wenzelm@35108
|
1 |
(* Title: HOL/TLA/TLA.thy
|
wenzelm@35108
|
2 |
Author: Stephan Merz
|
wenzelm@35108
|
3 |
Copyright: 1998 University of Munich
|
wenzelm@21624
|
4 |
*)
|
wenzelm@3807
|
5 |
|
wenzelm@21624
|
6 |
header {* The temporal level of TLA *}
|
wenzelm@3807
|
7 |
|
wenzelm@17309
|
8 |
theory TLA
|
wenzelm@17309
|
9 |
imports Init
|
wenzelm@17309
|
10 |
begin
|
wenzelm@3807
|
11 |
|
wenzelm@3807
|
12 |
consts
|
wenzelm@6255
|
13 |
(** abstract syntax **)
|
wenzelm@17309
|
14 |
Box :: "('w::world) form => temporal"
|
wenzelm@17309
|
15 |
Dmd :: "('w::world) form => temporal"
|
wenzelm@17309
|
16 |
leadsto :: "['w::world form, 'v::world form] => temporal"
|
wenzelm@17309
|
17 |
Stable :: "stpred => temporal"
|
wenzelm@17309
|
18 |
WF :: "[action, 'a stfun] => temporal"
|
wenzelm@17309
|
19 |
SF :: "[action, 'a stfun] => temporal"
|
wenzelm@3807
|
20 |
|
wenzelm@3807
|
21 |
(* Quantification over (flexible) state variables *)
|
wenzelm@17309
|
22 |
EEx :: "('a stfun => temporal) => temporal" (binder "Eex " 10)
|
wenzelm@17309
|
23 |
AAll :: "('a stfun => temporal) => temporal" (binder "Aall " 10)
|
wenzelm@6255
|
24 |
|
wenzelm@6255
|
25 |
(** concrete syntax **)
|
wenzelm@6255
|
26 |
syntax
|
wenzelm@17309
|
27 |
"_Box" :: "lift => lift" ("([]_)" [40] 40)
|
wenzelm@17309
|
28 |
"_Dmd" :: "lift => lift" ("(<>_)" [40] 40)
|
wenzelm@17309
|
29 |
"_leadsto" :: "[lift,lift] => lift" ("(_ ~> _)" [23,22] 22)
|
wenzelm@17309
|
30 |
"_stable" :: "lift => lift" ("(stable/ _)")
|
wenzelm@17309
|
31 |
"_WF" :: "[lift,lift] => lift" ("(WF'(_')'_(_))" [0,60] 55)
|
wenzelm@17309
|
32 |
"_SF" :: "[lift,lift] => lift" ("(SF'(_')'_(_))" [0,60] 55)
|
wenzelm@6255
|
33 |
|
wenzelm@17309
|
34 |
"_EEx" :: "[idts, lift] => lift" ("(3EEX _./ _)" [0,10] 10)
|
wenzelm@17309
|
35 |
"_AAll" :: "[idts, lift] => lift" ("(3AALL _./ _)" [0,10] 10)
|
wenzelm@3807
|
36 |
|
wenzelm@3807
|
37 |
translations
|
wenzelm@35068
|
38 |
"_Box" == "CONST Box"
|
wenzelm@35068
|
39 |
"_Dmd" == "CONST Dmd"
|
wenzelm@35068
|
40 |
"_leadsto" == "CONST leadsto"
|
wenzelm@35068
|
41 |
"_stable" == "CONST Stable"
|
wenzelm@35068
|
42 |
"_WF" == "CONST WF"
|
wenzelm@35068
|
43 |
"_SF" == "CONST SF"
|
wenzelm@6255
|
44 |
"_EEx v A" == "Eex v. A"
|
wenzelm@6255
|
45 |
"_AAll v A" == "Aall v. A"
|
wenzelm@6255
|
46 |
|
wenzelm@6255
|
47 |
"sigma |= []F" <= "_Box F sigma"
|
wenzelm@6255
|
48 |
"sigma |= <>F" <= "_Dmd F sigma"
|
wenzelm@6255
|
49 |
"sigma |= F ~> G" <= "_leadsto F G sigma"
|
wenzelm@6255
|
50 |
"sigma |= stable P" <= "_stable P sigma"
|
wenzelm@6255
|
51 |
"sigma |= WF(A)_v" <= "_WF A v sigma"
|
wenzelm@6255
|
52 |
"sigma |= SF(A)_v" <= "_SF A v sigma"
|
wenzelm@6255
|
53 |
"sigma |= EEX x. F" <= "_EEx x F sigma"
|
wenzelm@6255
|
54 |
"sigma |= AALL x. F" <= "_AAll x F sigma"
|
wenzelm@3807
|
55 |
|
wenzelm@12114
|
56 |
syntax (xsymbols)
|
wenzelm@17309
|
57 |
"_Box" :: "lift => lift" ("(\<box>_)" [40] 40)
|
wenzelm@17309
|
58 |
"_Dmd" :: "lift => lift" ("(\<diamond>_)" [40] 40)
|
wenzelm@17309
|
59 |
"_leadsto" :: "[lift,lift] => lift" ("(_ \<leadsto> _)" [23,22] 22)
|
wenzelm@17309
|
60 |
"_EEx" :: "[idts, lift] => lift" ("(3\<exists>\<exists> _./ _)" [0,10] 10)
|
wenzelm@17309
|
61 |
"_AAll" :: "[idts, lift] => lift" ("(3\<forall>\<forall> _./ _)" [0,10] 10)
|
wenzelm@3808
|
62 |
|
kleing@14565
|
63 |
syntax (HTML output)
|
wenzelm@17309
|
64 |
"_EEx" :: "[idts, lift] => lift" ("(3\<exists>\<exists> _./ _)" [0,10] 10)
