src/HOL/Product_Type.thy
author wenzelm
Thu Apr 18 17:07:01 2013 +0200 (2013-04-18)
changeset 51717 9e7d1c139569
parent 51703 f2e92fc0c8aa
child 52143 36ffe23b25f8
permissions -rw-r--r--
simplifier uses proper Proof.context instead of historic type simpset;
nipkow@10213
     1
(*  Title:      HOL/Product_Type.thy
nipkow@10213
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
nipkow@10213
     3
    Copyright   1992  University of Cambridge
wenzelm@11777
     4
*)
nipkow@10213
     5
wenzelm@11838
     6
header {* Cartesian products *}
nipkow@10213
     7
nipkow@15131
     8
theory Product_Type
haftmann@33959
     9
imports Typedef Inductive Fun
wenzelm@46950
    10
keywords "inductive_set" "coinductive_set" :: thy_decl
nipkow@15131
    11
begin
wenzelm@11838
    12
haftmann@24699
    13
subsection {* @{typ bool} is a datatype *}
haftmann@24699
    14
haftmann@27104
    15
rep_datatype True False by (auto intro: bool_induct)
haftmann@24699
    16
haftmann@24699
    17
declare case_split [cases type: bool]
haftmann@24699
    18
  -- "prefer plain propositional version"
haftmann@24699
    19
haftmann@28346
    20
lemma
haftmann@38857
    21
  shows [code]: "HOL.equal False P \<longleftrightarrow> \<not> P"
haftmann@38857
    22
    and [code]: "HOL.equal True P \<longleftrightarrow> P" 
haftmann@46630
    23
    and [code]: "HOL.equal P False \<longleftrightarrow> \<not> P"
haftmann@38857
    24
    and [code]: "HOL.equal P True \<longleftrightarrow> P"
haftmann@38857
    25
    and [code nbe]: "HOL.equal P P \<longleftrightarrow> True"
haftmann@38857
    26
  by (simp_all add: equal)
haftmann@25534
    27
haftmann@43654
    28
lemma If_case_cert:
haftmann@43654
    29
  assumes "CASE \<equiv> (\<lambda>b. If b f g)"
haftmann@43654
    30
  shows "(CASE True \<equiv> f) &&& (CASE False \<equiv> g)"
haftmann@43654
    31
  using assms by simp_all
haftmann@43654
    32
haftmann@43654
    33
setup {*
haftmann@43654
    34
  Code.add_case @{thm If_case_cert}
haftmann@43654
    35
*}
haftmann@43654
    36
haftmann@38857
    37
code_const "HOL.equal \<Colon> bool \<Rightarrow> bool \<Rightarrow> bool"
haftmann@39272
    38
  (Haskell infix 4 "==")
haftmann@25534
    39
haftmann@38857
    40
code_instance bool :: equal
haftmann@25534
    41
  (Haskell -)
haftmann@24699
    42
haftmann@26358
    43
haftmann@37166
    44
subsection {* The @{text unit} type *}
wenzelm@11838
    45
wenzelm@49834
    46
typedef unit = "{True}"
wenzelm@45694
    47
  by auto
wenzelm@11838
    48
wenzelm@45694
    49
definition Unity :: unit  ("'(')")
wenzelm@45694
    50
  where "() = Abs_unit True"
wenzelm@11838
    51
blanchet@35828
    52
lemma unit_eq [no_atp]: "u = ()"
huffman@40590
    53
  by (induct u) (simp add: Unity_def)
wenzelm@11838
    54
wenzelm@11838
    55
text {*
wenzelm@11838
    56
  Simplification procedure for @{thm [source] unit_eq}.  Cannot use
wenzelm@11838
    57
  this rule directly --- it loops!
wenzelm@11838
    58
*}
wenzelm@11838
    59
wenzelm@43594
    60
simproc_setup unit_eq ("x::unit") = {*
wenzelm@43594
    61
  fn _ => fn _ => fn ct =>
wenzelm@43594
    62
    if HOLogic.is_unit (term_of ct) then NONE
wenzelm@43594
    63
    else SOME (mk_meta_eq @{thm unit_eq})
wenzelm@11838
    64
*}
wenzelm@11838
    65
haftmann@27104
    66
rep_datatype "()" by simp
haftmann@24699
    67
wenzelm@11838
    68
lemma unit_all_eq1: "(!!x::unit. PROP P x) == PROP P ()"
wenzelm@11838
    69
  by simp
wenzelm@11838
    70
wenzelm@11838
    71
lemma unit_all_eq2: "(!!x::unit. PROP P) == PROP P"
wenzelm@11838
    72
  by (rule triv_forall_equality)
wenzelm@11838
    73
wenzelm@11838
    74
text {*
wenzelm@43594
    75
  This rewrite counters the effect of simproc @{text unit_eq} on @{term
wenzelm@11838
    76
  [source] "%u::unit. f u"}, replacing it by @{term [source]
wenzelm@11838
    77
  f} rather than by @{term [source] "%u. f ()"}.
wenzelm@11838
    78
*}
wenzelm@11838
    79
haftmann@43866
    80
lemma unit_abs_eta_conv [simp, no_atp]: "(%u::unit. f ()) = f"
wenzelm@11838
    81
  by (rule ext) simp
nipkow@10213
    82
haftmann@43866
    83
lemma UNIV_unit [no_atp]:
haftmann@43866
    84
  "UNIV = {()}" by auto
haftmann@43866
    85
haftmann@30924
    86
instantiation unit :: default
haftmann@30924
    87
begin
haftmann@30924
    88
haftmann@30924
    89
definition "default = ()"
haftmann@30924
    90
haftmann@30924
    91
instance ..
haftmann@30924
    92
haftmann@30924
    93
end
nipkow@10213
    94
haftmann@28562
    95
lemma [code]:
haftmann@38857
    96
  "HOL.equal (u\<Colon>unit) v \<longleftrightarrow> True" unfolding equal unit_eq [of u] unit_eq [of v] by rule+
haftmann@26358
    97
haftmann@26358
    98
code_type unit
haftmann@26358
    99
  (SML "unit")
haftmann@26358
   100
  (OCaml "unit")
haftmann@26358
   101
  (Haskell "()")
haftmann@34886
   102
  (Scala "Unit")
haftmann@26358
   103
haftmann@37166
   104
code_const Unity
haftmann@37166
   105
  (SML "()")
haftmann@37166
   106
  (OCaml "()")
haftmann@37166
   107
  (Haskell "()")
haftmann@37166
   108
  (Scala "()")
haftmann@37166
   109
haftmann@38857
   110
code_instance unit :: equal
haftmann@26358
   111
  (Haskell -)
haftmann@26358
   112
haftmann@38857
   113
code_const "HOL.equal \<Colon> unit \<Rightarrow> unit \<Rightarrow> bool"
haftmann@39272
   114
  (Haskell infix 4 "==")
haftmann@26358
   115
haftmann@26358
   116
code_reserved SML
haftmann@26358
   117
  unit
haftmann@26358
   118
haftmann@26358
   119
code_reserved OCaml
haftmann@26358
   120
  unit
haftmann@26358
   121
haftmann@34886
   122
code_reserved Scala
haftmann@34886
   123
  Unit
haftmann@34886
   124
haftmann@26358
   125
haftmann@37166
   126
subsection {* The product type *}
nipkow@10213
   127
haftmann@37166
   128
subsubsection {* Type definition *}
haftmann@37166
   129
haftmann@37166
   130
definition Pair_Rep :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" where
haftmann@26358
   131
  "Pair_Rep a b = (\<lambda>x y. x = a \<and> y = b)"
nipkow@10213
   132
wenzelm@45696
   133
definition "prod = {f. \<exists>a b. f = Pair_Rep (a\<Colon>'a) (b\<Colon>'b)}"
wenzelm@45696
   134
wenzelm@49834
   135
typedef ('a, 'b) prod (infixr "*" 20) = "prod :: ('a \<Rightarrow> 'b \<Rightarrow> bool) set"
wenzelm@45696
   136
  unfolding prod_def by auto
nipkow@10213
   137
wenzelm@35427
   138
type_notation (xsymbols)
haftmann@37678
   139
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
wenzelm@35427
   140
type_notation (HTML output)
haftmann@37678
   141
  "prod"  ("(_ \<times>/ _)" [21, 20] 20)
nipkow@10213
   142
haftmann@37389
   143
definition Pair :: "'a \<Rightarrow> 'b \<Rightarrow> 'a \<times> 'b" where
haftmann@37389
   144
  "Pair a b = Abs_prod (Pair_Rep a b)"
haftmann@37166
   145
haftmann@37678
   146
rep_datatype Pair proof -
haftmann@37166
   147
  fix P :: "'a \<times> 'b \<Rightarrow> bool" and p
haftmann@37166
   148
  assume "\<And>a b. P (Pair a b)"
haftmann@37389
   149
  then show "P p" by (cases p) (auto simp add: prod_def Pair_def Pair_Rep_def)
haftmann@37166
   150
next
haftmann@37166
   151
  fix a c :: 'a and b d :: 'b
haftmann@37166
   152
  have "Pair_Rep a b = Pair_Rep c d \<longleftrightarrow> a = c \<and> b = d"
nipkow@39302
   153
    by (auto simp add: Pair_Rep_def fun_eq_iff)
haftmann@37389
   154
  moreover have "Pair_Rep a b \<in> prod" and "Pair_Rep c d \<in> prod"
haftmann@37389
   155
    by (auto simp add: prod_def)
haftmann@37166
   156
  ultimately show "Pair a b = Pair c d \<longleftrightarrow> a = c \<and> b = d"
haftmann@37389
   157
    by (simp add: Pair_def Abs_prod_inject)
haftmann@37166
   158
qed
haftmann@37166
   159
blanchet@37704
   160
declare prod.simps(2) [nitpick_simp del]
blanchet@37704
   161
huffman@40929
   162
declare prod.weak_case_cong [cong del]
haftmann@37411
   163
haftmann@37166
   164
haftmann@37166
   165
subsubsection {* Tuple syntax *}
haftmann@37166
   166
haftmann@37591
   167
abbreviation (input) split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37591
   168
  "split \<equiv> prod_case"
wenzelm@19535
   169
wenzelm@11777
   170
text {*
wenzelm@11777
   171
  Patterns -- extends pre-defined type @{typ pttrn} used in
wenzelm@11777
   172
  abstractions.
