src/HOL/Tools/Meson/meson_clausify.ML
author blanchet
Sun May 22 14:51:42 2011 +0200 (2011-05-22)
changeset 42944 9e620869a576
parent 42747 f132d13fcf75
child 43324 2b47822868e4
permissions -rw-r--r--
improved Waldmeister support -- even run it by default on unit equational goals
blanchet@39941
     1
(*  Title:      HOL/Tools/Meson/meson_clausify.ML
blanchet@38027
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
blanchet@39941
     5
Transformation of HOL theorems into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@39890
     8
signature MESON_CLAUSIFY =
wenzelm@21505
     9
sig
blanchet@39887
    10
  val new_skolem_var_prefix : string
blanchet@42098
    11
  val new_nonskolem_var_prefix : string
blanchet@42099
    12
  val is_zapped_var_name : string -> bool
blanchet@38001
    13
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@38028
    14
  val introduce_combinators_in_theorem : thm -> thm
blanchet@39932
    15
  val cluster_of_zapped_var_name : string -> (int * (int * int)) * bool
blanchet@42336
    16
  val ss_only : thm list -> simpset
blanchet@39897
    17
  val cnf_axiom :
blanchet@39901
    18
    Proof.context -> bool -> int -> thm -> (thm * term) option * thm list
wenzelm@21505
    19
end;
mengj@19196
    20
blanchet@39890
    21
structure Meson_Clausify : MESON_CLAUSIFY =
paulson@15997
    22
struct
paulson@15347
    23
blanchet@39950
    24
open Meson
blanchet@39950
    25
blanchet@42072
    26
(* the extra "Meson" helps prevent clashes (FIXME) *)
blanchet@42072
    27
val new_skolem_var_prefix = "MesonSK"
blanchet@42072
    28
val new_nonskolem_var_prefix = "MesonV"
blanchet@39887
    29
blanchet@42099
    30
fun is_zapped_var_name s =
blanchet@42099
    31
  exists (fn prefix => String.isPrefix prefix s)
blanchet@42099
    32
         [new_skolem_var_prefix, new_nonskolem_var_prefix]
blanchet@42099
    33
paulson@15997
    34
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    35
wenzelm@29064
    36
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    37
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    38
blanchet@38001
    39
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    40
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@42944
    41
   the conclusion variable to False. (Cf. "transform_elim_prop" in
blanchet@38652
    42
   "Sledgehammer_Util".) *)
blanchet@38001
    43
fun transform_elim_theorem th =
paulson@21430
    44
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    45
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    46
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    47
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    48
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    49
    | _ => th
paulson@15997
    50
wenzelm@28544
    51
paulson@16009
    52
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    53
blanchet@39886
    54
fun mk_old_skolem_term_wrapper t =
blanchet@37436
    55
  let val T = fastype_of t in
blanchet@39962
    56
    Const (@{const_name Meson.skolem}, T --> T) $ t
blanchet@37436
    57
  end
blanchet@37410
    58
blanchet@39931
    59
fun beta_eta_in_abs_body (Abs (s, T, t')) = Abs (s, T, beta_eta_in_abs_body t')
blanchet@39931
    60
  | beta_eta_in_abs_body t = Envir.beta_eta_contract t
blanchet@37512
    61
paulson@18141
    62
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@39886
    63
fun old_skolem_defs th =
blanchet@37399
    64
  let
blanchet@39376
    65
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (_, T, p))) rhss =
blanchet@37399
    66
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    67
        let
blanchet@37617
    68
          val args = OldTerm.term_frees body
blanchet@37500
    69
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    70
          val rhs =
blanchet@37500
    71
            list_abs_free (map dest_Free args,
blanchet@39931
    72
                           HOLogic.choice_const T $ beta_eta_in_abs_body body)
blanchet@39886
    73
            |> mk_old_skolem_term_wrapper
blanchet@37518
    74
          val comb = list_comb (rhs, args)
blanchet@37617
    75
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    76
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    77
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    78
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    79
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
blanchet@39906
    80
      | dec_sko (@{const conj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@39906
    81
      | dec_sko (@{const disj} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    82
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    83
      | dec_sko _ rhss = rhss
paulson@20419
    84
  in  dec_sko (prop_of th) []  end;
paulson@20419
    85
paulson@20419
    86
paulson@24827
    87
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    88
blanchet@39962
    89
fun is_quasi_lambda_free (Const (@{const_name Meson.skolem}, _) $ _) = true
blanchet@37416
    90
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    91
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    92
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
    93
  | is_quasi_lambda_free _ = true
wenzelm@20461