|
wenzelm@17309
|
65 |
"_AAll" :: "[idts, lift] => lift" ("(3\<forall>\<forall> _./ _)" [0,10] 10)
|
kleing@14565
|
66 |
|
wenzelm@47968
|
67 |
axiomatization where
|
wenzelm@6255
|
68 |
(* Definitions of derived operators *)
|
wenzelm@47968
|
69 |
dmd_def: "\<And>F. TEMP <>F == TEMP ~[]~F"
|
wenzelm@47968
|
70 |
|
wenzelm@47968
|
71 |
axiomatization where
|
wenzelm@47968
|
72 |
boxInit: "\<And>F. TEMP []F == TEMP []Init F" and
|
wenzelm@47968
|
73 |
leadsto_def: "\<And>F G. TEMP F ~> G == TEMP [](Init F --> <>G)" and
|
wenzelm@47968
|
74 |
stable_def: "\<And>P. TEMP stable P == TEMP []($P --> P$)" and
|
wenzelm@47968
|
75 |
WF_def: "TEMP WF(A)_v == TEMP <>[] Enabled(<A>_v) --> []<><A>_v" and
|
wenzelm@47968
|
76 |
SF_def: "TEMP SF(A)_v == TEMP []<> Enabled(<A>_v) --> []<><A>_v" and
|
wenzelm@17309
|
77 |
aall_def: "TEMP (AALL x. F x) == TEMP ~ (EEX x. ~ F x)"
|
wenzelm@3807
|
78 |
|
wenzelm@47968
|
79 |
axiomatization where
|
wenzelm@6255
|
80 |
(* Base axioms for raw TLA. *)
|
wenzelm@47968
|
81 |
normalT: "\<And>F G. |- [](F --> G) --> ([]F --> []G)" and (* polymorphic *)
|
wenzelm@47968
|
82 |
reflT: "\<And>F. |- []F --> F" and (* F::temporal *)
|
wenzelm@47968
|
83 |
transT: "\<And>F. |- []F --> [][]F" and (* polymorphic *)
|
wenzelm@47968
|
84 |
linT: "\<And>F G. |- <>F & <>G --> (<>(F & <>G)) | (<>(G & <>F))" and
|
wenzelm@47968
|
85 |
discT: "\<And>F. |- [](F --> <>(~F & <>F)) --> (F --> []<>F)" and
|
wenzelm@47968
|
86 |
primeI: "\<And>P. |- []P --> Init P`" and
|
wenzelm@47968
|
87 |
primeE: "\<And>P F. |- [](Init P --> []F) --> Init P` --> (F --> []F)" and
|
wenzelm@47968
|
88 |
indT: "\<And>P F. |- [](Init P & ~[]F --> Init P` & F) --> Init P --> []F" and
|
wenzelm@47968
|
89 |
allT: "\<And>F. |- (ALL x. [](F x)) = ([](ALL x. F x))"
|
wenzelm@3807
|
90 |
|
wenzelm@47968
|
91 |
axiomatization where
|
wenzelm@47968
|
92 |
necT: "\<And>F. |- F ==> |- []F" (* polymorphic *)
|
wenzelm@3807
|
93 |
|
wenzelm@47968
|
94 |
axiomatization where
|
wenzelm@3807
|
95 |
(* Flexible quantification: refinement mappings, history variables *)
|
wenzelm@47968
|
96 |
eexI: "|- F x --> (EEX x. F x)" and
|
wenzelm@17309
|
97 |
eexE: "[| sigma |= (EEX x. F x); basevars vs;
|
wenzelm@17309
|
98 |
(!!x. [| basevars (x, vs); sigma |= F x |] ==> (G sigma)::bool)
|
wenzelm@47968
|
99 |
|] ==> G sigma" and
|
wenzelm@17309
|
100 |
history: "|- EEX h. Init(h = ha) & [](!x. $h = #x --> h` = hb x)"
|
wenzelm@17309
|
101 |
|
wenzelm@21624
|
102 |
|
wenzelm@21624
|
103 |
(* Specialize intensional introduction/elimination rules for temporal formulas *)
|
wenzelm@21624
|
104 |
|
wenzelm@51668
|
105 |
lemma tempI [intro!]: "(!!sigma. sigma |= (F::temporal)) ==> |- F"
|
wenzelm@21624
|
106 |
apply (rule intI)
|
wenzelm@21624
|
107 |
apply (erule meta_spec)
|
wenzelm@21624
|
108 |
done
|
wenzelm@21624
|
109 |
|
wenzelm@51668
|
110 |
lemma tempD [dest]: "|- (F::temporal) ==> sigma |= F"
|
wenzelm@21624
|
111 |
by (erule intD)
|
wenzelm@21624
|
112 |
|
wenzelm@21624
|
113 |
|
wenzelm@21624
|
114 |
(* ======== Functions to "unlift" temporal theorems ====== *)
|
wenzelm@21624
|
115 |
|
wenzelm@21624
|
116 |
ML {*
|
wenzelm@21624
|
117 |
(* The following functions are specialized versions of the corresponding
|
wenzelm@21624
|
118 |
functions defined in theory Intensional in that they introduce a
|
wenzelm@21624
|
119 |
"world" parameter of type "behavior".