wenzelm@11777
   173
*}
nipkow@10213
   174
wenzelm@41229
   175
nonterminal tuple_args and patterns
nipkow@10213
   176
nipkow@10213
   177
syntax
nipkow@10213
   178
  "_tuple"      :: "'a => tuple_args => 'a * 'b"        ("(1'(_,/ _'))")
nipkow@10213
   179
  "_tuple_arg"  :: "'a => tuple_args"                   ("_")
nipkow@10213
   180
  "_tuple_args" :: "'a => tuple_args => tuple_args"     ("_,/ _")
oheimb@11025
   181
  "_pattern"    :: "[pttrn, patterns] => pttrn"         ("'(_,/ _')")
oheimb@11025
   182
  ""            :: "pttrn => patterns"                  ("_")
oheimb@11025
   183
  "_patterns"   :: "[pttrn, patterns] => patterns"      ("_,/ _")
nipkow@10213
   184
nipkow@10213
   185
translations
wenzelm@35115
   186
  "(x, y)" == "CONST Pair x y"
nipkow@51392
   187
  "_pattern x y" => "CONST Pair x y"
nipkow@51392
   188
  "_patterns x y" => "CONST Pair x y"
nipkow@10213
   189
  "_tuple x (_tuple_args y z)" == "_tuple x (_tuple_arg (_tuple y z))"
haftmann@37591
   190
  "%(x, y, zs). b" == "CONST prod_case (%x (y, zs). b)"
haftmann@37591
   191
  "%(x, y). b" == "CONST prod_case (%x y. b)"
wenzelm@35115
   192
  "_abs (CONST Pair x y) t" => "%(x, y). t"
haftmann@37166
   193
  -- {* The last rule accommodates tuples in `case C ... (x,y) ... => ...'
haftmann@37166
   194
     The (x,y) is parsed as `Pair x y' because it is logic, not pttrn *}
nipkow@10213
   195
wenzelm@35115
   196
(*reconstruct pattern from (nested) splits, avoiding eta-contraction of body;
wenzelm@35115
   197
  works best with enclosing "let", if "let" does not avoid eta-contraction*)
schirmer@14359
   198
print_translation {*
wenzelm@35115
   199
let
wenzelm@35115
   200
  fun split_tr' [Abs (x, T, t as (Abs abs))] =
wenzelm@35115
   201
        (* split (%x y. t) => %(x,y) t *)
wenzelm@35115
   202
        let
wenzelm@42284
   203
          val (y, t') = Syntax_Trans.atomic_abs_tr' abs;
wenzelm@42284
   204
          val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@35115
   205
        in
wenzelm@35115
   206
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   207
            (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   208
        end
haftmann@37591
   209
    | split_tr' [Abs (x, T, (s as Const (@{const_syntax prod_case}, _) $ t))] =
wenzelm@35115
   210
        (* split (%x. (split (%y z. t))) => %(x,y,z). t *)
wenzelm@35115
   211
        let
wenzelm@35115
   212
          val Const (@{syntax_const "_abs"}, _) $
wenzelm@35115
   213
            (Const (@{syntax_const "_pattern"}, _) $ y $ z) $ t' = split_tr' [t];
wenzelm@42284
   214
          val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, T, t');
wenzelm@35115
   215
        in
wenzelm@35115
   216
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   217
            (Syntax.const @{syntax_const "_pattern"} $ x' $
wenzelm@35115
   218
              (Syntax.const @{syntax_const "_patterns"} $ y $ z)) $ t''
wenzelm@35115
   219
        end
haftmann@37591
   220
    | split_tr' [Const (@{const_syntax prod_case}, _) $ t] =
wenzelm@35115
   221
        (* split (split (%x y z. t)) => %((x, y), z). t *)
wenzelm@35115
   222
        split_tr' [(split_tr' [t])] (* inner split_tr' creates next pattern *)
wenzelm@35115
   223
    | split_tr' [Const (@{syntax_const "_abs"}, _) $ x_y $ Abs abs] =
wenzelm@35115
   224
        (* split (%pttrn z. t) => %(pttrn,z). t *)
wenzelm@42284
   225
        let val (z, t) = Syntax_Trans.atomic_abs_tr' abs in
wenzelm@35115
   226
          Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   227
            (Syntax.const @{syntax_const "_pattern"} $ x_y $ z) $ t
wenzelm@35115
   228
        end
wenzelm@35115
   229
    | split_tr' _ = raise Match;
haftmann@37591
   230
in [(@{const_syntax prod_case}, split_tr')] end
schirmer@14359
   231
*}
schirmer@14359
   232
schirmer@15422
   233
(* print "split f" as "\<lambda>(x,y). f x y" and "split (\<lambda>x. f x)" as "\<lambda>(x,y). f x y" *) 
schirmer@15422
   234
typed_print_translation {*
schirmer@15422
   235
let
wenzelm@42247
   236
  fun split_guess_names_tr' T [Abs (x, _, Abs _)] = raise Match
wenzelm@42247
   237
    | split_guess_names_tr' T [Abs (x, xT, t)] =
schirmer@15422
   238
        (case (head_of t) of
haftmann@37591
   239
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   240
        | _ =>
wenzelm@35115
   241
          let 
wenzelm@35115
   242
            val (_ :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@42284
   243
            val (y, t') = Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 1 t $ Bound 0);
wenzelm@42284
   244
            val (x', t'') = Syntax_Trans.atomic_abs_tr' (x, xT, t');
wenzelm@35115
   245
          in
wenzelm@35115
   246
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   247
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   248
          end)
wenzelm@42247
   249
    | split_guess_names_tr' T [t] =
wenzelm@35115
   250
        (case head_of t of
haftmann@37591
   251
          Const (@{const_syntax prod_case}, _) => raise Match
wenzelm@35115
   252
        | _ =>
wenzelm@35115
   253
          let
wenzelm@35115
   254
            val (xT :: yT :: _) = binder_types (domain_type T) handle Bind => raise Match;
wenzelm@42284
   255
            val (y, t') =
wenzelm@42284
   256
              Syntax_Trans.atomic_abs_tr' ("y", yT, incr_boundvars 2 t $ Bound 1 $ Bound 0);
wenzelm@42284
   257
            val (x', t'') = Syntax_Trans.atomic_abs_tr' ("x", xT, t');
wenzelm@35115
   258
          in
wenzelm@35115
   259
            Syntax.const @{syntax_const "_abs"} $
wenzelm@35115
   260
              (Syntax.const @{syntax_const "_pattern"} $ x' $ y) $ t''
wenzelm@35115
   261
          end)
wenzelm@42247
   262
    | split_guess_names_tr' _ _ = raise Match;
haftmann@37591
   263
in [(@{const_syntax prod_case}, split_guess_names_tr')] end
schirmer@15422
   264
*}
schirmer@15422
   265
nipkow@42059
   266
(* Force eta-contraction for terms of the form "Q A (%p. prod_case P p)"
nipkow@42059
   267
   where Q is some bounded quantifier or set operator.
nipkow@42059
   268
   Reason: the above prints as "Q p : A. case p of (x,y) \<Rightarrow> P x y"
nipkow@42059
   269
   whereas we want "Q (x,y):A. P x y".
nipkow@42059
   270
   Otherwise prevent eta-contraction.
