzelm@9554
   890
        |> Thm.implies_intr lhs)
wenzelm@9554
   891
      (Thm.implies_elim
wenzelm@9554
   892
          (Thm.assume rhs |> Thm.forall_elim cx) (Thm.assume cphi)
wenzelm@9554
   893
        |> Thm.forall_intr cx
wenzelm@9554
   894
        |> Thm.implies_intr cphi
wenzelm@9554
   895
        |> Thm.implies_intr rhs)
wenzelm@12135
   896
    |> store_standard_thm_open "norm_hhf_eq"
wenzelm@9554
   897
  end;
wenzelm@9554
   898
wenzelm@18179
   899
val norm_hhf_prop = Logic.dest_equals (Thm.prop_of norm_hhf_eq);
wenzelm@18179
   900
wenzelm@12800
   901
fun is_norm_hhf tm =
wenzelm@12800
   902
  let
wenzelm@12800
   903
    fun is_norm (Const ("==>", _) $ _ $ (Const ("all", _) $ _)) = false
wenzelm@12800
   904
      | is_norm (t $ u) = is_norm t andalso is_norm u
wenzelm@12800
   905
      | is_norm (Abs (_, _, t)) = is_norm t
wenzelm@12800
   906
      | is_norm _ = true;
wenzelm@12800
   907
  in is_norm (Pattern.beta_eta_contract tm) end;
wenzelm@12800
   908
wenzelm@16425
   909
fun norm_hhf thy t =
wenzelm@12800
   910
  if is_norm_hhf t then t
wenzelm@18179
   911
  else Pattern.rewrite_term thy [norm_hhf_prop] [] t;
wenzelm@18179
   912
wenzelm@12800
   913
wenzelm@9554
   914
wenzelm@16425
   915
(*** Instantiate theorem th, reading instantiations in theory thy ****)
paulson@8129
   916
paulson@8129
   917
(*Version that normalizes the result: Thm.instantiate no longer does that*)
paulson@8129
   918
fun instantiate instpair th = Thm.instantiate instpair th  COMP   asm_rl;
paulson@8129
   919
wenzelm@16425
   920
fun read_instantiate_sg' thy sinsts th =
paulson@8129
   921
    let val ts = types_sorts th;
wenzelm@15669
   922
        val used = add_used th [];
wenzelm@16425
   923
    in  instantiate (read_insts thy ts ts used sinsts) th  end;
berghofe@15797
   924
wenzelm@16425
   925
fun read_instantiate_sg thy sinsts th =
wenzelm@16425
   926
  read_instantiate_sg' thy (map (apfst Syntax.indexname) sinsts) th;
paulson@8129
   927
paulson@8129
   928
(*Instantiate theorem th, reading instantiations under theory of th*)
paulson@8129
   929
fun read_instantiate sinsts th =
wenzelm@16425
   930
    read_instantiate_sg (Thm.theory_of_thm th) sinsts th;
paulson@8129
   931
berghofe@15797
   932
fun read_instantiate' sinsts th =
wenzelm@16425
   933
    read_instantiate_sg' (Thm.theory_of_thm th) sinsts th;
berghofe@15797
   934
paulson@8129
   935
paulson@8129
   936
(*Left-to-right replacements: tpairs = [...,(vi,ti),...].