    94
wenzelm@32010
    95
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
    96
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
    97
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
    98
blanchet@38282
    99
(* FIXME: Requires more use of cterm constructors. *)
paulson@24827
   100
fun abstract ct =
wenzelm@28544
   101
  let
wenzelm@28544
   102
      val thy = theory_of_cterm ct
paulson@25256
   103
      val Abs(x,_,body) = term_of ct
blanchet@35963
   104
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
blanchet@38005
   105
      val cxT = ctyp_of thy xT
blanchet@38005
   106
      val cbodyT = ctyp_of thy bodyT
blanchet@38005
   107
      fun makeK () =
blanchet@38005
   108
        instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)]
blanchet@38005
   109
                     @{thm abs_K}
paulson@24827
   110
  in
paulson@24827
   111
      case body of
paulson@24827
   112
          Const _ => makeK()
paulson@24827
   113
        | Free _ => makeK()
paulson@24827
   114
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   115
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   116
        | rator$rand =>
wenzelm@42083
   117
            if Term.is_dependent rator then (*C or S*)
wenzelm@42083
   118
               if Term.is_dependent rand then (*S*)
wenzelm@27179
   119
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   120
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   121
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   122
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   123
                 in
wenzelm@27179
   124
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   125
                 end
wenzelm@27179
   126
               else (*C*)
wenzelm@27179
   127
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   128
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   129
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   130
                 in
wenzelm@27179
   131
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   132
                 end
wenzelm@42083
   133
            else if Term.is_dependent rand then (*B or eta*)
wenzelm@36945
   134
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   135
               else (*B*)
wenzelm@27179
   136
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   137
                     val crator = cterm_of thy rator
wenzelm@27184
   138
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   139
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   140
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   141
            else makeK()
blanchet@37349
   142
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   143
  end;
paulson@20863
   144
blanchet@37349
   145
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   146
fun introduce_combinators_in_cterm ct =
blanchet@37416
   147
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   148
    Thm.reflexive ct
blanchet@37349
   149
  else case term_of ct of
blanchet@37349
   150
    Abs _ =>
blanchet@37349
   151
    let
blanchet@37349
   152
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   153
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   154
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   155
      val cu = Thm.rhs_of u_th
blanchet@37349
   156
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   157
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   158
  | _ $ _ =>
blanchet@37349
   159
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   160
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   161
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   162
    end
blanchet@37349
   163
blanchet@38001
   164
fun introduce_combinators_in_theorem th =
blanchet@37416
   165
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   166
    th
paulson@24827
   167
  else
blanchet@37349
   168
    let
blanchet@37349
   169
      val th = Drule.eta_contraction_rule th
blanchet@38001
   170
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   171
    in Thm.equal_elim eqth th end
blanchet@37349
   172
    handle THM (msg, _, _) =>
blanchet@37349
   173
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   174
                     Display.string_of_thm_without_context th ^
blanchet@37349
   175
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   176
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   177
            TrueI)
paulson@16009
   178
paulson@16009
   179
(*cterms are used throughout for efficiency*)
blanchet@38280
   180
val cTrueprop = cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   181
paulson@16009
   182
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   183
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   184
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   185
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   186
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   187
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   188
blanchet@39355
   189
val skolem_def_raw = @{thms skolem_def_raw}
blanchet@37617
   190
blanchet@37617
   191
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   192
   an existential formula by a use of that function.