nipkow@42059
   271
*)
nipkow@42059
   272
print_translation {*
nipkow@42059
   273
let
nipkow@42059
   274
  fun contract Q f ts =
nipkow@42059
   275
    case ts of
nipkow@42059
   276
      [A, Abs(_, _, (s as Const (@{const_syntax prod_case},_) $ t) $ Bound 0)]
wenzelm@42083
   277
      => if Term.is_dependent t then f ts else Syntax.const Q $ A $ s
nipkow@42059
   278
    | _ => f ts;
nipkow@42059
   279
  fun contract2 (Q,f) = (Q, contract Q f);
nipkow@42059
   280
  val pairs =
wenzelm@42284
   281
    [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Ball} @{syntax_const "_Ball"},
wenzelm@42284
   282
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax Bex} @{syntax_const "_Bex"},
wenzelm@42284
   283
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax INFI} @{syntax_const "_INF"},
wenzelm@42284
   284
     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax SUPR} @{syntax_const "_SUP"}]
nipkow@42059
   285
in map contract2 pairs end
nipkow@42059
   286
*}
nipkow@10213
   287
haftmann@37166
   288
subsubsection {* Code generator setup *}
haftmann@37166
   289
haftmann@37678
   290
code_type prod
haftmann@37166
   291
  (SML infix 2 "*")
haftmann@37166
   292
  (OCaml infix 2 "*")
haftmann@37166
   293
  (Haskell "!((_),/ (_))")
haftmann@37166
   294
  (Scala "((_),/ (_))")
haftmann@37166
   295
haftmann@37166
   296
code_const Pair
haftmann@37166
   297
  (SML "!((_),/ (_))")
haftmann@37166
   298
  (OCaml "!((_),/ (_))")
haftmann@37166
   299
  (Haskell "!((_),/ (_))")
haftmann@37166
   300
  (Scala "!((_),/ (_))")
haftmann@37166
   301
haftmann@38857
   302
code_instance prod :: equal
haftmann@37166
   303
  (Haskell -)
haftmann@37166
   304
haftmann@38857
   305
code_const "HOL.equal \<Colon> 'a \<times> 'b \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
haftmann@39272
   306
  (Haskell infix 4 "==")
haftmann@37166
   307
haftmann@37166
   308
haftmann@37166
   309
subsubsection {* Fundamental operations and properties *}
wenzelm@11838
   310
bulwahn@49897
   311
lemma Pair_inject:
bulwahn@49897
   312
  assumes "(a, b) = (a', b')"
bulwahn@49897
   313
    and "a = a' ==> b = b' ==> R"
bulwahn@49897
   314
  shows R
bulwahn@49897
   315
  using assms by simp
bulwahn@49897
   316
haftmann@26358
   317
lemma surj_pair [simp]: "EX x y. p = (x, y)"
haftmann@37166
   318
  by (cases p) simp
nipkow@10213
   319
haftmann@37389
   320
definition fst :: "'a \<times> 'b \<Rightarrow> 'a" where
haftmann@37389
   321
  "fst p = (case p of (a, b) \<Rightarrow> a)"
wenzelm@11838
   322
haftmann@37389
   323
definition snd :: "'a \<times> 'b \<Rightarrow> 'b" where
haftmann@37389
   324
  "snd p = (case p of (a, b) \<Rightarrow> b)"
wenzelm@11838
   325
haftmann@22886
   326
lemma fst_conv [simp, code]: "fst (a, b) = a"
haftmann@37166
   327
  unfolding fst_def by simp
wenzelm@11838
   328
haftmann@22886
   329
lemma snd_conv [simp, code]: "snd (a, b) = b"
haftmann@37166
   330
  unfolding snd_def by simp
oheimb@11025
   331
haftmann@37166
   332
code_const fst and snd
haftmann@37166
   333
  (Haskell "fst" and "snd")
haftmann@26358
   334
blanchet@41792
   335
lemma prod_case_unfold [nitpick_unfold]: "prod_case = (%c p. c (fst p) (snd p))"
nipkow@39302
   336
  by (simp add: fun_eq_iff split: prod.split)
haftmann@26358
   337
wenzelm@11838
   338
lemma fst_eqD: "fst (x, y) = a ==> x = a"
wenzelm@11838
   339
  by simp
wenzelm@11838
   340
wenzelm@11838
   341
lemma snd_eqD: "snd (x, y) = a ==> y = a"
wenzelm@11838
   342
  by simp
wenzelm@11838
   343
haftmann@26358
   344
lemma pair_collapse [simp]: "(fst p, snd p) = p"
wenzelm@11838
   345
  by (cases p) simp
wenzelm@11838
   346
haftmann@26358
   347
lemmas surjective_pairing = pair_collapse [symmetric]
wenzelm@11838
   348
huffman@44066
   349
lemma prod_eq_iff: "s = t \<longleftrightarrow> fst s = fst t \<and> snd s = snd t"
haftmann@37166
   350
  by (cases s, cases t) simp
haftmann@37166
   351
haftmann@37166
   352
lemma prod_eqI [intro?]: "fst p = fst q \<Longrightarrow> snd p = snd q \<Longrightarrow> p = q"
huffman@44066
   353
  by (simp add: prod_eq_iff)
haftmann@37166
   354
haftmann@37166
   355
lemma split_conv [simp, code]: "split f (a, b) = f a b"
haftmann@37591
   356
  by (fact prod.cases)
haftmann@37166
   357
haftmann@37166
   358
lemma splitI: "f a b \<Longrightarrow> split f (a, b)"
haftmann@37166
   359
  by (rule split_conv [THEN iffD2])
haftmann@37166
   360
haftmann@37166
   361
lemma splitD: "split f (a, b) \<Longrightarrow> f a b"
haftmann@37166
   362
  by (rule split_conv [THEN iffD1])
haftmann@37166
   363
haftmann@37166
   364
lemma split_Pair [simp]: "(\<lambda>(x, y). (x, y)) = id"
nipkow@39302
   365
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   366
haftmann@37166
   367
lemma split_eta: "(\<lambda>(x, y). f (x, y)) = f"
haftmann@37166
   368
  -- {* Subsumes the old @{text split_Pair} when @{term f} is the identity function. *}
nipkow@39302
   369
  by (simp add: fun_eq_iff split: prod.split)
haftmann@37166
   370
haftmann@37166
   371
lemma split_comp: "split (f \<circ> g) x = f (g (fst x)) (snd x)"
haftmann@37166
   372
  by (cases x) simp
haftmann@37166
   373
haftmann@37166
   374
lemma split_twice: "split f (split g p) = split (\<lambda>x y. split f (g x y)) p"
haftmann@37166
   375
  by (cases p) simp
haftmann@37166
   376
haftmann@37166
   377
lemma The_split: "The (split P) = (THE xy. P (fst xy) (snd xy))"
haftmann@37591
   378
  by (simp add: prod_case_unfold)
haftmann@37166
   379
haftmann@37166
   380
lemma split_weak_cong: "p = q \<Longrightarrow> split c p = split c q"
haftmann@37166
   381
  -- {* Prevents simplification of @{term c}: much faster *}
huffman@40929
   382
  by (fact prod.weak_case_cong)
haftmann@37166
   383
haftmann@37166
   384
lemma cond_split_eta: "(!!x y. f x y = g (x, y)) ==> (%(x, y). f x y) = g"
haftmann@37166
   385
  by (simp add: split_eta)
haftmann@37166
   386
blanchet@47740
   387
lemma split_paired_all [no_atp]: "(!!x. PROP P x) == (!!a b. PROP P (a, b))"
wenzelm@11820
   388
proof
wenzelm@11820
   389
  fix a b
wenzelm@11820
   390
  assume "!!x. PROP P x"
wenzelm@19535
   391
  then show "PROP P (a, b)" .
wenzelm@11820
   392
next
wenzelm@11820
   393
  fix x
wenzelm@11820
   394
  assume "!!a b. PROP P (a, b)"
wenzelm@19535
   395
  from `PROP P (fst x, snd x)` show "PROP P x" by simp
wenzelm@11820
   396
qed
wenzelm@11820
   397
hoelzl@50104
   398
lemma case_prod_distrib: "f (case x of (x, y) \<Rightarrow> g x y) = (case x of (x, y) \<Rightarrow> f (g x y))"
hoelzl@50104
   399
  by (cases x) simp
hoelzl@50104
   400
wenzelm@11838
   401
text {*
wenzelm@11838
   402
  The rule @{thm [source] split_paired_all} does not work with the
wenzelm@11838
   403
  Simplifier because it also affects premises in congrence rules,
wenzelm@11838
   404
  where this can lead to premises of the form @{text "!!a b. ... =
wenzelm@11838
   405
  ?P(a, b)"} which cannot be solved by reflexivity.
wenzelm@11838
   406
*}
wenzelm@11838
   407
haftmann@26358
   408
lemmas split_tupled_all = split_paired_all unit_all_eq2
haftmann@26358
   409
wenzelm@26480
   410
ML {*
wenzelm@11838
   411
  (* replace parameters of product type by individual component parameters *)
wenzelm@11838
   412
  local (* filtering with exists_paired_all is an essential optimization *)
wenzelm@16121
   413
    fun exists_paired_all (Const ("all", _) $ Abs (_, T, t)) =
wenzelm@11838
   414
          can HOLogic.dest_prodT T orelse exists_paired_all t
wenzelm@11838
   415
      | exists_paired_all (t $ u) = exists_paired_all t orelse exists_paired_all u
wenzelm@11838
   416
      | exists_paired_all (Abs (_, _, t)) = exists_paired_all t
wenzelm@11838
   417
      | exists_paired_all _ = false;
wenzelm@51717
   418
    val ss =
wenzelm@51717
   419
      simpset_of
wenzelm@51717
   420
       (put_simpset HOL_basic_ss @{context}
wenzelm@51717
   421
        addsimps [@{thm split_paired_all}, @{thm unit_all_eq2}, @{thm unit_abs_eta_conv}]
wenzelm@51717
   422
        addsimprocs [@{simproc unit_eq}]);
wenzelm@11838
   423
  in
wenzelm@51717
   424
    fun split_all_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   425
      if exists_paired_all t then safe_full_simp_tac (put_simpset ss ctxt) i else no_tac);
wenzelm@51717
   426
wenzelm@51717
   427
    fun unsafe_split_all_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   428
      if exists_paired_all t then full_simp_tac (put_simpset ss ctxt) i else no_tac);
wenzelm@51717
   429
wenzelm@51717
   430
    fun split_all ctxt th =
wenzelm@51717
   431
      if exists_paired_all (Thm.prop_of th)
wenzelm@51717
   432
      then full_simplify (put_simpset ss ctxt) th else th;
wenzelm@11838
   433
  end;
wenzelm@26340
   434
*}
wenzelm@11838
   435
wenzelm@51703
   436
setup {* map_theory_claset (fn ctxt => ctxt addSbefore ("split_all_tac", split_all_tac)) *}
wenzelm@11838
   437
blanchet@47740
   438
lemma split_paired_All [simp, no_atp]: "(ALL x. P x) = (ALL a b. P (a, b))"
wenzelm@11838
   439
  -- {* @{text "[iff]"} is not a good idea because it makes @{text blast} loop *}
wenzelm@11838
   440
  by fast
wenzelm@11838
   441
blanchet@47740
   442
lemma split_paired_Ex [simp, no_atp]: "(EX x. P x) = (EX a b. P (a, b))"
haftmann@26358
   443
  by fast
haftmann@26358
   444
blanchet@47740
   445
lemma split_paired_The [no_atp]: "(THE x. P x) = (THE (a, b). P (a, b))"
wenzelm@11838
   446
  -- {* Can't be added to simpset: loops! *}
haftmann@26358
   447
  by (simp add: split_eta)
wenzelm@11838
   448
wenzelm@11838
   449
text {*
wenzelm@11838
   450
  Simplification procedure for @{thm [source] cond_split_eta}.  Using
wenzelm@11838
   451
  @{thm [source] split_eta} as a rewrite rule is not general enough,
wenzelm@11838
   452
  and using @{thm [source] cond_split_eta} directly would render some
wenzelm@11838
   453
  existing proofs very inefficient; similarly for @{text
haftmann@26358
   454
  split_beta}.