paulson@8129
   937
  Instantiates distinct Vars by terms, inferring type instantiations. *)
paulson@8129
   938
local
wenzelm@16425
   939
  fun add_types ((ct,cu), (thy,tye,maxidx)) =
wenzelm@16425
   940
    let val {thy=thyt, t=t, T= T, maxidx=maxt,...} = rep_cterm ct
wenzelm@16425
   941
        and {thy=thyu, t=u, T= U, maxidx=maxu,...} = rep_cterm cu;
paulson@8129
   942
        val maxi = Int.max(maxidx, Int.max(maxt, maxu));
wenzelm@16425
   943
        val thy' = Theory.merge(thy, Theory.merge(thyt, thyu))
wenzelm@16949
   944
        val (tye',maxi') = Sign.typ_unify thy' (T, U) (tye, maxi)
wenzelm@10403
   945
          handle Type.TUNIFY => raise TYPE("Ill-typed instantiation", [T,U], [t,u])
wenzelm@16425
   946
    in  (thy', tye', maxi')  end;
paulson@8129
   947
in
paulson@8129
   948
fun cterm_instantiate ctpairs0 th =
wenzelm@16425
   949
  let val (thy,tye,_) = foldr add_types (Thm.theory_of_thm th, Vartab.empty, 0) ctpairs0
wenzelm@18179
   950
      fun instT(ct,cu) =
wenzelm@16425
   951
        let val inst = cterm_of thy o Envir.subst_TVars tye o term_of
paulson@14340
   952
        in (inst ct, inst cu) end
wenzelm@16425
   953
      fun ctyp2 (ixn, (S, T)) = (ctyp_of thy (TVar (ixn, S)), ctyp_of thy T)
berghofe@8406
   954
  in  instantiate (map ctyp2 (Vartab.dest tye), map instT ctpairs0) th  end
paulson@8129
   955
  handle TERM _ =>
wenzelm@16425
   956
           raise THM("cterm_instantiate: incompatible theories",0,[th])
paulson@8129
   957
       | TYPE (msg, _, _) => raise THM(msg, 0, [th])
paulson@8129
   958
end;
paulson@8129
   959
paulson@8129
   960
paulson@8129
   961
(** Derived rules mainly for METAHYPS **)
paulson@8129
   962
paulson@8129
   963
(*Given the term "a", takes (%x.t)==(%x.u) to t[a/x]==u[a/x]*)
paulson@8129
   964
fun equal_abs_elim ca eqth =
wenzelm@16425
   965
  let val {thy=thya, t=a, ...} = rep_cterm ca
paulson@8129
   966
      and combth = combination eqth (reflexive ca)
wenzelm@16425
   967
      val {thy,prop,...} = rep_thm eqth
paulson@8129
   968
      val (abst,absu) = Logic.dest_equals prop
wenzelm@16425
   969
      val cterm = cterm_of (Theory.merge (thy,thya))
berghofe@10414
   970
  in  transitive (symmetric (beta_conversion false (cterm (abst$a))))
berghofe@10414
   971
           (transitive combth (beta_conversion false (cterm (absu$a))))
paulson@8129
   972
  end
paulson@8129
   973
  handle THM _ => raise THM("equal_abs_elim", 0, [eqth]);
paulson@8129
   974
paulson@8129
   975
(*Calling equal_abs_elim with multiple terms*)
skalberg@15574
   976
fun equal_abs_elim_list cts th = foldr (uncurry equal_abs_elim) th (rev cts);
paulson@8129
   977
paulson@8129
   978
wenzelm@18025
   979
(** protected propositions **)
wenzelm@4789
   980
wenzelm@4789
   981
local
wenzelm@16425
   982
  val cert = Thm.cterm_of ProtoPure.thy;
wenzelm@18025
   983
  val A = cert (Free ("A", propT));
wenzelm@18025
   984
  val prop_def = #1 (freeze_thaw ProtoPure.prop_def);
wenzelm@4789
   985
in
wenzelm@18025
   986
  val protect = Thm.capply (cert Logic.protectC);
wenzelm@18025
   987
  val protectI = store_thm "protectI" (kind_rule internalK (standard