|
wenzelm@21624
|
120 |
*)
|
wenzelm@21624
|
121 |
fun temp_unlift th =
|
wenzelm@26305
|
122 |
(rewrite_rule @{thms action_rews} (th RS @{thm tempD})) handle THM _ => action_unlift th;
|
wenzelm@21624
|
123 |
|
wenzelm@21624
|
124 |
(* Turn |- F = G into meta-level rewrite rule F == G *)
|
wenzelm@21624
|
125 |
val temp_rewrite = int_rewrite
|
wenzelm@21624
|
126 |
|
wenzelm@21624
|
127 |
fun temp_use th =
|
wenzelm@21624
|
128 |
case (concl_of th) of
|
wenzelm@26305
|
129 |
Const _ $ (Const (@{const_name Intensional.Valid}, _) $ _) =>
|
wenzelm@21624
|
130 |
((flatten (temp_unlift th)) handle THM _ => th)
|
wenzelm@21624
|
131 |
| _ => th;
|
wenzelm@21624
|
132 |
|
wenzelm@21624
|
133 |
fun try_rewrite th = temp_rewrite th handle THM _ => temp_use th;
|
wenzelm@21624
|
134 |
*}
|
wenzelm@21624
|
135 |
|
wenzelm@42814
|
136 |
attribute_setup temp_unlift = {* Scan.succeed (Thm.rule_attribute (K temp_unlift)) *}
|
wenzelm@42814
|
137 |
attribute_setup temp_rewrite = {* Scan.succeed (Thm.rule_attribute (K temp_rewrite)) *}
|
wenzelm@42814
|
138 |
attribute_setup temp_use = {* Scan.succeed (Thm.rule_attribute (K temp_use)) *}
|
wenzelm@42814
|
139 |
attribute_setup try_rewrite = {* Scan.succeed (Thm.rule_attribute (K try_rewrite)) *}
|
wenzelm@30528
|
140 |
|
wenzelm@21624
|
141 |
|
wenzelm@21624
|
142 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
143 |
(*** "Simple temporal logic": only [] and <> ***)
|
wenzelm@21624
|
144 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
145 |
section "Simple temporal logic"
|
wenzelm@21624
|
146 |
|
wenzelm@21624
|
147 |
(* []~F == []~Init F *)
|
wenzelm@45605
|
148 |
lemmas boxNotInit = boxInit [of "LIFT ~F", unfolded Init_simps] for F
|
wenzelm@21624
|
149 |
|
wenzelm@21624
|
150 |
lemma dmdInit: "TEMP <>F == TEMP <> Init F"
|
wenzelm@21624
|
151 |
apply (unfold dmd_def)
|
wenzelm@21624
|
152 |
apply (unfold boxInit [of "LIFT ~F"])
|
wenzelm@21624
|
153 |
apply (simp (no_asm) add: Init_simps)
|
wenzelm@21624
|
154 |
done
|
wenzelm@21624
|
155 |
|
wenzelm@45605
|
156 |
lemmas dmdNotInit = dmdInit [of "LIFT ~F", unfolded Init_simps] for F
|
wenzelm@21624
|
157 |
|
wenzelm@21624
|
158 |
(* boxInit and dmdInit cannot be used as rewrites, because they loop.
|
wenzelm@21624
|
159 |
Non-looping instances for state predicates and actions are occasionally useful.
|
wenzelm@21624
|
160 |
*)
|
wenzelm@45605
|
161 |
lemmas boxInit_stp = boxInit [where 'a = state]
|
wenzelm@45605
|
162 |
lemmas boxInit_act = boxInit [where 'a = "state * state"]
|
wenzelm@45605
|
163 |
lemmas dmdInit_stp = dmdInit [where 'a = state]
|
wenzelm@45605
|
164 |
lemmas dmdInit_act = dmdInit [where 'a = "state * state"]
|
wenzelm@21624
|
165 |
|
wenzelm@21624
|
166 |
(* The symmetric equations can be used to get rid of Init *)
|
wenzelm@21624
|
167 |
lemmas boxInitD = boxInit [symmetric]
|
wenzelm@21624
|
168 |
lemmas dmdInitD = dmdInit [symmetric]
|
wenzelm@21624
|
169 |
lemmas boxNotInitD = boxNotInit [symmetric]
|
wenzelm@21624
|
170 |
lemmas dmdNotInitD = dmdNotInit [symmetric]
|
wenzelm@21624
|
171 |
|
wenzelm@21624
|
172 |
lemmas Init_simps = Init_simps boxInitD dmdInitD boxNotInitD dmdNotInitD
|
wenzelm@21624
|
173 |
|
wenzelm@21624
|
174 |
(* ------------------------ STL2 ------------------------------------------- *)
|
wenzelm@21624
|
175 |
lemmas STL2 = reflT
|
wenzelm@21624
|
176 |
|
wenzelm@21624
|
177 |
(* The "polymorphic" (generic) variant *)
|
wenzelm@21624
|
178 |
lemma STL2_gen: "|- []F --> Init F"
|
wenzelm@21624
|
179 |
apply (unfold boxInit [of F])
|
wenzelm@21624
|
180 |
apply (rule STL2)
|
wenzelm@21624
|
181 |
done
|
wenzelm@21624
|
182 |
|
wenzelm@21624
|
183 |
(* see also STL2_pr below: "|- []P --> Init P & Init (P`)" *)
|
wenzelm@21624
|
184 |
|
wenzelm@21624
|
185 |
|
wenzelm@21624
|
186 |
(* Dual versions for <> *)
|
wenzelm@21624
|
187 |
lemma InitDmd: "|- F --> <> F"
|
wenzelm@21624
|
188 |
apply (unfold dmd_def)
|
wenzelm@21624
|
189 |
apply (auto dest!: STL2 [temp_use])
|
wenzelm@21624
|
190 |
done
|
wenzelm@21624
|
191 |
|
wenzelm@21624
|
192 |
lemma InitDmd_gen: "|- Init F --> <>F"
|
wenzelm@21624
|
193 |
apply clarsimp
|
wenzelm@21624
|
194 |
apply (drule InitDmd [temp_use])
|
wenzelm@21624
|
195 |
apply (simp add: dmdInitD)
|
wenzelm@21624
|
196 |
done
|
wenzelm@21624
|
197 |
|
wenzelm@21624
|
198 |
|
wenzelm@21624
|
199 |
(* ------------------------ STL3 ------------------------------------------- *)
|
wenzelm@21624
|
200 |
lemma STL3: "|- ([][]F) = ([]F)"
|
wenzelm@21624
|
201 |
by (auto elim: transT [temp_use] STL2 [temp_use])
|
wenzelm@21624
|
202 |
|
wenzelm@21624
|
203 |
(* corresponding elimination rule introduces double boxes:
|
wenzelm@21624
|
204 |
[| (sigma |= []F); (sigma |= [][]F) ==> PROP W |] ==> PROP W