haftmann@26358
   455
*}
wenzelm@11838
   456
wenzelm@26480
   457
ML {*
wenzelm@11838
   458
local
wenzelm@51717
   459
  val cond_split_eta_ss =
wenzelm@51717
   460
    simpset_of (put_simpset HOL_basic_ss @{context} addsimps @{thms cond_split_eta});
wenzelm@35364
   461
  fun Pair_pat k 0 (Bound m) = (m = k)
wenzelm@35364
   462
    | Pair_pat k i (Const (@{const_name Pair},  _) $ Bound m $ t) =
wenzelm@35364
   463
        i > 0 andalso m = k + i andalso Pair_pat k (i - 1) t
wenzelm@35364
   464
    | Pair_pat _ _ _ = false;
wenzelm@35364
   465
  fun no_args k i (Abs (_, _, t)) = no_args (k + 1) i t
wenzelm@35364
   466
    | no_args k i (t $ u) = no_args k i t andalso no_args k i u
wenzelm@35364
   467
    | no_args k i (Bound m) = m < k orelse m > k + i
wenzelm@35364
   468
    | no_args _ _ _ = true;
wenzelm@35364
   469
  fun split_pat tp i (Abs  (_, _, t)) = if tp 0 i t then SOME (i, t) else NONE
haftmann@37591
   470
    | split_pat tp i (Const (@{const_name prod_case}, _) $ Abs (_, _, t)) = split_pat tp (i + 1) t
wenzelm@35364
   471
    | split_pat tp i _ = NONE;
wenzelm@51717
   472
  fun metaeq ctxt lhs rhs = mk_meta_eq (Goal.prove ctxt [] []
wenzelm@35364
   473
        (HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)))
wenzelm@51717
   474
        (K (simp_tac (put_simpset cond_split_eta_ss ctxt) 1)));
wenzelm@11838
   475
wenzelm@35364
   476
  fun beta_term_pat k i (Abs (_, _, t)) = beta_term_pat (k + 1) i t
wenzelm@35364
   477
    | beta_term_pat k i (t $ u) =
wenzelm@35364
   478
        Pair_pat k i (t $ u) orelse (beta_term_pat k i t andalso beta_term_pat k i u)
wenzelm@35364
   479
    | beta_term_pat k i t = no_args k i t;
wenzelm@35364
   480
  fun eta_term_pat k i (f $ arg) = no_args k i f andalso Pair_pat k i arg
wenzelm@35364
   481
    | eta_term_pat _ _ _ = false;
wenzelm@11838
   482
  fun subst arg k i (Abs (x, T, t)) = Abs (x, T, subst arg (k+1) i t)
wenzelm@35364
   483
    | subst arg k i (t $ u) =
wenzelm@35364
   484
        if Pair_pat k i (t $ u) then incr_boundvars k arg
wenzelm@35364
   485
        else (subst arg k i t $ subst arg k i u)
wenzelm@35364
   486
    | subst arg k i t = t;
wenzelm@43595
   487
in
wenzelm@51717
   488
  fun beta_proc ctxt (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t) $ arg) =
wenzelm@11838
   489
        (case split_pat beta_term_pat 1 t of
wenzelm@51717
   490
          SOME (i, f) => SOME (metaeq ctxt s (subst arg 0 i f))
skalberg@15531
   491
        | NONE => NONE)
wenzelm@35364
   492
    | beta_proc _ _ = NONE;
wenzelm@51717
   493
  fun eta_proc ctxt (s as Const (@{const_name prod_case}, _) $ Abs (_, _, t)) =
wenzelm@11838
   494
        (case split_pat eta_term_pat 1 t of
wenzelm@51717
   495
          SOME (_, ft) => SOME (metaeq ctxt s (let val (f $ arg) = ft in f end))
skalberg@15531
   496
        | NONE => NONE)
wenzelm@35364
   497
    | eta_proc _ _ = NONE;
wenzelm@11838
   498
end;
wenzelm@11838
   499
*}
wenzelm@51717
   500
simproc_setup split_beta ("split f z") = {* fn _ => fn ctxt => fn ct => beta_proc ctxt (term_of ct) *}
wenzelm@51717
   501
simproc_setup split_eta ("split f") = {* fn _ => fn ctxt => fn ct => eta_proc ctxt (term_of ct) *}
wenzelm@11838
   502
berghofe@26798
   503
lemma split_beta [mono]: "(%(x, y). P x y) z = P (fst z) (snd z)"
wenzelm@11838
   504
  by (subst surjective_pairing, rule split_conv)
wenzelm@11838
   505
hoelzl@50104
   506
lemma split_beta': "(\<lambda>(x,y). f x y) = (\<lambda>x. f (fst x) (snd x))"
hoelzl@50104
   507
  by (auto simp: fun_eq_iff)
hoelzl@50104
   508
hoelzl@50104
   509
blanchet@35828
   510
lemma split_split [no_atp]: "R(split c p) = (ALL x y. p = (x, y) --> R(c x y))"
wenzelm@11838
   511
  -- {* For use with @{text split} and the Simplifier. *}
paulson@15481
   512
  by (insert surj_pair [of p], clarify, simp)
wenzelm@11838
   513
wenzelm@11838
   514
text {*
wenzelm@11838
   515
  @{thm [source] split_split} could be declared as @{text "[split]"}
wenzelm@11838
   516
  done after the Splitter has been speeded up significantly;
wenzelm@11838
   517
  precompute the constants involved and don't do anything unless the
wenzelm@11838
   518
  current goal contains one of those constants.
wenzelm@11838
   519
*}
wenzelm@11838
   520
blanchet@35828
   521
lemma split_split_asm [no_atp]: "R (split c p) = (~(EX x y. p = (x, y) & (~R (c x y))))"
paulson@14208
   522
by (subst split_split, simp)
wenzelm@11838
   523
wenzelm@11838
   524
text {*
wenzelm@11838
   525
  \medskip @{term split} used as a logical connective or set former.
wenzelm@11838
   526
wenzelm@11838
   527
  \medskip These rules are for use with @{text blast}; could instead
huffman@40929
   528
  call @{text simp} using @{thm [source] prod.split} as rewrite. *}
wenzelm@11838
   529
wenzelm@11838
   530
lemma splitI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> split c p"
wenzelm@11838
   531
  apply (simp only: split_tupled_all)
wenzelm@11838
   532
  apply (simp (no_asm_simp))
wenzelm@11838
   533
  done
wenzelm@11838
   534
wenzelm@11838
   535
lemma splitI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> split c p x"
wenzelm@11838
   536
  apply (simp only: split_tupled_all)
wenzelm@11838
   537
  apply (simp (no_asm_simp))
wenzelm@11838
   538
  done
wenzelm@11838
   539
wenzelm@11838
   540
lemma splitE: "split c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37591
   541
  by (induct p) auto
wenzelm@11838
   542
wenzelm@11838
   543
lemma splitE': "split c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37591
   544
  by (induct p) auto
wenzelm@11838
   545
wenzelm@11838
   546
lemma splitE2:
wenzelm@11838
   547
  "[| Q (split P z);  !!x y. [|z = (x, y); Q (P x y)|] ==> R |] ==> R"
wenzelm@11838
   548
proof -
wenzelm@11838
   549
  assume q: "Q (split P z)"
wenzelm@11838
   550
  assume r: "!!x y. [|z = (x, y); Q (P x y)|] ==> R"
wenzelm@11838
   551
  show R
wenzelm@11838
   552
    apply (rule r surjective_pairing)+
wenzelm@11838
   553
    apply (rule split_beta [THEN subst], rule q)
wenzelm@11838
   554
    done
wenzelm@11838
   555
qed
wenzelm@11838
   556
wenzelm@11838
   557
lemma splitD': "split R (a,b) c ==> R a b c"
wenzelm@11838
   558
  by simp
wenzelm@11838
   559
wenzelm@11838
   560
lemma mem_splitI: "z: c a b ==> z: split c (a, b)"
wenzelm@11838
   561
  by simp
wenzelm@11838
   562
wenzelm@11838
   563
lemma mem_splitI2: "!!p. [| !!a b. p = (a, b) ==> z: c a b |] ==> z: split c p"
paulson@14208
   564
by (simp only: split_tupled_all, simp)
wenzelm@11838
   565
wenzelm@18372
   566
lemma mem_splitE:
haftmann@37166
   567
  assumes major: "z \<in> split c p"
haftmann@37166
   568
    and cases: "\<And>x y. p = (x, y) \<Longrightarrow> z \<in> c x y \<Longrightarrow> Q"
wenzelm@18372
   569
  shows Q
haftmann@37591
   570
  by (rule major [unfolded prod_case_unfold] cases surjective_pairing)+
wenzelm@11838
   571
wenzelm@11838
   572
declare mem_splitI2 [intro!] mem_splitI [intro!] splitI2' [intro!] splitI2 [intro!] splitI [intro!]
wenzelm@11838
   573
declare mem_splitE [elim!] splitE' [elim!] splitE [elim!]