wenzelm@18025
   988
      (Thm.equal_elim (Thm.symmetric prop_def) (Thm.assume A))));
wenzelm@18025
   989
  val protectD = store_thm "protectD" (kind_rule internalK (standard
wenzelm@18025
   990
      (Thm.equal_elim prop_def (Thm.assume (protect A)))));
wenzelm@18179
   991
  val protect_cong = store_standard_thm_open "protect_cong" (Thm.reflexive (protect A));
wenzelm@4789
   992
end;
wenzelm@4789
   993
wenzelm@18025
   994
fun implies_intr_protected asms th =
wenzelm@18118
   995
  let val asms' = map protect asms in
wenzelm@18118
   996
    implies_elim_list
wenzelm@18118
   997
      (implies_intr_list asms th)
wenzelm@18118
   998
      (map (fn asm' => Thm.assume asm' RS protectD) asms')
wenzelm@18118
   999
    |> implies_intr_list asms'
wenzelm@18118
  1000
  end;
wenzelm@11815
  1001
wenzelm@4789
  1002
wenzelm@5688
  1003
(** variations on instantiate **)
wenzelm@4285
  1004
paulson@8550
  1005
(*shorthand for instantiating just one variable in the current theory*)
wenzelm@16425
  1006
fun inst x t = read_instantiate_sg (the_context()) [(x,t)];
paulson@8550
  1007
paulson@8550
  1008
wenzelm@4285
  1009
(* instantiate by left-to-right occurrence of variables *)
wenzelm@4285
  1010
wenzelm@4285
  1011
fun instantiate' cTs cts thm =
wenzelm@4285
  1012
  let
wenzelm@4285
  1013
    fun err msg =
wenzelm@4285
  1014
      raise TYPE ("instantiate': " ^ msg,
skalberg@15570
  1015
        List.mapPartial (Option.map Thm.typ_of) cTs,
skalberg@15570
  1016
        List.mapPartial (Option.map Thm.term_of) cts);
wenzelm@4285
  1017
wenzelm@4285
  1018
    fun inst_of (v, ct) =
wenzelm@16425
  1019
      (Thm.cterm_of (Thm.theory_of_cterm ct) (Var v), ct)
wenzelm@4285
  1020
        handle TYPE (msg, _, _) => err msg;
wenzelm@4285
  1021
berghofe@15797
  1022
    fun tyinst_of (v, cT) =
wenzelm@16425
  1023
      (Thm.ctyp_of (Thm.theory_of_ctyp cT) (TVar v), cT)
berghofe@15797
  1024
        handle TYPE (msg, _, _) => err msg;
berghofe@15797
  1025
wenzelm@4285
  1026
    fun zip_vars _ [] = []
skalberg@15531
  1027
      | zip_vars (_ :: vs) (NONE :: opt_ts) = zip_vars vs opt_ts
skalberg@15531
  1028
      | zip_vars (v :: vs) (SOME t :: opt_ts) = (v, t) :: zip_vars vs opt_ts
wenzelm@4285
  1029
      | zip_vars [] _ = err "more instantiations than variables in thm";
wenzelm@4285
  1030
wenzelm@4285
  1031
    (*instantiate types first!*)
wenzelm@4285
  1032
    val thm' =
wenzelm@4285
  1033
      if forall is_none cTs then thm
berghofe@15797
  1034
      else Thm.instantiate (map tyinst_of (zip_vars (tvars_of thm) cTs), []) thm;
wenzelm@4285
  1035
    in
wenzelm@4285
  1036
      if forall is_none cts then thm'
wenzelm@4285
  1037
      else Thm.instantiate ([], map inst_of (zip_vars (vars_of thm') cts)) thm'
wenzelm@4285
  1038
    end;
wenzelm@4285
  1039
wenzelm@4285
  1040
berghofe@14081
  1041
berghofe@14081
  1042
(** renaming of bound variables **)
berghofe@14081
  1043
berghofe@14081
  1044
(* replace bound variables x_i in thm by y_i *)
berghofe@14081
  1045
(* where vs = [(x_1, y_1), ..., (x_n, y_n)]  *)
berghofe@14081
  1046
berghofe@14081
  1047