paulson@18141
   193
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@39886
   194
fun old_skolem_theorem_from_def thy rhs0 =
blanchet@37399
   195
  let
blanchet@38280
   196
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> cterm_of thy
blanchet@37617
   197
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   198
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   199
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   200
    val T =
blanchet@37617
   201
      case hilbert of
blanchet@39941
   202
        Const (_, Type (@{type_name fun}, [_, T])) => T
blanchet@39886
   203
      | _ => raise TERM ("old_skolem_theorem_from_def: expected \"Eps\"",
blanchet@39886
   204
                         [hilbert])
blanchet@38280
   205
    val cex = cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   206
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   207
    val conc =
blanchet@37617
   208
      Drule.list_comb (rhs, frees)
blanchet@37617
   209
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   210
    fun tacf [prem] =
blanchet@39355
   211
      rewrite_goals_tac skolem_def_raw
blanchet@39941
   212
      THEN rtac ((prem |> rewrite_rule skolem_def_raw)
blanchet@39949
   213
                 RS Global_Theory.get_thm thy "Hilbert_Choice.someI_ex") 1
blanchet@37617
   214
  in
blanchet@37629
   215
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   216
    |> forall_intr_list frees
blanchet@37629
   217
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   218
    |> Thm.varifyT_global
blanchet@37617
   219
  end
paulson@24742
   220
blanchet@42335
   221
fun to_definitional_cnf_with_quantifiers ctxt th =
blanchet@39036
   222
  let
blanchet@42335
   223
    val eqth = cnf.make_cnfx_thm ctxt (HOLogic.dest_Trueprop (prop_of th))
blanchet@39036
   224
    val eqth = eqth RS @{thm eq_reflection}
blanchet@39036
   225
    val eqth = eqth RS @{thm TruepropI}
blanchet@39036
   226
  in Thm.equal_elim eqth th end
blanchet@39036
   227
blanchet@39932
   228
fun zapped_var_name ((ax_no, cluster_no), skolem) index_no s =
blanchet@39896
   229
  (if skolem then new_skolem_var_prefix else new_nonskolem_var_prefix) ^
blanchet@39932
   230
  "_" ^ string_of_int ax_no ^ "_" ^ string_of_int cluster_no ^ "_" ^
blanchet@40261
   231
  string_of_int index_no ^ "_" ^ Name.desymbolize false s
blanchet@39896
   232
blanchet@39899
   233
fun cluster_of_zapped_var_name s =
blanchet@39932
   234
  let val get_int = the o Int.fromString o nth (space_explode "_" s) in
blanchet@39932
   235
    ((get_int 1, (get_int 2, get_int 3)),
blanchet@39932
   236
     String.isPrefix new_skolem_var_prefix s)
blanchet@39932
   237
  end
blanchet@39897
   238
blanchet@40260
   239
fun rename_bound_vars_to_be_zapped ax_no =
blanchet@40260
   240
  let
blanchet@40260
   241
    fun aux (cluster as (cluster_no, cluster_skolem)) index_no pos t =
blanchet@40260
   242
      case t of
blanchet@40260
   243
        (t1 as Const (s, _)) $ Abs (s', T, t') =>
blanchet@39906
   244
        if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@39906
   245
           s = @{const_name Ex} then
blanchet@39932
   246
          let
blanchet@39932
   247
            val skolem = (pos = (s = @{const_name Ex}))
blanchet@39932
   248
            val (cluster, index_no) =
blanchet@39932
   249
              if skolem = cluster_skolem then (cluster, index_no)
blanchet@39932
   250
              else ((cluster_no ||> cluster_skolem ? Integer.add 1, skolem), 0)
blanchet@40260
   251
            val s' = zapped_var_name cluster index_no s'
blanchet@40260
   252
          in t1 $ Abs (s', T, aux cluster (index_no + 1) pos t') end
blanchet@40260
   253
        else
blanchet@40260
   254
          t
blanchet@40260
   255
      | (t1 as Const (s, _)) $ t2 $ t3 =>
blanchet@40260
   256
        if s = @{const_name "==>"} orelse s = @{const_name HOL.implies} then
blanchet@40260
   257
          t1 $ aux cluster index_no (not pos) t2 $ aux cluster index_no pos t3
blanchet@40260
   258
        else if s = @{const_name HOL.conj} orelse
blanchet@40260
   259
                s = @{const_name HOL.disj} then
blanchet@40260
   260