|
wenzelm@21624
|
205 |
*)
|
wenzelm@21624
|
206 |
lemmas dup_boxE = STL3 [temp_unlift, THEN iffD2, elim_format]
|
wenzelm@45605
|
207 |
lemmas dup_boxD = STL3 [temp_unlift, THEN iffD1]
|
wenzelm@21624
|
208 |
|
wenzelm@21624
|
209 |
(* dual versions for <> *)
|
wenzelm@21624
|
210 |
lemma DmdDmd: "|- (<><>F) = (<>F)"
|
wenzelm@21624
|
211 |
by (auto simp add: dmd_def [try_rewrite] STL3 [try_rewrite])
|
wenzelm@21624
|
212 |
|
wenzelm@21624
|
213 |
lemmas dup_dmdE = DmdDmd [temp_unlift, THEN iffD2, elim_format]
|
wenzelm@45605
|
214 |
lemmas dup_dmdD = DmdDmd [temp_unlift, THEN iffD1]
|
wenzelm@21624
|
215 |
|
wenzelm@21624
|
216 |
|
wenzelm@21624
|
217 |
(* ------------------------ STL4 ------------------------------------------- *)
|
wenzelm@21624
|
218 |
lemma STL4:
|
wenzelm@21624
|
219 |
assumes "|- F --> G"
|
wenzelm@21624
|
220 |
shows "|- []F --> []G"
|
wenzelm@21624
|
221 |
apply clarsimp
|
wenzelm@21624
|
222 |
apply (rule normalT [temp_use])
|
wenzelm@21624
|
223 |
apply (rule assms [THEN necT, temp_use])
|
wenzelm@21624
|
224 |
apply assumption
|
wenzelm@21624
|
225 |
done
|
wenzelm@21624
|
226 |
|
wenzelm@21624
|
227 |
(* Unlifted version as an elimination rule *)
|
wenzelm@21624
|
228 |
lemma STL4E: "[| sigma |= []F; |- F --> G |] ==> sigma |= []G"
|
wenzelm@21624
|
229 |
by (erule (1) STL4 [temp_use])
|
wenzelm@21624
|
230 |
|
wenzelm@21624
|
231 |
lemma STL4_gen: "|- Init F --> Init G ==> |- []F --> []G"
|
wenzelm@21624
|
232 |
apply (drule STL4)
|
wenzelm@21624
|
233 |
apply (simp add: boxInitD)
|
wenzelm@21624
|
234 |
done
|
wenzelm@21624
|
235 |
|
wenzelm@21624
|
236 |
lemma STL4E_gen: "[| sigma |= []F; |- Init F --> Init G |] ==> sigma |= []G"
|
wenzelm@21624
|
237 |
by (erule (1) STL4_gen [temp_use])
|
wenzelm@21624
|
238 |
|
wenzelm@21624
|
239 |
(* see also STL4Edup below, which allows an auxiliary boxed formula:
|
wenzelm@21624
|
240 |
[]A /\ F => G
|
wenzelm@21624
|
241 |
-----------------
|
wenzelm@21624
|
242 |
[]A /\ []F => []G
|
wenzelm@21624
|
243 |
*)
|
wenzelm@21624
|
244 |
|
wenzelm@21624
|
245 |
(* The dual versions for <> *)
|
wenzelm@21624
|
246 |
lemma DmdImpl:
|
wenzelm@21624
|
247 |
assumes prem: "|- F --> G"
|
wenzelm@21624
|
248 |
shows "|- <>F --> <>G"
|
wenzelm@21624
|
249 |
apply (unfold dmd_def)
|
nipkow@44890
|
250 |
apply (fastforce intro!: prem [temp_use] elim!: STL4E [temp_use])
|
wenzelm@21624
|
251 |
done
|
wenzelm@21624
|
252 |
|
wenzelm@21624
|
253 |
lemma DmdImplE: "[| sigma |= <>F; |- F --> G |] ==> sigma |= <>G"
|
wenzelm@21624
|
254 |
by (erule (1) DmdImpl [temp_use])
|
wenzelm@21624
|
255 |
|
wenzelm@21624
|
256 |
(* ------------------------ STL5 ------------------------------------------- *)
|
wenzelm@21624
|
257 |
lemma STL5: "|- ([]F & []G) = ([](F & G))"
|
wenzelm@21624
|
258 |
apply auto
|
wenzelm@21624
|
259 |
apply (subgoal_tac "sigma |= [] (G --> (F & G))")
|
wenzelm@21624
|
260 |
apply (erule normalT [temp_use])
|
nipkow@44890
|
261 |
apply (fastforce elim!: STL4E [temp_use])+
|
wenzelm@21624
|
262 |
done
|
wenzelm@21624
|
263 |
|
wenzelm@21624
|
264 |
(* rewrite rule to split conjunctions under boxes *)
|
wenzelm@45605
|
265 |
lemmas split_box_conj = STL5 [temp_unlift, symmetric]
|
wenzelm@21624
|
266 |
|
wenzelm@21624
|
267 |
|
wenzelm@21624
|
268 |
(* the corresponding elimination rule allows to combine boxes in the hypotheses
|
wenzelm@21624
|
269 |
(NB: F and G must have the same type, i.e., both actions or temporals.)
|
wenzelm@21624
|
270 |
Use "addSE2" etc. if you want to add this to a claset, otherwise it will loop!
|
wenzelm@21624
|
271 |
*)
|
wenzelm@21624
|
272 |
lemma box_conjE:
|
wenzelm@21624
|
273 |
assumes "sigma |= []F"
|
wenzelm@21624
|
274 |
and "sigma |= []G"
|
wenzelm@21624
|
275 |
and "sigma |= [](F&G) ==> PROP R"
|
wenzelm@21624
|
276 |
shows "PROP R"
|
wenzelm@21624
|
277 |
by (rule assms STL5 [temp_unlift, THEN iffD1] conjI)+
|
wenzelm@21624
|
278 |
|
wenzelm@21624
|
279 |
(* Instances of box_conjE for state predicates, actions, and temporals
|
wenzelm@21624
|
280 |
in case the general rule is "too polymorphic".
|
wenzelm@21624
|
281 |
*)
|
wenzelm@45605
|
282 |
lemmas box_conjE_temp = box_conjE [where 'a = behavior]
|
wenzelm@45605
|
283 |
lemmas box_conjE_stp = box_conjE [where 'a = state]
|
wenzelm@45605
|
284 |
lemmas box_conjE_act = box_conjE [where 'a = "state * state"]
|
wenzelm@21624
|
285 |
|
wenzelm@21624
|
286 |
(* Define a tactic that tries to merge all boxes in an antecedent. The definition is
|
wenzelm@21624
|
287 |
a bit kludgy in order to simulate "double elim-resolution".
|
wenzelm@21624
|
288 |
*)
|
wenzelm@21624
|
289 |
|
wenzelm@21624
|
290 |
lemma box_thin: "[| sigma |= []F; PROP W |] ==> PROP W" .