wenzelm@11838
   574
wenzelm@26340
   575
ML {*
wenzelm@11838
   576
local (* filtering with exists_p_split is an essential optimization *)
haftmann@37591
   577
  fun exists_p_split (Const (@{const_name prod_case},_) $ _ $ (Const (@{const_name Pair},_)$_$_)) = true
wenzelm@11838
   578
    | exists_p_split (t $ u) = exists_p_split t orelse exists_p_split u
wenzelm@11838
   579
    | exists_p_split (Abs (_, _, t)) = exists_p_split t
wenzelm@11838
   580
    | exists_p_split _ = false;
wenzelm@11838
   581
in
wenzelm@51717
   582
fun split_conv_tac ctxt = SUBGOAL (fn (t, i) =>
wenzelm@51717
   583
  if exists_p_split t
wenzelm@51717
   584
  then safe_full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps @{thms split_conv}) i
wenzelm@51717
   585
  else no_tac);
wenzelm@11838
   586
end;
wenzelm@26340
   587
*}
wenzelm@26340
   588
wenzelm@11838
   589
(* This prevents applications of splitE for already splitted arguments leading
wenzelm@11838
   590
   to quite time-consuming computations (in particular for nested tuples) *)
wenzelm@51703
   591
setup {* map_theory_claset (fn ctxt => ctxt addSbefore ("split_conv_tac", split_conv_tac)) *}
wenzelm@11838
   592
blanchet@35828
   593
lemma split_eta_SetCompr [simp,no_atp]: "(%u. EX x y. u = (x, y) & P (x, y)) = P"
wenzelm@18372
   594
  by (rule ext) fast
wenzelm@11838
   595
blanchet@35828
   596
lemma split_eta_SetCompr2 [simp,no_atp]: "(%u. EX x y. u = (x, y) & P x y) = split P"
wenzelm@18372
   597
  by (rule ext) fast
wenzelm@11838
   598
wenzelm@11838
   599
lemma split_part [simp]: "(%(a,b). P & Q a b) = (%ab. P & split Q ab)"
wenzelm@11838
   600
  -- {* Allows simplifications of nested splits in case of independent predicates. *}
wenzelm@18372
   601
  by (rule ext) blast
wenzelm@11838
   602
nipkow@14337
   603
(* Do NOT make this a simp rule as it
nipkow@14337
   604
   a) only helps in special situations
nipkow@14337
   605
   b) can lead to nontermination in the presence of split_def
nipkow@14337
   606
*)
nipkow@14337
   607
lemma split_comp_eq: 
paulson@20415
   608
  fixes f :: "'a => 'b => 'c" and g :: "'d => 'a"
paulson@20415
   609
  shows "(%u. f (g (fst u)) (snd u)) = (split (%x. f (g x)))"
wenzelm@18372
   610
  by (rule ext) auto
oheimb@14101
   611
haftmann@26358
   612
lemma pair_imageI [intro]: "(a, b) : A ==> f a b : (%(a, b). f a b) ` A"
haftmann@26358
   613
  apply (rule_tac x = "(a, b)" in image_eqI)
haftmann@26358
   614
   apply auto
haftmann@26358
   615
  done
haftmann@26358
   616
wenzelm@11838
   617
lemma The_split_eq [simp]: "(THE (x',y'). x = x' & y = y') = (x, y)"
wenzelm@11838
   618
  by blast
wenzelm@11838
   619
wenzelm@11838
   620
(*
wenzelm@11838
   621
the following  would be slightly more general,
wenzelm@11838
   622
but cannot be used as rewrite rule:
wenzelm@11838
   623
### Cannot add premise as rewrite rule because it contains (type) unknowns:
wenzelm@11838
   624
### ?y = .x
wenzelm@11838
   625
Goal "[| P y; !!x. P x ==> x = y |] ==> (@(x',y). x = x' & P y) = (x,y)"
paulson@14208
   626
by (rtac some_equality 1)
paulson@14208
   627
by ( Simp_tac 1)
paulson@14208
   628
by (split_all_tac 1)
paulson@14208
   629
by (Asm_full_simp_tac 1)
wenzelm@11838
   630
qed "The_split_eq";
wenzelm@11838
   631
*)
wenzelm@11838
   632
wenzelm@11838
   633
text {*
wenzelm@11838
   634
  Setup of internal @{text split_rule}.
wenzelm@11838
   635
*}
wenzelm@11838
   636
wenzelm@45607
   637
lemmas prod_caseI = prod.cases [THEN iffD2]
haftmann@24699
   638
haftmann@24699
   639
lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p"
haftmann@37678
   640
  by (fact splitI2)
haftmann@24699
   641
haftmann@24699
   642
lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x"
haftmann@37678
   643
  by (fact splitI2')
haftmann@24699
   644
haftmann@24699
   645
lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q"
haftmann@37678
   646
  by (fact splitE)
haftmann@24699
   647
haftmann@24699
   648
lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q"
haftmann@37678
   649
  by (fact splitE')
haftmann@24699
   650
haftmann@37678
   651
declare prod_caseI [intro!]
haftmann@24699
   652
bulwahn@26143
   653
lemma prod_case_beta:
bulwahn@26143
   654
  "prod_case f p = f (fst p) (snd p)"
haftmann@37591
   655
  by (fact split_beta)
bulwahn@26143
   656
haftmann@24699
   657
lemma prod_cases3 [cases type]:
haftmann@24699
   658
  obtains (fields) a b c where "y = (a, b, c)"
haftmann@24699
   659
  by (cases y, case_tac b) blast
haftmann@24699
   660
haftmann@24699
   661
lemma prod_induct3 [case_names fields, induct type]:
haftmann@24699
   662
    "(!!a b c. P (a, b, c)) ==> P x"
haftmann@24699
   663
  by (cases x) blast
haftmann@24699
   664
haftmann@24699
   665
lemma prod_cases4 [cases type]:
haftmann@24699
   666
  obtains (fields) a b c d where "y = (a, b, c, d)"
haftmann@24699
   667
  by (cases y, case_tac c) blast
haftmann@24699
   668
haftmann@24699
   669
lemma prod_induct4 [case_names fields, induct type]:
haftmann@24699
   670
    "(!!a b c d. P (a, b, c, d)) ==> P x"
haftmann@24699
   671
  by (cases x) blast
haftmann@24699
   672
haftmann@24699
   673
lemma prod_cases5 [cases type]:
haftmann@24699
   674
  obtains (fields) a b c d e where "y = (a, b, c, d, e)"
haftmann@24699
   675
  by (cases y, case_tac d) blast
haftmann@24699
   676
haftmann@24699
   677
lemma prod_induct5 [case_names fields, induct type]:
haftmann@24699
   678
    "(!!a b c d e. P (a, b, c, d, e)) ==> P x"
haftmann@24699
   679
  by (cases x) blast
haftmann@24699
   680
haftmann@24699
   681
lemma prod_cases6 [cases type]:
haftmann@24699
   682
  obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)"
haftmann@24699
   683
  by (cases y, case_tac e) blast
haftmann@24699
   684
haftmann@24699
   685
lemma prod_induct6 [case_names fields, induct type]:
haftmann@24699
   686
    "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x"
haftmann@24699
   687
  by (cases x) blast
haftmann@24699
   688
haftmann@24699
   689
lemma prod_cases7 [cases type]:
haftmann@24699
   690
  obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)"
haftmann@24699
   691
  by (cases y, case_tac f) blast
haftmann@24699
   692
haftmann@24699
   693
lemma prod_induct7 [case_names fields, induct type]:
haftmann@24699
   694
    "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x"
haftmann@24699
   695
  by (cases x) blast
haftmann@24699
   696
haftmann@37166
   697
lemma split_def:
haftmann@37166
   698
  "split = (\<lambda>c p. c (fst p) (snd p))"
haftmann@37591
   699
  by (fact prod_case_unfold)
haftmann@37166
   700
haftmann@37166
   701
definition internal_split :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c" where
haftmann@37166
   702
  "internal_split == split"
haftmann@37166
   703
haftmann@37166
   704
lemma internal_split_conv: "internal_split c (a, b) = c a b"
haftmann@37166
   705
  by (simp only: internal_split_def split_conv)
haftmann@37166
   706
wenzelm@48891
   707
ML_file "Tools/split_rule.ML"
haftmann@37166
   708
setup Split_Rule.setup
haftmann@37166
   709
haftmann@37166
   710
hide_const internal_split
haftmann@37166
   711
haftmann@24699
   712
haftmann@26358
   713
subsubsection {* Derived operations *}
haftmann@26358
   714
haftmann@37387
   715
definition curry    :: "('a \<times> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'c" where
haftmann@37387
   716
  "curry = (\<lambda>c x y. c (x, y))"
haftmann@37166
   717
haftmann@37166
   718
lemma curry_conv [simp, code]: "curry f a b = f (a, b)"
haftmann@37166
   719
  by (simp add: curry_def)
haftmann@37166
   720
haftmann@37166
   721
lemma curryI [intro!]: "f (a, b) \<Longrightarrow> curry f a b"
haftmann@37166
   722
  by (simp add: curry_def)
haftmann@37166
   723
haftmann@37166
   724
lemma curryD [dest!]: "curry f a b \<Longrightarrow> f (a, b)"
haftmann@37166
   725
  by (simp add: curry_def)
haftmann@37166
   726
haftmann@37166
   727
lemma curryE: "curry f a b \<Longrightarrow> (f (a, b) \<Longrightarrow> Q) \<Longrightarrow> Q"
haftmann@37166
   728
  by (simp add: curry_def)
haftmann@37166
   729
haftmann@37166
   730
lemma curry_split [simp]: "curry (split f) = f"
haftmann@37166
   731
  by (simp add: curry_def split_def)
haftmann@37166
   732
haftmann@37166
   733
lemma split_curry [simp]: "split (curry f) = f"
haftmann@37166
   734
  by (simp add: curry_def split_def)
haftmann@37166
   735
haftmann@26358
   736
text {*
haftmann@26358
   737
  The composition-uncurry combinator.