          t1 $ aux cluster index_no pos t2 $ aux cluster index_no pos t3
blanchet@40260
   261
        else
blanchet@40260
   262
          t
blanchet@40260
   263
      | (t1 as Const (s, _)) $ t2 =>
blanchet@40260
   264
        if s = @{const_name Trueprop} then
blanchet@40260
   265
          t1 $ aux cluster index_no pos t2
blanchet@40260
   266
        else if s = @{const_name Not} then
blanchet@40260
   267
          t1 $ aux cluster index_no (not pos) t2
blanchet@40260
   268
        else
blanchet@40260
   269
          t
blanchet@40260
   270
      | _ => t
blanchet@40260
   271
  in aux ((ax_no, 0), true) 0 true end
blanchet@40260
   272
blanchet@40260
   273
fun zap pos ct =
blanchet@40260
   274
  ct
blanchet@40260
   275
  |> (case term_of ct of
blanchet@40260
   276
        Const (s, _) $ Abs (s', _, _) =>
blanchet@40260
   277
        if s = @{const_name all} orelse s = @{const_name All} orelse
blanchet@40260
   278
           s = @{const_name Ex} then
blanchet@40260
   279
          Thm.dest_comb #> snd #> Thm.dest_abs (SOME s') #> snd #> zap pos
blanchet@39906
   280
        else
blanchet@39906
   281
          Conv.all_conv
blanchet@39906
   282
      | Const (s, _) $ _ $ _ =>
blanchet@39906
   283
        if s = @{const_name "==>"} orelse s = @{const_name implies} then
blanchet@40260
   284
          Conv.combination_conv (Conv.arg_conv (zap (not pos))) (zap pos)
blanchet@39906
   285
        else if s = @{const_name conj} orelse s = @{const_name disj} then
blanchet@40260
   286
          Conv.combination_conv (Conv.arg_conv (zap pos)) (zap pos)
blanchet@39906
   287
        else
blanchet@39906
   288
          Conv.all_conv
blanchet@39906
   289
      | Const (s, _) $ _ =>
blanchet@40260
   290
        if s = @{const_name Trueprop} then Conv.arg_conv (zap pos)
blanchet@40260
   291
        else if s = @{const_name Not} then Conv.arg_conv (zap (not pos))
blanchet@40260
   292
        else Conv.all_conv
blanchet@39906
   293
      | _ => Conv.all_conv)
blanchet@39887
   294
wenzelm@41225
   295
fun ss_only ths = Simplifier.clear_ss HOL_basic_ss addsimps ths
blanchet@39901
   296
blanchet@40261
   297
val cheat_choice =
blanchet@39901
   298
  @{prop "ALL x. EX y. Q x y ==> EX f. ALL x. Q x (f x)"}
blanchet@39901
   299
  |> Logic.varify_global
blanchet@39901
   300
  |> Skip_Proof.make_thm @{theory}
blanchet@39887
   301
blanchet@39887
   302
(* Converts an Isabelle theorem into NNF. *)
blanchet@39901
   303
fun nnf_axiom choice_ths new_skolemizer ax_no th ctxt =
blanchet@39887
   304
  let
wenzelm@42361
   305
    val thy = Proof_Context.theory_of ctxt
blanchet@39887
   306
    val th =
blanchet@39887
   307
      th |> transform_elim_theorem
blanchet@39887
   308
         |> zero_var_indexes
blanchet@39887
   309
         |> new_skolemizer ? forall_intr_vars
blanchet@39887
   310
    val (th, ctxt) = Variable.import true [th] ctxt |>> snd |>> the_single
blanchet@39887
   311
    val th = th |> Conv.fconv_rule Object_Logic.atomize
blanchet@42739
   312
                |> Raw_Simplifier.rewrite_rule (unfold_set_const_simps ctxt)
blanchet@42747
   313
                |> extensionalize_theorem ctxt
blanchet@39950
   314
                |> make_nnf ctxt
blanchet@39887
   315
  in
blanchet@39887
   316
    if new_skolemizer then
blanchet@39887
   317
      let
blanchet@39901
   318
        fun skolemize choice_ths =
blanchet@39950
   319
          skolemize_with_choice_theorems ctxt choice_ths
blanchet@39901
   320
          #> simplify (ss_only @{thms all_simps[symmetric]})
blanchet@42347
   321
        val no_choice = null choice_ths
blanchet@39901
   322
        val pull_out =
blanchet@42347
   323
          if no_choice then
blanchet@42347
   324
            simplify (ss_only @{thms all_simps[symmetric] ex_simps[symmetric]})
blanchet@42347
   325
          else
blanchet@42347
   326
            skolemize choice_ths
blanchet@42347
   327
        val discharger_th = th |> pull_out
blanchet@40260
   328
        val discharger_th =
blanchet@42347
   329
          discharger_th |> has_too_many_clauses ctxt (concl_of discharger_th)
blanchet@42347
   330
                           ? (to_definitional_cnf_with_quantifiers ctxt