fun rename_bvars [] thm = thm
berghofe@14081
  1048
  | rename_bvars vs thm =
berghofe@14081
  1049
    let
wenzelm@16425
  1050
      val {thy, prop, ...} = rep_thm thm;
haftmann@17325
  1051
      fun ren (Abs (x, T, t)) = Abs (AList.lookup (op =) vs x |> the_default x, T, ren t)
berghofe@14081
  1052
        | ren (t $ u) = ren t $ ren u
berghofe@14081
  1053
        | ren t = t;
wenzelm@16425
  1054
    in equal_elim (reflexive (cterm_of thy (ren prop))) thm end;
berghofe@14081
  1055
berghofe@14081
  1056
berghofe@14081
  1057
(* renaming in left-to-right order *)
berghofe@14081
  1058
berghofe@14081
  1059
fun rename_bvars' xs thm =
berghofe@14081
  1060
  let
wenzelm@16425
  1061
    val {thy, prop, ...} = rep_thm thm;
berghofe@14081
  1062
    fun rename [] t = ([], t)
berghofe@14081
  1063
      | rename (x' :: xs) (Abs (x, T, t)) =
berghofe@14081
  1064
          let val (xs', t') = rename xs t
skalberg@15570
  1065
          in (xs', Abs (getOpt (x',x), T, t')) end
berghofe@14081
  1066
      | rename xs (t $ u) =
berghofe@14081
  1067
          let
berghofe@14081
  1068
            val (xs', t') = rename xs t;
berghofe@14081
  1069
            val (xs'', u') = rename xs' u
berghofe@14081
  1070
          in (xs'', t' $ u') end
berghofe@14081
  1071
      | rename xs t = (xs, t);
berghofe@14081
  1072
  in case rename xs prop of
wenzelm@16425
  1073
      ([], prop') => equal_elim (reflexive (cterm_of thy prop')) thm
berghofe@14081
  1074
    | _ => error "More names than abstractions in theorem"
berghofe@14081
  1075
  end;
berghofe@14081
  1076
berghofe@14081
  1077
berghofe@14081
  1078
wenzelm@5688
  1079
(* unvarify(T) *)
wenzelm@5688
  1080
wenzelm@5688
  1081
(*assume thm in standard form, i.e. no frees, 0 var indexes*)
wenzelm@5688
  1082
wenzelm@5688
  1083
fun unvarifyT thm =
wenzelm@5688
  1084
  let
wenzelm@16425
  1085
    val cT = Thm.ctyp_of (Thm.theory_of_thm thm);
skalberg@15531
  1086
    val tfrees = map (fn ((x, _), S) => SOME (cT (TFree (x, S)))) (tvars_of thm);
wenzelm@5688
  1087
  in instantiate' tfrees [] thm end;
wenzelm@5688
  1088
wenzelm@5688
  1089
fun unvarify raw_thm =
wenzelm@5688
  1090
  let
wenzelm@5688
  1091
    val thm = unvarifyT raw_thm;
wenzelm@16425
  1092
    val ct = Thm.cterm_of (Thm.theory_of_thm thm);
skalberg@15531
  1093
    val frees = map (fn ((x, _), T) => SOME (ct (Free (x, T)))) (vars_of thm);
wenzelm@5688
  1094
  in instantiate' [] frees thm end;
wenzelm@5688
  1095
wenzelm@5688
  1096
wenzelm@8605
  1097
(* tvars_intr_list *)
wenzelm@8605
  1098
wenzelm@8605
  1099
fun tvars_intr_list tfrees thm =
wenzelm@18129
  1100
  apfst (map (fn ((s, S), ixn) => (s, (ixn, S)))) (Thm.varifyT'
berghofe@15797
  1101
    (gen_rems (op = o apfst fst) (tfrees_of thm, tfrees)) thm);
wenzelm@8605
  1102
wenzelm@8605
  1103
wenzelm@6435
  1104
(* increment var indexes *)
wenzelm@6435
  1105
wenzelm@18025
  1106
fun incr_indexes th = Thm.incr_indexes (#maxidx (Thm.rep_thm th) + 1);
wenzelm@18025
  1107
wenzelm@6435
  1108
fun incr_indexes_wrt is cTs cts thms =
wenzelm@6435
  1109
  let
wenzelm@6435
  1110
    val maxidx =
skalberg@15570