haftmann@26358
   738
*}
haftmann@26358
   739
haftmann@37751
   740
notation fcomp (infixl "\<circ>>" 60)
haftmann@26358
   741
haftmann@37751
   742
definition scomp :: "('a \<Rightarrow> 'b \<times> 'c) \<Rightarrow> ('b \<Rightarrow> 'c \<Rightarrow> 'd) \<Rightarrow> 'a \<Rightarrow> 'd" (infixl "\<circ>\<rightarrow>" 60) where
haftmann@37751
   743
  "f \<circ>\<rightarrow> g = (\<lambda>x. prod_case g (f x))"
haftmann@26358
   744
haftmann@37678
   745
lemma scomp_unfold: "scomp = (\<lambda>f g x. g (fst (f x)) (snd (f x)))"
nipkow@39302
   746
  by (simp add: fun_eq_iff scomp_def prod_case_unfold)
haftmann@37678
   747
haftmann@37751
   748
lemma scomp_apply [simp]: "(f \<circ>\<rightarrow> g) x = prod_case g (f x)"
haftmann@37751
   749
  by (simp add: scomp_unfold prod_case_unfold)
haftmann@26358
   750
haftmann@37751
   751
lemma Pair_scomp: "Pair x \<circ>\<rightarrow> f = f x"
huffman@44921
   752
  by (simp add: fun_eq_iff)
haftmann@26358
   753
haftmann@37751
   754
lemma scomp_Pair: "x \<circ>\<rightarrow> Pair = x"
huffman@44921
   755
  by (simp add: fun_eq_iff)
haftmann@26358
   756
haftmann@37751
   757
lemma scomp_scomp: "(f \<circ>\<rightarrow> g) \<circ>\<rightarrow> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>\<rightarrow> h)"
nipkow@39302
   758
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   759
haftmann@37751
   760
lemma scomp_fcomp: "(f \<circ>\<rightarrow> g) \<circ>> h = f \<circ>\<rightarrow> (\<lambda>x. g x \<circ>> h)"
nipkow@39302
   761
  by (simp add: fun_eq_iff scomp_unfold fcomp_def)
haftmann@26358
   762
haftmann@37751
   763
lemma fcomp_scomp: "(f \<circ>> g) \<circ>\<rightarrow> h = f \<circ>> (g \<circ>\<rightarrow> h)"
huffman@44921
   764
  by (simp add: fun_eq_iff scomp_unfold)
haftmann@26358
   765
haftmann@31202
   766
code_const scomp
haftmann@31202
   767
  (Eval infixl 3 "#->")
haftmann@31202
   768
haftmann@37751
   769
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37751
   770
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@26358
   771
haftmann@26358
   772
text {*
haftmann@40607
   773
  @{term map_pair} --- action of the product functor upon
krauss@36664
   774
  functions.
haftmann@26358
   775
*}
haftmann@21195
   776
haftmann@40607
   777
definition map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'd" where
haftmann@40607
   778
  "map_pair f g = (\<lambda>(x, y). (f x, g y))"
haftmann@26358
   779
haftmann@40607
   780
lemma map_pair_simp [simp, code]:
haftmann@40607
   781
  "map_pair f g (a, b) = (f a, g b)"
haftmann@40607
   782
  by (simp add: map_pair_def)
haftmann@26358
   783
haftmann@41505
   784
enriched_type map_pair: map_pair
huffman@44921
   785
  by (auto simp add: split_paired_all)
nipkow@37278
   786
haftmann@40607
   787
lemma fst_map_pair [simp]:
haftmann@40607
   788
  "fst (map_pair f g x) = f (fst x)"
haftmann@40607
   789
  by (cases x) simp_all
nipkow@37278
   790
haftmann@40607
   791
lemma snd_prod_fun [simp]:
haftmann@40607
   792
  "snd (map_pair f g x) = g (snd x)"
haftmann@40607
   793
  by (cases x) simp_all
nipkow@37278
   794
haftmann@40607
   795
lemma fst_comp_map_pair [simp]:
haftmann@40607
   796
  "fst \<circ> map_pair f g = f \<circ> fst"
haftmann@40607
   797
  by (rule ext) simp_all
nipkow@37278
   798
haftmann@40607
   799
lemma snd_comp_map_pair [simp]:
haftmann@40607
   800
  "snd \<circ> map_pair f g = g \<circ> snd"
haftmann@40607
   801
  by (rule ext) simp_all
haftmann@26358
   802
haftmann@40607
   803
lemma map_pair_compose:
haftmann@40607
   804
  "map_pair (f1 o f2) (g1 o g2) = (map_pair f1 g1 o map_pair f2 g2)"
haftmann@40607
   805
  by (rule ext) (simp add: map_pair.compositionality comp_def)
haftmann@26358
   806
haftmann@40607
   807
lemma map_pair_ident [simp]:
haftmann@40607
   808
  "map_pair (%x. x) (%y. y) = (%z. z)"
haftmann@40607
   809
  by (rule ext) (simp add: map_pair.identity)
haftmann@40607
   810
haftmann@40607
   811
lemma map_pair_imageI [intro]:
haftmann@40607
   812
  "(a, b) \<in> R \<Longrightarrow> (f a, g b) \<in> map_pair f g ` R"
haftmann@40607
   813
  by (rule image_eqI) simp_all
haftmann@21195
   814
haftmann@26358
   815
lemma prod_fun_imageE [elim!]:
haftmann@40607
   816
  assumes major: "c \<in> map_pair f g ` R"
haftmann@40607
   817
    and cases: "\<And>x y. c = (f x, g y) \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> P"
haftmann@26358
   818
  shows P
haftmann@26358
   819
  apply (rule major [THEN imageE])
haftmann@37166
   820
  apply (case_tac x)
haftmann@26358
   821
  apply (rule cases)
haftmann@40607
   822
  apply simp_all
haftmann@26358
   823
  done
haftmann@26358
   824
haftmann@37166
   825
definition apfst :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c \<times> 'b" where
haftmann@40607
   826
  "apfst f = map_pair f id"
haftmann@26358
   827
haftmann@37166
   828
definition apsnd :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'a \<times> 'c" where
haftmann@40607
   829
  "apsnd f = map_pair id f"
haftmann@26358
   830
haftmann@26358
   831
lemma apfst_conv [simp, code]:
haftmann@26358
   832
  "apfst f (x, y) = (f x, y)" 
haftmann@26358
   833
  by (simp add: apfst_def)
haftmann@26358
   834
hoelzl@33638
   835
lemma apsnd_conv [simp, code]:
haftmann@26358
   836
  "apsnd f (x, y) = (x, f y)" 
haftmann@26358
   837
  by (simp add: apsnd_def)
haftmann@21195
   838
haftmann@33594
   839
lemma fst_apfst [simp]:
haftmann@33594
   840
  "fst (apfst f x) = f (fst x)"
haftmann@33594
   841
  by (cases x) simp
haftmann@33594
   842
haftmann@51173
   843
lemma fst_comp_apfst [simp]:
haftmann@51173
   844
  "fst \<circ> apfst f = f \<circ> fst"
haftmann@51173
   845
  by (simp add: fun_eq_iff)
haftmann@51173
   846
haftmann@33594
   847
lemma fst_apsnd [simp]:
haftmann@33594
   848
  "fst (apsnd f x) = fst x"
haftmann@33594
   849
  by (cases x) simp
haftmann@33594
   850
haftmann@51173
   851
lemma fst_comp_apsnd [simp]:
haftmann@51173
   852
  "fst \<circ> apsnd f = fst"
haftmann@51173
   853
  by (simp add: fun_eq_iff)
haftmann@51173
   854
haftmann@33594
   855
lemma snd_apfst [simp]:
haftmann@33594
   856
  "snd (apfst f x) = snd x"
haftmann@33594
   857
  by (cases x) simp
haftmann@33594
   858
haftmann@51173
   859
lemma snd_comp_apfst [simp]:
haftmann@51173
   860
  "snd \<circ> apfst f = snd"
haftmann@51173
   861
  by (simp add: fun_eq_iff)
haftmann@51173
   862
haftmann@33594
   863
lemma snd_apsnd [simp]:
haftmann@33594
   864
  "snd (apsnd f x) = f (snd x)"
haftmann@33594
   865
  by (cases x) simp
haftmann@33594
   866
haftmann@51173
   867
lemma snd_comp_apsnd [simp]:
haftmann@51173
   868
  "snd \<circ> apsnd f = f \<circ> snd"
haftmann@51173
   869
  by (simp add: fun_eq_iff)
haftmann@51173
   870
haftmann@33594
   871
lemma apfst_compose:
haftmann@33594
   872
  "apfst f (apfst g x) = apfst (f \<circ> g) x"
haftmann@33594
   873
  by (cases x) simp
haftmann@33594
   874
haftmann@33594
   875
lemma apsnd_compose:
haftmann@33594
   876
  "apsnd f (apsnd g x) = apsnd (f \<circ> g) x"
haftmann@33594
   877
  by (cases x) simp
haftmann@33594
   878
haftmann@33594
   879
lemma apfst_apsnd [simp]:
haftmann@33594
   880
  "apfst f (apsnd g x) = (f (fst x), g (snd x))"
haftmann@33594
   881
  by (cases x) simp
haftmann@33594
   882
haftmann@33594
   883
lemma apsnd_apfst [simp]:
haftmann@33594
   884
  "apsnd f (apfst g x) = (g (fst x), f (snd x))"
haftmann@33594
   885
  by (cases x) simp
haftmann@33594
   886
haftmann@33594
   887
lemma apfst_id [simp] :
haftmann@33594
   888
  "apfst id = id"
nipkow@39302
   889
  by (simp add: fun_eq_iff)
haftmann@33594
   890
haftmann@33594
   891
lemma apsnd_id [simp] :
haftmann@33594
   892
  "apsnd id = id"
nipkow@39302
   893
  by (simp add: fun_eq_iff)
haftmann@33594
   894
haftmann@33594
   895
lemma apfst_eq_conv [simp]:
haftmann@33594
   896
  "apfst f x = apfst g x \<longleftrightarrow> f (fst x) = g (fst x)"
haftmann@33594
   897
  by (cases x) simp
haftmann@33594
   898
haftmann@33594
   899
lemma apsnd_eq_conv [simp]:
haftmann@33594
   900
  "apsnd f x = apsnd g x \<longleftrightarrow> f (snd x) = g (snd x)"
haftmann@33594
   901
  by (cases x) simp
haftmann@33594
   902
hoelzl@33638
   903
lemma apsnd_apfst_commute:
hoelzl@33638
   904
  "apsnd f (apfst g p) = apfst g (apsnd f p)"
hoelzl@33638
   905
  by simp
haftmann@21195
   906
haftmann@26358
   907
text {*
haftmann@26358
   908
  Disjoint union of a family of sets -- Sigma.