blanchet@42347
   331
                              #> pull_out)
blanchet@42099
   332
        val zapped_th =
blanchet@40263
   333
          discharger_th |> prop_of |> rename_bound_vars_to_be_zapped ax_no
blanchet@40263
   334
          |> (if no_choice then
blanchet@40263
   335
                Skip_Proof.make_thm thy #> skolemize [cheat_choice] #> cprop_of
blanchet@40263
   336
              else
blanchet@40263
   337
                cterm_of thy)
blanchet@42099
   338
          |> zap true
blanchet@42099
   339
        val fixes =
blanchet@42335
   340
          [] |> Term.add_free_names (prop_of zapped_th)
blanchet@42335
   341
             |> filter is_zapped_var_name
blanchet@42269
   342
        val ctxt' = ctxt |> Variable.add_fixes_direct fixes
blanchet@42099
   343
        val fully_skolemized_t =
blanchet@42333
   344
          zapped_th |> singleton (Variable.export ctxt' ctxt)
blanchet@42333
   345
                    |> cprop_of |> Thm.dest_equals |> snd |> term_of
blanchet@39887
   346
      in
blanchet@39887
   347
        if exists_subterm (fn Var ((s, _), _) =>
blanchet@39887
   348
                              String.isPrefix new_skolem_var_prefix s
blanchet@40260
   349
                            | _ => false) fully_skolemized_t then
blanchet@39887
   350
          let
blanchet@40260
   351
            val (fully_skolemized_ct, ctxt) =
blanchet@40260
   352
              Variable.import_terms true [fully_skolemized_t] ctxt
blanchet@39887
   353
              |>> the_single |>> cterm_of thy
blanchet@40260
   354
          in
blanchet@40260
   355
            (SOME (discharger_th, fully_skolemized_ct),
blanchet@40262
   356
             (Thm.assume fully_skolemized_ct, ctxt))
blanchet@40260
   357
          end
blanchet@39887
   358
       else
blanchet@40262
   359
         (NONE, (th, ctxt))
blanchet@39887
   360
      end
blanchet@39887
   361
    else
blanchet@42347
   362
      (NONE, (th |> has_too_many_clauses ctxt (concl_of th)
blanchet@42347
   363
                    ? to_definitional_cnf_with_quantifiers ctxt, ctxt))
blanchet@39887
   364
  end
blanchet@39887
   365
blanchet@39887
   366
(* Convert a theorem to CNF, with additional premises due to skolemization. *)
blanchet@39901
   367
fun cnf_axiom ctxt0 new_skolemizer ax_no th =
blanchet@37626
   368
  let
wenzelm@42361
   369
    val thy = Proof_Context.theory_of ctxt0
blanchet@39950
   370
    val choice_ths = choice_theorems thy
blanchet@40262
   371
    val (opt, (nnf_th, ctxt)) =
blanchet@40262
   372
      nnf_axiom choice_ths new_skolemizer ax_no th ctxt0
blanchet@39894
   373
    fun clausify th =
blanchet@42347
   374
      make_cnf (if new_skolemizer orelse null choice_ths then []
blanchet@42347
   375
                else map (old_skolem_theorem_from_def thy) (old_skolem_defs th))
blanchet@42347
   376
               th ctxt
blanchet@42347
   377
    val (cnf_ths, ctxt) = clausify nnf_th
blanchet@39894
   378
    fun intr_imp ct th =
blanchet@39950
   379
      Thm.instantiate ([], map (pairself (cterm_of thy))
blanchet@39962
   380
                               [(Var (("i", 0), @{typ nat}),
blanchet@39902
   381
                                 HOLogic.mk_nat ax_no)])
blanchet@39962
   382
                      (zero_var_indexes @{thm skolem_COMBK_D})
blanchet@39894
   383
      RS Thm.implies_intr ct th
blanchet@37626
   384
  in
blanchet@39897
   385
    (opt |> Option.map (I #>> singleton (Variable.export ctxt ctxt0)
blanchet@39897
   386
                        ##> (term_of #> HOLogic.dest_Trueprop
blanchet@39897
   387
                             #> singleton (Variable.export_terms ctxt ctxt0))),
blanchet@39887
   388
     cnf_ths |> map (introduce_combinators_in_theorem
blanchet@39894
   389
                     #> (case opt of SOME (_, ct) => intr_imp ct | NONE => I))
blanchet@39897
   390
             |> Variable.export ctxt ctxt0
blanchet@39950
   391
             |> finish_cnf
blanchet@39887
   392
             |> map Thm.close_derivation)
blanchet@37626
   393
  end
blanchet@39887
   394
  handle THM _ => (NONE, [])
wenzelm@27184
   395
wenzelm@20461
   396
end;