|
wenzelm@21624
|
291 |
|
wenzelm@21624
|
292 |
ML {*
|
wenzelm@21624
|
293 |
fun merge_box_tac i =
|
wenzelm@26305
|
294 |
REPEAT_DETERM (EVERY [etac @{thm box_conjE} i, atac i, etac @{thm box_thin} i])
|
wenzelm@21624
|
295 |
|
wenzelm@27208
|
296 |
fun merge_temp_box_tac ctxt i =
|
wenzelm@26305
|
297 |
REPEAT_DETERM (EVERY [etac @{thm box_conjE_temp} i, atac i,
|
wenzelm@27239
|
298 |
eres_inst_tac ctxt [(("'a", 0), "behavior")] @{thm box_thin} i])
|
wenzelm@21624
|
299 |
|
wenzelm@27208
|
300 |
fun merge_stp_box_tac ctxt i =
|
wenzelm@26305
|
301 |
REPEAT_DETERM (EVERY [etac @{thm box_conjE_stp} i, atac i,
|
wenzelm@27239
|
302 |
eres_inst_tac ctxt [(("'a", 0), "state")] @{thm box_thin} i])
|
wenzelm@21624
|
303 |
|
wenzelm@27208
|
304 |
fun merge_act_box_tac ctxt i =
|
wenzelm@26305
|
305 |
REPEAT_DETERM (EVERY [etac @{thm box_conjE_act} i, atac i,
|
wenzelm@27239
|
306 |
eres_inst_tac ctxt [(("'a", 0), "state * state")] @{thm box_thin} i])
|
wenzelm@21624
|
307 |
*}
|
wenzelm@21624
|
308 |
|
wenzelm@42814
|
309 |
method_setup merge_box = {* Scan.succeed (K (SIMPLE_METHOD' merge_box_tac)) *}
|
wenzelm@42814
|
310 |
method_setup merge_temp_box = {* Scan.succeed (SIMPLE_METHOD' o merge_temp_box_tac) *}
|
wenzelm@42814
|
311 |
method_setup merge_stp_box = {* Scan.succeed (SIMPLE_METHOD' o merge_stp_box_tac) *}
|
wenzelm@42814
|
312 |
method_setup merge_act_box = {* Scan.succeed (SIMPLE_METHOD' o merge_act_box_tac) *}
|
wenzelm@42787
|
313 |
|
wenzelm@21624
|
314 |
(* rewrite rule to push universal quantification through box:
|
wenzelm@21624
|
315 |
(sigma |= [](! x. F x)) = (! x. (sigma |= []F x))
|
wenzelm@21624
|
316 |
*)
|
wenzelm@45605
|
317 |
lemmas all_box = allT [temp_unlift, symmetric]
|
wenzelm@21624
|
318 |
|
wenzelm@21624
|
319 |
lemma DmdOr: "|- (<>(F | G)) = (<>F | <>G)"
|
wenzelm@21624
|
320 |
apply (auto simp add: dmd_def split_box_conj [try_rewrite])
|
nipkow@44890
|
321 |
apply (erule contrapos_np, merge_box, fastforce elim!: STL4E [temp_use])+
|
wenzelm@21624
|
322 |
done
|
wenzelm@21624
|
323 |
|
wenzelm@21624
|
324 |
lemma exT: "|- (EX x. <>(F x)) = (<>(EX x. F x))"
|
wenzelm@21624
|
325 |
by (auto simp: dmd_def Not_Rex [try_rewrite] all_box [try_rewrite])
|
wenzelm@21624
|
326 |
|
wenzelm@45605
|
327 |
lemmas ex_dmd = exT [temp_unlift, symmetric]
|
wenzelm@21624
|
328 |
|
wenzelm@21624
|
329 |
lemma STL4Edup: "!!sigma. [| sigma |= []A; sigma |= []F; |- F & []A --> G |] ==> sigma |= []G"
|
wenzelm@21624
|
330 |
apply (erule dup_boxE)
|
wenzelm@42787
|
331 |
apply merge_box
|
wenzelm@21624
|
332 |
apply (erule STL4E)
|
wenzelm@21624
|
333 |
apply assumption
|
wenzelm@21624
|
334 |
done
|
wenzelm@21624
|
335 |
|
wenzelm@21624
|
336 |
lemma DmdImpl2:
|
wenzelm@21624
|
337 |
"!!sigma. [| sigma |= <>F; sigma |= [](F --> G) |] ==> sigma |= <>G"
|
wenzelm@21624
|
338 |
apply (unfold dmd_def)
|
wenzelm@21624
|
339 |
apply auto
|
wenzelm@21624
|
340 |
apply (erule notE)
|
wenzelm@42787
|
341 |
apply merge_box
|
nipkow@44890
|
342 |
apply (fastforce elim!: STL4E [temp_use])
|
wenzelm@21624
|
343 |
done
|
wenzelm@21624
|
344 |
|
wenzelm@21624
|
345 |
lemma InfImpl:
|
wenzelm@21624
|
346 |
assumes 1: "sigma |= []<>F"
|
wenzelm@21624
|
347 |
and 2: "sigma |= []G"
|
wenzelm@21624
|
348 |
and 3: "|- F & G --> H"
|
wenzelm@21624
|
349 |
shows "sigma |= []<>H"
|
wenzelm@21624
|
350 |
apply (insert 1 2)
|
wenzelm@21624
|
351 |
apply (erule_tac F = G in dup_boxE)
|
wenzelm@42787
|
352 |
apply merge_box
|
nipkow@44890
|
353 |
apply (fastforce elim!: STL4E [temp_use] DmdImpl2 [temp_use] intro!: 3 [temp_use])
|
wenzelm@21624
|
354 |
done
|
wenzelm@21624
|
355 |
|
wenzelm@21624
|
356 |
(* ------------------------ STL6 ------------------------------------------- *)
|
wenzelm@21624
|
357 |
(* Used in the proof of STL6, but useful in itself. *)
|
wenzelm@21624
|
358 |
lemma BoxDmd: "|- []F & <>G --> <>([]F & G)"
|
wenzelm@21624
|
359 |
apply (unfold dmd_def)
|
wenzelm@21624
|
360 |
apply clarsimp
|
wenzelm@21624
|
361 |
apply (erule dup_boxE)
|
wenzelm@42787