haftmann@26358
   909
*}
haftmann@26358
   910
haftmann@45986
   911
definition Sigma :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<times> 'b) set" where
haftmann@26358
   912
  Sigma_def: "Sigma A B == UN x:A. UN y:B x. {Pair x y}"
haftmann@26358
   913
haftmann@26358
   914
abbreviation
haftmann@45986
   915
  Times :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set"
haftmann@26358
   916
    (infixr "<*>" 80) where
haftmann@26358
   917
  "A <*> B == Sigma A (%_. B)"
haftmann@26358
   918
haftmann@26358
   919
notation (xsymbols)
haftmann@26358
   920
  Times  (infixr "\<times>" 80)
berghofe@15394
   921
haftmann@26358
   922
notation (HTML output)
haftmann@26358
   923
  Times  (infixr "\<times>" 80)
haftmann@26358
   924
nipkow@45662
   925
hide_const (open) Times
nipkow@45662
   926
haftmann@26358
   927
syntax
wenzelm@35115
   928
  "_Sigma" :: "[pttrn, 'a set, 'b set] => ('a * 'b) set"  ("(3SIGMA _:_./ _)" [0, 0, 10] 10)
haftmann@26358
   929
translations
wenzelm@35115
   930
  "SIGMA x:A. B" == "CONST Sigma A (%x. B)"
haftmann@26358
   931
haftmann@26358
   932
lemma SigmaI [intro!]: "[| a:A;  b:B(a) |] ==> (a,b) : Sigma A B"
haftmann@26358
   933
  by (unfold Sigma_def) blast
haftmann@26358
   934
haftmann@26358
   935
lemma SigmaE [elim!]:
haftmann@26358
   936
    "[| c: Sigma A B;
haftmann@26358
   937
        !!x y.[| x:A;  y:B(x);  c=(x,y) |] ==> P
haftmann@26358
   938
     |] ==> P"
haftmann@26358
   939
  -- {* The general elimination rule. *}
haftmann@26358
   940
  by (unfold Sigma_def) blast
haftmann@20588
   941
haftmann@26358
   942
text {*
haftmann@26358
   943
  Elimination of @{term "(a, b) : A \<times> B"} -- introduces no
haftmann@26358
   944
  eigenvariables.
haftmann@26358
   945
*}
haftmann@26358
   946
haftmann@26358
   947
lemma SigmaD1: "(a, b) : Sigma A B ==> a : A"
haftmann@26358
   948
  by blast
haftmann@26358
   949
haftmann@26358
   950
lemma SigmaD2: "(a, b) : Sigma A B ==> b : B a"
haftmann@26358
   951
  by blast
haftmann@26358
   952
haftmann@26358
   953
lemma SigmaE2:
haftmann@26358
   954
    "[| (a, b) : Sigma A B;
haftmann@26358
   955
        [| a:A;  b:B(a) |] ==> P
haftmann@26358
   956
     |] ==> P"
haftmann@26358
   957
  by blast
haftmann@20588
   958
haftmann@26358
   959
lemma Sigma_cong:
haftmann@26358
   960
     "\<lbrakk>A = B; !!x. x \<in> B \<Longrightarrow> C x = D x\<rbrakk>
haftmann@26358
   961
      \<Longrightarrow> (SIGMA x: A. C x) = (SIGMA x: B. D x)"
haftmann@26358
   962
  by auto
haftmann@26358
   963
haftmann@26358
   964
lemma Sigma_mono: "[| A <= C; !!x. x:A ==> B x <= D x |] ==> Sigma A B <= Sigma C D"
haftmann@26358
   965
  by blast
haftmann@26358
   966
haftmann@26358
   967
lemma Sigma_empty1 [simp]: "Sigma {} B = {}"
haftmann@26358
   968
  by blast
haftmann@26358
   969
haftmann@26358
   970
lemma Sigma_empty2 [simp]: "A <*> {} = {}"
haftmann@26358
   971
  by blast
haftmann@26358
   972
haftmann@26358
   973
lemma UNIV_Times_UNIV [simp]: "UNIV <*> UNIV = UNIV"
haftmann@26358
   974
  by auto
haftmann@21908
   975
haftmann@26358
   976
lemma Compl_Times_UNIV1 [simp]: "- (UNIV <*> A) = UNIV <*> (-A)"
haftmann@26358
   977
  by auto
haftmann@26358
   978
haftmann@26358
   979
lemma Compl_Times_UNIV2 [simp]: "- (A <*> UNIV) = (-A) <*> UNIV"
haftmann@26358
   980
  by auto
haftmann@26358
   981
haftmann@26358
   982
lemma mem_Sigma_iff [iff]: "((a,b): Sigma A B) = (a:A & b:B(a))"
haftmann@26358
   983
  by blast
haftmann@26358
   984
haftmann@26358
   985
lemma Times_subset_cancel2: "x:C ==> (A <*> C <= B <*> C) = (A <= B)"
haftmann@26358
   986
  by blast
haftmann@26358
   987
haftmann@26358
   988
lemma Times_eq_cancel2: "x:C ==> (A <*> C = B <*> C) = (A = B)"
haftmann@26358
   989
  by (blast elim: equalityE)
haftmann@20588
   990
haftmann@26358
   991
lemma SetCompr_Sigma_eq:
haftmann@26358
   992
    "Collect (split (%x y. P x & Q x y)) = (SIGMA x:Collect P. Collect (Q x))"
haftmann@26358
   993
  by blast
haftmann@26358
   994
haftmann@26358
   995
lemma Collect_split [simp]: "{(a,b). P a & Q b} = Collect P <*> Collect Q"
haftmann@26358
   996
  by blast
haftmann@26358
   997
haftmann@26358
   998
lemma UN_Times_distrib:
haftmann@26358
   999
  "(UN (a,b):(A <*> B). E a <*> F b) = (UNION A E) <*> (UNION B F)"
haftmann@26358
  1000
  -- {* Suggested by Pierre Chartier *}
haftmann@26358
  1001
  by blast
haftmann@26358
  1002
blanchet@47740
  1003
lemma split_paired_Ball_Sigma [simp, no_atp]:
haftmann@26358
  1004
    "(ALL z: Sigma A B. P z) = (ALL x:A. ALL y: B x. P(x,y))"
haftmann@26358
  1005
  by blast
haftmann@26358
  1006
blanchet@47740
  1007
lemma split_paired_Bex_Sigma [simp, no_atp]:
haftmann@26358
  1008
    "(EX z: Sigma A B. P z) = (EX x:A. EX y: B x. P(x,y))"
haftmann@26358
  1009
  by blast
haftmann@21908
  1010
haftmann@26358
  1011
lemma Sigma_Un_distrib1: "(SIGMA i:I Un J. C(i)) = (SIGMA i:I. C(i)) Un (SIGMA j:J. C(j))"
haftmann@26358
  1012
  by blast
haftmann@26358
  1013
haftmann@26358
  1014
lemma Sigma_Un_distrib2: "(SIGMA i:I. A(i) Un B(i)) = (SIGMA i:I. A(i)) Un (SIGMA i:I. B(i))"
haftmann@26358
  1015
  by blast
haftmann@26358
  1016
haftmann@26358
  1017
lemma Sigma_Int_distrib1: "(SIGMA i:I Int J. C(i)) = (SIGMA i:I. C(i)) Int (SIGMA j:J. C(j))"
haftmann@26358
  1018
  by blast
haftmann@26358
  1019
haftmann@26358
  1020
lemma Sigma_Int_distrib2: "(SIGMA i:I. A(i) Int B(i)) = (SIGMA i:I. A(i)) Int (SIGMA i:I. B(i))"
haftmann@26358
  1021
  by blast
haftmann@26358
  1022
haftmann@26358
  1023
lemma Sigma_Diff_distrib1: "(SIGMA i:I - J. C(i)) = (SIGMA i:I. C(i)) - (SIGMA j:J. C(j))"
haftmann@26358
  1024
  by blast
haftmann@26358
  1025
haftmann@26358
  1026
lemma Sigma_Diff_distrib2: "(SIGMA i:I. A(i) - B(i)) = (SIGMA i:I. A(i)) - (SIGMA i:I. B(i))"
haftmann@26358
  1027
  by blast
haftmann@21908
  1028
haftmann@26358
  1029
lemma Sigma_Union: "Sigma (Union X) B = (UN A:X. Sigma A B)"
haftmann@26358
  1030
  by blast
haftmann@26358
  1031
haftmann@26358
  1032
text {*
haftmann@26358
  1033
  Non-dependent versions are needed to avoid the need for higher-order
haftmann@26358
  1034
  matching, especially when the rules are re-oriented.