  1111
      Library.foldl Int.max (~1, is @
wenzelm@6435
  1112
        map (maxidx_of_typ o #T o Thm.rep_ctyp) cTs @
wenzelm@6435
  1113
        map (#maxidx o Thm.rep_cterm) cts @
wenzelm@6435
  1114
        map (#maxidx o Thm.rep_thm) thms);
berghofe@10414
  1115
  in Thm.incr_indexes (maxidx + 1) end;
wenzelm@6435
  1116
wenzelm@6435
  1117
wenzelm@8328
  1118
(* freeze_all *)
wenzelm@8328
  1119
wenzelm@8328
  1120
(*freeze all (T)Vars; assumes thm in standard form*)
wenzelm@8328
  1121
wenzelm@8328
  1122
fun freeze_all_TVars thm =
wenzelm@8328
  1123
  (case tvars_of thm of
wenzelm@8328
  1124
    [] => thm
wenzelm@8328
  1125
  | tvars =>
wenzelm@16425
  1126
      let val cert = Thm.ctyp_of (Thm.theory_of_thm thm)
skalberg@15531
  1127
      in instantiate' (map (fn ((x, _), S) => SOME (cert (TFree (x, S)))) tvars) [] thm end);
wenzelm@8328
  1128
wenzelm@8328
  1129
fun freeze_all_Vars thm =
wenzelm@8328
  1130
  (case vars_of thm of
wenzelm@8328
  1131
    [] => thm
wenzelm@8328
  1132
  | vars =>
wenzelm@16425
  1133
      let val cert = Thm.cterm_of (Thm.theory_of_thm thm)
skalberg@15531
  1134
      in instantiate' [] (map (fn ((x, _), T) => SOME (cert (Free (x, T)))) vars) thm end);
wenzelm@8328
  1135
wenzelm@8328
  1136
val freeze_all = freeze_all_Vars o freeze_all_TVars;
wenzelm@8328
  1137
wenzelm@8328
  1138
wenzelm@11975
  1139
wenzelm@18225
  1140
(** multi_resolve **)
wenzelm@18225
  1141
wenzelm@18225
  1142
local
wenzelm@18225
  1143
wenzelm@18225
  1144
fun res th i rule =
wenzelm@18225
  1145
  Thm.biresolution false [(false, th)] i rule handle THM _ => Seq.empty;
wenzelm@18225
  1146
wenzelm@18225
  1147
fun multi_res _ [] rule = Seq.single rule
wenzelm@18225
  1148
  | multi_res i (th :: ths) rule = Seq.maps (res th i) (multi_res (i + 1) ths rule);
wenzelm@18225
  1149
wenzelm@18225
  1150
in
wenzelm@18225
  1151
wenzelm@18225
  1152
val multi_resolve = multi_res 1;
wenzelm@18225
  1153
fun multi_resolves facts rules = Seq.maps (multi_resolve facts) (Seq.of_list rules);
wenzelm@18225
  1154
wenzelm@18225
  1155
end;
wenzelm@18225
  1156
wenzelm@18225
  1157
wenzelm@18225
  1158
wenzelm@11975
  1159
(** meta-level conjunction **)
wenzelm@11975
  1160
wenzelm@11975
  1161
local
wenzelm@11975
  1162
  val A = read_prop "PROP A";
wenzelm@11975
  1163
  val B = read_prop "PROP B";
wenzelm@11975
  1164
  val C = read_prop "PROP C";
wenzelm@11975
  1165
  val ABC = read_prop "PROP A ==> PROP B ==> PROP C";
wenzelm@11975
  1166
wenzelm@11975
  1167
  val proj1 =
wenzelm@11975
  1168
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume A))
wenzelm@11975
  1169
    |> forall_elim_vars 0;
wenzelm@11975
  1170
wenzelm@11975
  1171
  val proj2 =
wenzelm@11975
  1172
    forall_intr_list [A, B] (implies_intr_list [A, B] (Thm.assume B))
wenzelm@11975
  1173
    |> forall_elim_vars 0;
wenzelm@11975
  1174
wenzelm@11975
  1175
  val conj_intr_rule =
wenzelm@11975
  1176
    forall_intr_list [A, B] (implies_intr_list [A, B]
wenzelm@11975
  1177
      (Thm.forall_intr C (Thm.implies_intr ABC
wenzelm@11975
  1178
        (implies_elim_list (Thm.assume ABC) [Thm.assume A, Thm.assume B]))))