|
362 |
apply merge_box
|
wenzelm@21624
|
363 |
apply (erule contrapos_np)
|
nipkow@44890
|
364 |
apply (fastforce elim!: STL4E [temp_use])
|
wenzelm@21624
|
365 |
done
|
wenzelm@21624
|
366 |
|
wenzelm@21624
|
367 |
(* weaker than BoxDmd, but more polymorphic (and often just right) *)
|
wenzelm@21624
|
368 |
lemma BoxDmd_simple: "|- []F & <>G --> <>(F & G)"
|
wenzelm@21624
|
369 |
apply (unfold dmd_def)
|
wenzelm@21624
|
370 |
apply clarsimp
|
wenzelm@42787
|
371 |
apply merge_box
|
nipkow@44890
|
372 |
apply (fastforce elim!: notE STL4E [temp_use])
|
wenzelm@21624
|
373 |
done
|
wenzelm@21624
|
374 |
|
wenzelm@21624
|
375 |
lemma BoxDmd2_simple: "|- []F & <>G --> <>(G & F)"
|
wenzelm@21624
|
376 |
apply (unfold dmd_def)
|
wenzelm@21624
|
377 |
apply clarsimp
|
wenzelm@42787
|
378 |
apply merge_box
|
nipkow@44890
|
379 |
apply (fastforce elim!: notE STL4E [temp_use])
|
wenzelm@21624
|
380 |
done
|
wenzelm@21624
|
381 |
|
wenzelm@21624
|
382 |
lemma DmdImpldup:
|
wenzelm@21624
|
383 |
assumes 1: "sigma |= []A"
|
wenzelm@21624
|
384 |
and 2: "sigma |= <>F"
|
wenzelm@21624
|
385 |
and 3: "|- []A & F --> G"
|
wenzelm@21624
|
386 |
shows "sigma |= <>G"
|
wenzelm@21624
|
387 |
apply (rule 2 [THEN 1 [THEN BoxDmd [temp_use]], THEN DmdImplE])
|
wenzelm@21624
|
388 |
apply (rule 3)
|
wenzelm@21624
|
389 |
done
|
wenzelm@21624
|
390 |
|
wenzelm@21624
|
391 |
lemma STL6: "|- <>[]F & <>[]G --> <>[](F & G)"
|
wenzelm@21624
|
392 |
apply (auto simp: STL5 [temp_rewrite, symmetric])
|
wenzelm@21624
|
393 |
apply (drule linT [temp_use])
|
wenzelm@21624
|
394 |
apply assumption
|
wenzelm@21624
|
395 |
apply (erule thin_rl)
|
wenzelm@21624
|
396 |
apply (rule DmdDmd [temp_unlift, THEN iffD1])
|
wenzelm@21624
|
397 |
apply (erule disjE)
|
wenzelm@21624
|
398 |
apply (erule DmdImplE)
|
wenzelm@21624
|
399 |
apply (rule BoxDmd)
|
wenzelm@21624
|
400 |
apply (erule DmdImplE)
|
wenzelm@21624
|
401 |
apply auto
|
wenzelm@21624
|
402 |
apply (drule BoxDmd [temp_use])
|
wenzelm@21624
|
403 |
apply assumption
|
wenzelm@21624
|
404 |
apply (erule thin_rl)
|
nipkow@44890
|
405 |
apply (fastforce elim!: DmdImplE [temp_use])
|
wenzelm@21624
|
406 |
done
|
wenzelm@21624
|
407 |
|
wenzelm@21624
|
408 |
|
wenzelm@21624
|
409 |
(* ------------------------ True / False ----------------------------------------- *)
|
wenzelm@21624
|
410 |
section "Simplification of constants"
|
wenzelm@21624
|
411 |
|
wenzelm@21624
|
412 |
lemma BoxConst: "|- ([]#P) = #P"
|
wenzelm@21624
|
413 |
apply (rule tempI)
|
wenzelm@21624
|
414 |
apply (cases P)
|
wenzelm@21624
|
415 |
apply (auto intro!: necT [temp_use] dest: STL2_gen [temp_use] simp: Init_simps)
|
wenzelm@21624
|
416 |
done
|
wenzelm@21624
|
417 |
|
wenzelm@21624
|
418 |
lemma DmdConst: "|- (<>#P) = #P"
|
wenzelm@21624
|
419 |
apply (unfold dmd_def)
|
wenzelm@21624
|
420 |
apply (cases P)
|
wenzelm@21624
|
421 |
apply (simp_all add: BoxConst [try_rewrite])
|
wenzelm@21624
|
422 |
done
|
wenzelm@21624
|
423 |
|
wenzelm@21624
|
424 |
lemmas temp_simps [temp_rewrite, simp] = BoxConst DmdConst
|
wenzelm@21624
|
425 |
|
wenzelm@21624
|
426 |
|
wenzelm@21624
|
427 |
(* ------------------------ Further rewrites ----------------------------------------- *)
|
wenzelm@21624
|
428 |
section "Further rewrites"
|
wenzelm@21624
|
429 |
|
wenzelm@21624
|
430 |
lemma NotBox: "|- (~[]F) = (<>~F)"
|
wenzelm@21624
|
431 |
by (simp add: dmd_def)
|
wenzelm@21624
|
432 |
|
wenzelm@21624
|
433 |
lemma NotDmd: "|- (~<>F) = ([]~F)"
|
wenzelm@21624
|
434 |
by (simp add: dmd_def)
|
wenzelm@21624
|
435 |
|
wenzelm@21624
|
436 |
(* These are not declared by default, because they could be harmful,
|
wenzelm@21624
|
437 |
e.g. []F & ~[]F becomes []F & <>~F !! *)
|
wenzelm@26305
|
438 |
lemmas more_temp_simps1 =
|
wenzelm@21624
|
439 |
STL3 [temp_rewrite] DmdDmd [temp_rewrite] NotBox [temp_rewrite] NotDmd [temp_rewrite]
|
wenzelm@21624
|
440 |
NotBox [temp_unlift, THEN eq_reflection]
|
wenzelm@21624
|
441 |
NotDmd [temp_unlift, THEN eq_reflection]
|
wenzelm@21624
|
442 |
|
wenzelm@21624