haftmann@26358
  1035
*}
haftmann@21908
  1036
haftmann@26358
  1037
lemma Times_Un_distrib1: "(A Un B) <*> C = (A <*> C) Un (B <*> C)"
nipkow@28719
  1038
by blast
haftmann@26358
  1039
haftmann@26358
  1040
lemma Times_Int_distrib1: "(A Int B) <*> C = (A <*> C) Int (B <*> C)"
nipkow@28719
  1041
by blast
haftmann@26358
  1042
haftmann@26358
  1043
lemma Times_Diff_distrib1: "(A - B) <*> C = (A <*> C) - (B <*> C)"
nipkow@28719
  1044
by blast
haftmann@26358
  1045
hoelzl@36622
  1046
lemma Times_empty[simp]: "A \<times> B = {} \<longleftrightarrow> A = {} \<or> B = {}"
hoelzl@36622
  1047
  by auto
hoelzl@36622
  1048
hoelzl@50104
  1049
lemma times_eq_iff: "A \<times> B = C \<times> D \<longleftrightarrow> A = C \<and> B = D \<or> ((A = {} \<or> B = {}) \<and> (C = {} \<or> D = {}))"
hoelzl@50104
  1050
  by auto
hoelzl@50104
  1051
hoelzl@36622
  1052
lemma fst_image_times[simp]: "fst ` (A \<times> B) = (if B = {} then {} else A)"
huffman@44921
  1053
  by force
hoelzl@36622
  1054
hoelzl@36622
  1055
lemma snd_image_times[simp]: "snd ` (A \<times> B) = (if A = {} then {} else B)"
huffman@44921
  1056
  by force
hoelzl@36622
  1057
nipkow@28719
  1058
lemma insert_times_insert[simp]:
nipkow@28719
  1059
  "insert a A \<times> insert b B =
nipkow@28719
  1060
   insert (a,b) (A \<times> insert b B \<union> insert a A \<times> B)"
nipkow@28719
  1061
by blast
haftmann@26358
  1062
paulson@33271
  1063
lemma vimage_Times: "f -` (A \<times> B) = ((fst \<circ> f) -` A) \<inter> ((snd \<circ> f) -` B)"
wenzelm@47988
  1064
  apply auto
wenzelm@47988
  1065
  apply (case_tac "f x")
wenzelm@47988
  1066
  apply auto
wenzelm@47988
  1067
  done
paulson@33271
  1068
hoelzl@50104
  1069
lemma times_Int_times: "A \<times> B \<inter> C \<times> D = (A \<inter> C) \<times> (B \<inter> D)"
hoelzl@50104
  1070
  by auto
hoelzl@50104
  1071
haftmann@35822
  1072
lemma swap_inj_on:
hoelzl@36622
  1073
  "inj_on (\<lambda>(i, j). (j, i)) A"
hoelzl@36622
  1074
  by (auto intro!: inj_onI)
haftmann@35822
  1075
haftmann@35822
  1076
lemma swap_product:
haftmann@35822
  1077
  "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A"
haftmann@35822
  1078
  by (simp add: split_def image_def) blast
haftmann@35822
  1079
hoelzl@36622
  1080
lemma image_split_eq_Sigma:
hoelzl@36622
  1081
  "(\<lambda>x. (f x, g x)) ` A = Sigma (f ` A) (\<lambda>x. g ` (f -` {x} \<inter> A))"
haftmann@46128
  1082
proof (safe intro!: imageI)
hoelzl@36622
  1083
  fix a b assume *: "a \<in> A" "b \<in> A" and eq: "f a = f b"
hoelzl@36622
  1084
  show "(f b, g a) \<in> (\<lambda>x. (f x, g x)) ` A"
hoelzl@36622
  1085
    using * eq[symmetric] by auto
hoelzl@36622
  1086
qed simp_all
haftmann@35822
  1087
haftmann@46128
  1088
definition product :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
haftmann@46128
  1089
  [code_abbrev]: "product A B = A \<times> B"
haftmann@46128
  1090
haftmann@46128
  1091
hide_const (open) product
haftmann@46128
  1092
haftmann@46128
  1093
lemma member_product:
haftmann@46128
  1094
  "x \<in> Product_Type.product A B \<longleftrightarrow> x \<in> A \<times> B"
haftmann@46128
  1095
  by (simp add: product_def)
haftmann@46128
  1096
haftmann@40607
  1097
text {* The following @{const map_pair} lemmas are due to Joachim Breitner: *}
haftmann@40607
  1098
haftmann@40607
  1099
lemma map_pair_inj_on:
haftmann@40607
  1100
  assumes "inj_on f A" and "inj_on g B"
haftmann@40607
  1101
  shows "inj_on (map_pair f g) (A \<times> B)"
haftmann@40607
  1102
proof (rule inj_onI)
haftmann@40607
  1103
  fix x :: "'a \<times> 'c" and y :: "'a \<times> 'c"
haftmann@40607
  1104
  assume "x \<in> A \<times> B" hence "fst x \<in> A" and "snd x \<in> B" by auto
haftmann@40607
  1105
  assume "y \<in> A \<times> B" hence "fst y \<in> A" and "snd y \<in> B" by auto
haftmann@40607
  1106
  assume "map_pair f g x = map_pair f g y"
haftmann@40607
  1107
  hence "fst (map_pair f g x) = fst (map_pair f g y)" by (auto)
haftmann@40607
  1108
  hence "f (fst x) = f (fst y)" by (cases x,cases y,auto)
haftmann@40607
  1109
  with `inj_on f A` and `fst x \<in> A` and `fst y \<in> A`
haftmann@40607
  1110
  have "fst x = fst y" by (auto dest:dest:inj_onD)
haftmann@40607
  1111
  moreover from `map_pair f g x = map_pair f g y`
haftmann@40607
  1112
  have "snd (map_pair f g x) = snd (map_pair f g y)" by (auto)
haftmann@40607
  1113
  hence "g (snd x) = g (snd y)" by (cases x,cases y,auto)
haftmann@40607
  1114
  with `inj_on g B` and `snd x \<in> B` and `snd y \<in> B`
haftmann@40607
  1115
  have "snd x = snd y" by (auto dest:dest:inj_onD)
haftmann@40607
  1116
  ultimately show "x = y" by(rule prod_eqI)
haftmann@40607
  1117
qed
haftmann@40607
  1118
haftmann@40607
  1119
lemma map_pair_surj:
hoelzl@40702
  1120
  fixes f :: "'a \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'd"
haftmann@40607
  1121
  assumes "surj f" and "surj g"
haftmann@40607
  1122
  shows "surj (map_pair f g)"
haftmann@40607
  1123
unfolding surj_def
haftmann@40607
  1124
proof
haftmann@40607
  1125
  fix y :: "'b \<times> 'd"
haftmann@40607
  1126
  from `surj f` obtain a where "fst y = f a" by (auto elim:surjE)
haftmann@40607
  1127
  moreover
haftmann@40607
  1128
  from `surj g` obtain b where "snd y = g b" by (auto elim:surjE)
haftmann@40607
  1129
  ultimately have "(fst y, snd y) = map_pair f g (a,b)" by auto
haftmann@40607
  1130
  thus "\<exists>x. y = map_pair f g x" by auto
haftmann@40607
  1131
qed
haftmann@40607
  1132
haftmann@40607
  1133
lemma map_pair_surj_on:
haftmann@40607
  1134
  assumes "f ` A = A'" and "g ` B = B'"
haftmann@40607
  1135
  shows "map_pair f g ` (A \<times> B) = A' \<times> B'"
haftmann@40607
  1136
unfolding image_def
haftmann@40607
  1137
proof(rule set_eqI,rule iffI)
haftmann@40607
  1138
  fix x :: "'a \<times> 'c"
haftmann@40607
  1139
  assume "x \<in> {y\<Colon>'a \<times> 'c. \<exists>x\<Colon>'b \<times> 'd\<in>A \<times> B. y = map_pair f g x}"
haftmann@40607
  1140
  then obtain y where "y \<in> A \<times> B" and "x = map_pair f g y" by blast
haftmann@40607
  1141
  from `image f A = A'` and `y \<in> A \<times> B` have "f (fst y) \<in> A'" by auto
haftmann@40607
  1142
  moreover from `image g B = B'` and `y \<in> A \<times> B` have "g (snd y) \<in> B'" by auto
haftmann@40607
  1143
  ultimately have "(f (fst y), g (snd y)) \<in> (A' \<times> B')" by auto
haftmann@40607
  1144
  with `x = map_pair f g y` show "x \<in> A' \<times> B'" by (cases y, auto)
haftmann@40607
  1145
next
haftmann@40607
  1146
  fix x :: "'a \<times> 'c"
haftmann@40607
  1147
  assume "x \<in> A' \<times> B'" hence "fst x \<in> A'" and "snd x \<in> B'" by auto
haftmann@40607
  1148
  from `image f A = A'` and `fst x \<in> A'` have "fst x \<in> image f A" by auto
haftmann@40607
  1149
  then obtain a where "a \<in> A" and "fst x = f a" by (rule imageE)
haftmann@40607
  1150
  moreover from `image g B = B'` and `snd x \<in> B'`
haftmann@40607
  1151
  obtain b where "b \<in> B" and "snd x = g b" by auto
haftmann@40607
  1152
  ultimately have "(fst x, snd x) = map_pair f g (a,b)" by auto
haftmann@40607
  1153
  moreover from `a \<in> A` and  `b \<in> B` have "(a , b) \<in> A \<times> B" by auto
haftmann@40607
  1154
  ultimately have "\<exists>y \<in> A \<times> B. x = map_pair f g y" by auto
haftmann@40607
  1155
  thus "x \<in> {x. \<exists>y \<in> A \<times> B. x = map_pair f g y}" by auto
haftmann@40607
  1156
qed
haftmann@40607
  1157
haftmann@21908
  1158
bulwahn@49764
  1159
subsection {* Simproc for rewriting a set comprehension into a pointfree expression *}
bulwahn@49764
  1160
bulwahn@49764
  1161
ML_file "Tools/set_comprehension_pointfree.ML"
bulwahn@49764
  1162
bulwahn@49764
  1163
setup {*
wenzelm@51717
  1164
  Code_Preproc.map_pre (fn ctxt => ctxt addsimprocs
bulwahn@49764
  1165
    [Raw_Simplifier.make_simproc {name = "set comprehension", lhss = [@{cpat "Collect ?P"}],
bulwahn@49764
  1166
    proc = K Set_Comprehension_Pointfree.code_simproc, identifier = []}])
bulwahn@49764
  1167
*}
bulwahn@49764
  1168
bulwahn@49764
  1169
haftmann@37166
  1170
subsection {* Inductively defined sets *}
berghofe@15394
  1171
wenzelm@48891
  1172
ML_file "Tools/inductive_set.ML"
haftmann@31723
  1173
setup Inductive_Set.setup
haftmann@24699
  1174
haftmann@37166
  1175
haftmann@37166
  1176
subsection {* Legacy theorem bindings and duplicates *}
haftmann@37166
  1177
haftmann@37166
  1178
lemma PairE:
haftmann@37166
  1179
  obtains x y where "p = (x, y)"
haftmann@37166
  1180
  by (fact prod.exhaust)
haftmann@37166
  1181
haftmann@37166
  1182
lemmas Pair_eq = prod.inject
haftmann@37166
  1183
haftmann@37166
  1184
lemmas split = split_conv  -- {* for backwards compatibility *}
haftmann@37166
  1185
huffman@44066
  1186
lemmas Pair_fst_snd_eq = prod_eq_iff
huffman@44066
  1187
huffman@45204
  1188
hide_const (open) prod
huffman@45204
  1189
nipkow@10213
  1190
end