wenzelm@11975
  1179
    |> forall_elim_vars 0;
wenzelm@11975
  1180
in
wenzelm@11975
  1181
wenzelm@18025
  1182
fun conj_intr tha thb = thb COMP (tha COMP incr_indexes_wrt [] [] [] [tha, thb] conj_intr_rule);
wenzelm@12756
  1183
wenzelm@12756
  1184
fun conj_intr_list [] = asm_rl
wenzelm@12756
  1185
  | conj_intr_list ths = foldr1 (uncurry conj_intr) ths;
wenzelm@11975
  1186
wenzelm@11975
  1187
fun conj_elim th =
wenzelm@11975
  1188
  let val th' = forall_elim_var (#maxidx (Thm.rep_thm th) + 1) th
wenzelm@18025
  1189
  in (incr_indexes th' proj1 COMP th', incr_indexes th' proj2 COMP th') end;
wenzelm@11975
  1190
wenzelm@18498
  1191
(*((A && B) && C) && D && E -- flat*)
wenzelm@11975
  1192
fun conj_elim_list th =
wenzelm@11975
  1193
  let val (th1, th2) = conj_elim th
wenzelm@11975
  1194
  in conj_elim_list th1 @ conj_elim_list th2 end handle THM _ => [th];
wenzelm@11975
  1195
wenzelm@18498
  1196
(*(A1 && B1 && C1) && (A2 && B2 && C2 && D2) && A3 && B3 -- improper*)
wenzelm@18498
  1197
fun conj_elim_precise spans =
wenzelm@18498
  1198
  let
wenzelm@18498
  1199
    fun elim 0 _ = []
wenzelm@18498
  1200
      | elim 1 th = [th]
wenzelm@18498
  1201
      | elim n th =
wenzelm@18498
  1202
          let val (th1, th2) = conj_elim th
wenzelm@18498
  1203
          in th1 :: elim (n - 1) th2 end;
wenzelm@18498
  1204
    fun elims (0 :: ns) ths = [] :: elims ns ths
wenzelm@18498
  1205
      | elims (n :: ns) (th :: ths) = elim n th :: elims ns ths
wenzelm@18498
  1206
      | elims _ _ = [];
wenzelm@18498
  1207
  in elims spans o elim (length (filter_out (equal 0) spans)) end;
wenzelm@12135
  1208
wenzelm@12135
  1209
val conj_intr_thm = store_standard_thm_open "conjunctionI"
wenzelm@12135
  1210
  (implies_intr_list [A, B] (conj_intr (Thm.assume A) (Thm.assume B)));
wenzelm@12135
  1211
wenzelm@18206
  1212
end;
wenzelm@18179
  1213
wenzelm@18206
  1214
fun conj_curry th =
wenzelm@18206
  1215
  let
wenzelm@18206
  1216
    val {thy, maxidx, ...} = Thm.rep_thm th;
wenzelm@18206
  1217
    val n = Thm.nprems_of th;
wenzelm@18206
  1218
  in
wenzelm@18206
  1219
    if n < 2 then th
wenzelm@18206
  1220
    else
wenzelm@18206
  1221
      let
wenzelm@18206
  1222
        val cert = Thm.cterm_of thy;
wenzelm@18206
  1223
        val As = map (fn i => Free ("A" ^ string_of_int i, propT)) (1 upto n);
wenzelm@18206
  1224
        val B = Free ("B", propT);
wenzelm@18206
  1225
        val C = cert (Logic.mk_conjunction_list As);
wenzelm@18206
  1226
        val D = cert (Logic.list_implies (As, B));
wenzelm@18206
  1227
        val rule =
wenzelm@18206
  1228
          implies_elim_list (Thm.assume D) (conj_elim_list (Thm.assume C))
wenzelm@18206
  1229
          |> implies_intr_list [D, C]
wenzelm@18206
  1230
          |> forall_intr_frees
wenzelm@18206
  1231
          |> forall_elim_vars (maxidx + 1)
wenzelm@18206
  1232
      in Thm.adjust_maxidx_thm (th COMP rule) end
wenzelm@18206
  1233
  end;
wenzelm@252
  1234
wenzelm@11975
  1235
end;
wenzelm@5903
  1236
wenzelm@5903
  1237
structure BasicDrule: BASIC_DRULE = Drule;
wenzelm@5903
  1238
open BasicDrule;