|
443 |
lemma BoxDmdBox: "|- ([]<>[]F) = (<>[]F)"
|
wenzelm@21624
|
444 |
apply (auto dest!: STL2 [temp_use])
|
wenzelm@21624
|
445 |
apply (rule ccontr)
|
wenzelm@21624
|
446 |
apply (subgoal_tac "sigma |= <>[][]F & <>[]~[]F")
|
wenzelm@21624
|
447 |
apply (erule thin_rl)
|
wenzelm@21624
|
448 |
apply auto
|
wenzelm@21624
|
449 |
apply (drule STL6 [temp_use])
|
wenzelm@21624
|
450 |
apply assumption
|
wenzelm@21624
|
451 |
apply simp
|
wenzelm@26305
|
452 |
apply (simp_all add: more_temp_simps1)
|
wenzelm@21624
|
453 |
done
|
wenzelm@21624
|
454 |
|
wenzelm@21624
|
455 |
lemma DmdBoxDmd: "|- (<>[]<>F) = ([]<>F)"
|
wenzelm@21624
|
456 |
apply (unfold dmd_def)
|
wenzelm@21624
|
457 |
apply (auto simp: BoxDmdBox [unfolded dmd_def, try_rewrite])
|
wenzelm@21624
|
458 |
done
|
wenzelm@21624
|
459 |
|
wenzelm@26305
|
460 |
lemmas more_temp_simps2 = more_temp_simps1 BoxDmdBox [temp_rewrite] DmdBoxDmd [temp_rewrite]
|
wenzelm@21624
|
461 |
|
wenzelm@21624
|
462 |
|
wenzelm@21624
|
463 |
(* ------------------------ Miscellaneous ----------------------------------- *)
|
wenzelm@21624
|
464 |
|
wenzelm@21624
|
465 |
lemma BoxOr: "!!sigma. [| sigma |= []F | []G |] ==> sigma |= [](F | G)"
|
nipkow@44890
|
466 |
by (fastforce elim!: STL4E [temp_use])
|
wenzelm@21624
|
467 |
|
wenzelm@21624
|
468 |
(* "persistently implies infinitely often" *)
|
wenzelm@21624
|
469 |
lemma DBImplBD: "|- <>[]F --> []<>F"
|
wenzelm@21624
|
470 |
apply clarsimp
|
wenzelm@21624
|
471 |
apply (rule ccontr)
|
wenzelm@26305
|
472 |
apply (simp add: more_temp_simps2)
|
wenzelm@21624
|
473 |
apply (drule STL6 [temp_use])
|
wenzelm@21624
|
474 |
apply assumption
|
wenzelm@21624
|
475 |
apply simp
|
wenzelm@21624
|
476 |
done
|
wenzelm@21624
|
477 |
|
wenzelm@21624
|
478 |
lemma BoxDmdDmdBox: "|- []<>F & <>[]G --> []<>(F & G)"
|
wenzelm@21624
|
479 |
apply clarsimp
|
wenzelm@21624
|
480 |
apply (rule ccontr)
|
wenzelm@26305
|
481 |
apply (unfold more_temp_simps2)
|
wenzelm@21624
|
482 |
apply (drule STL6 [temp_use])
|
wenzelm@21624
|
483 |
apply assumption
|
wenzelm@21624
|
484 |
apply (subgoal_tac "sigma |= <>[]~F")
|
wenzelm@21624
|
485 |
apply (force simp: dmd_def)
|
nipkow@44890
|
486 |
apply (fastforce elim: DmdImplE [temp_use] STL4E [temp_use])
|
wenzelm@21624
|
487 |
done
|
wenzelm@21624
|
488 |
|
wenzelm@21624
|
489 |
|
wenzelm@21624
|
490 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
491 |
(*** TLA-specific theorems: primed formulas ***)
|
wenzelm@21624
|
492 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
493 |
section "priming"
|
wenzelm@21624
|
494 |
|
wenzelm@21624
|
495 |
(* ------------------------ TLA2 ------------------------------------------- *)
|
wenzelm@21624
|
496 |
lemma STL2_pr: "|- []P --> Init P & Init P`"
|
nipkow@44890
|
497 |
by (fastforce intro!: STL2_gen [temp_use] primeI [temp_use])
|
wenzelm@21624
|
498 |
|
wenzelm@21624
|
499 |
(* Auxiliary lemma allows priming of boxed actions *)
|
wenzelm@21624
|
500 |
lemma BoxPrime: "|- []P --> []($P & P$)"
|
wenzelm@21624
|
501 |
apply clarsimp
|
wenzelm@21624
|
502 |
apply (erule dup_boxE)
|
wenzelm@21624
|
503 |
apply (unfold boxInit_act)
|
wenzelm@21624
|
504 |
apply (erule STL4E)
|
wenzelm@21624
|
505 |
apply (auto simp: Init_simps dest!: STL2_pr [temp_use])
|
wenzelm@21624
|
506 |
done
|
wenzelm@21624
|
507 |
|
wenzelm@21624
|
508 |
lemma TLA2:
|
wenzelm@21624
|
509 |
assumes "|- $P & P$ --> A"
|
wenzelm@21624
|
510 |
shows "|- []P --> []A"
|
wenzelm@21624
|
511 |
apply clarsimp
|
wenzelm@21624
|
512 |
apply (drule BoxPrime [temp_use])
|
wenzelm@41529
|
513 |
apply (auto simp: Init_stp_act_rev [try_rewrite] intro!: assms [temp_use]
|
wenzelm@21624
|
514 |
elim!: STL4E [temp_use])
|
wenzelm@21624
|
515 |
done
|
wenzelm@21624
|
516 |
|
wenzelm@21624
|
517 |
lemma TLA2E: "[| sigma |= []P; |- $P & P$ --> A |] ==> sigma |= []A"
|
wenzelm@21624
|
518 |
by (erule (1) TLA2 [temp_use])
|
wenzelm@21624
|
519 |
|
wenzelm@21624
|
520 |
lemma DmdPrime: "|- (<>P`) --> (<>P)"
|
wenzelm@21624
|
521 |
apply (unfold dmd_def)
|
nipkow@44890
|
522 |
apply (fastforce elim!: TLA2E [temp_use])
|
wenzelm@21624
|
523 |
done
|
wenzelm@21624
|
524 |
|
wenzelm@45605
|
525 |
lemmas PrimeDmd = InitDmd_gen [temp_use, THEN DmdPrime [temp_use]]
|
wenzelm@21624
|
526 |
|
wenzelm@21624
|
527 |
(* ------------------------ INV1, stable --------------------------------------- *)
|
wenzelm@21624
|
528 |
section "stable, invariant"
|
wenzelm@21624
|
529 |
|
wenzelm@21624
|
530 |
lemma ind_rule:
|
wenzelm@21624
|
531 |
"[| sigma |= []H; sigma |= Init P; |- H --> (Init P & ~[]F --> Init(P`) & F) |]
|
wenzelm@21624
|
532 |
==> sigma |= []F"
|
wenzelm@21624
|
533 |
apply (rule indT [temp_use])
|
wenzelm@21624
|
534 |
apply (erule (2) STL4E)
|
wenzelm@21624
|
535 |
done
|
wenzelm@21624
|
536 |
|
wenzelm@21624
|
537 |
lemma box_stp_act: "|- ([]$P) = ([]P)"
|
wenzelm@21624
|
538 |
by (simp add: boxInit_act Init_simps)
|
wenzelm@21624
|
539 |
|
wenzelm@45605
|
540 |
lemmas box_stp_actI = box_stp_act [temp_use, THEN iffD2]
|
wenzelm@45605
|
541 |
lemmas box_stp_actD = box_stp_act [temp_use, THEN iffD1]
|
wenzelm@21624
|
542 |
|
wenzelm@26305
|
543 |
lemmas more_temp_simps3 = box_stp_act [temp_rewrite] more_temp_simps2
|
wenzelm@21624
|
544 |
|
wenzelm@21624
|
545 |
lemma INV1:
|
wenzelm@21624
|
546 |
"|- (Init P) --> (stable P) --> []P"
|
wenzelm@21624
|
547 |
apply (unfold stable_def boxInit_stp boxInit_act)
|
wenzelm@21624
|
548 |
apply clarsimp
|
wenzelm@21624
|
549 |
apply (erule ind_rule)
|
wenzelm@21624
|
550 |
apply (auto simp: Init_simps elim: ind_rule)
|
wenzelm@21624
|
551 |
done
|
wenzelm@21624
|
552 |
|
wenzelm@21624
|
553 |
lemma StableT:
|
wenzelm@21624
|
554 |
"!!P. |- $P & A --> P` ==> |- []A --> stable P"
|
wenzelm@21624
|
555 |
apply (unfold stable_def)
|
nipkow@44890
|
556 |
apply (fastforce elim!: STL4E [temp_use])
|
wenzelm@21624
|
557 |
done
|
wenzelm@21624
|
558 |
|
wenzelm@21624
|
559 |
lemma Stable: "[| sigma |= []A; |- $P & A --> P` |] ==> sigma |= stable P"
|
wenzelm@21624
|
560 |
by (erule (1) StableT [temp_use])
|
wenzelm@21624
|
561 |
|
wenzelm@21624
|
562 |
(* Generalization of INV1 *)
|
wenzelm@21624
|
563 |
lemma StableBox: "|- (stable P) --> [](Init P --> []P)"
|
wenzelm@21624
|
564 |
apply (unfold stable_def)
|
wenzelm@21624
|
565 |
apply clarsimp
|
wenzelm@21624
|
566 |
apply (erule dup_boxE)
|
wenzelm@21624
|
567 |
apply (force simp: stable_def elim: STL4E [temp_use] INV1 [temp_use])
|
wenzelm@21624
|
568 |
done
|
wenzelm@21624
|
569 |
|
wenzelm@21624
|
570 |
lemma DmdStable: "|- (stable P) & <>P --> <>[]P"
|
wenzelm@21624
|
571 |
apply clarsimp
|
wenzelm@21624
|
572 |
apply (rule DmdImpl2)
|
wenzelm@21624
|
573 |
prefer 2
|
wenzelm@21624
|
574 |
apply (erule StableBox [temp_use])
|
wenzelm@21624
|
575 |
apply (simp add: dmdInitD)
|
wenzelm@21624
|
576 |
done
|
wenzelm@21624
|
577 |
|
wenzelm@21624
|
578 |
(* ---------------- (Semi-)automatic invariant tactics ---------------------- *)
|
wenzelm@21624
|
579 |
|
wenzelm@21624
|
580 |
ML {*
|
wenzelm@21624
|
581 |
(* inv_tac reduces goals of the form ... ==> sigma |= []P *)
|
wenzelm@42793
|
582 |
fun inv_tac ctxt =
|
wenzelm@42793
|
583 |
SELECT_GOAL
|
wenzelm@42793
|
584 |
(EVERY
|
wenzelm@42793
|
585 |
[auto_tac ctxt,
|
wenzelm@42793
|
586 |
TRY (merge_box_tac 1),
|
wenzelm@42793
|
587 |
rtac (temp_use @{thm INV1}) 1, (* fail if the goal is not a box *)
|
wenzelm@42793
|
588 |
TRYALL (etac @{thm Stable})]);
|
wenzelm@21624
|
589 |
|
wenzelm@21624
|
590 |
(* auto_inv_tac applies inv_tac and then tries to attack the subgoals
|
wenzelm@21624
|
591 |
in simple cases it may be able to handle goals like |- MyProg --> []Inv.
|
wenzelm@21624
|
592 |
In these simple cases the simplifier seems to be more useful than the
|
wenzelm@21624
|
593 |
auto-tactic, which applies too much propositional logic and simplifies
|
wenzelm@21624
|
594 |
too late.
|
wenzelm@21624
|
595 |
*)
|
wenzelm@42803
|
596 |
fun auto_inv_tac ctxt =
|
wenzelm@42793
|
597 |
SELECT_GOAL
|
wenzelm@42803
|
598 |
(inv_tac ctxt 1 THEN
|
wenzelm@42793
|
599 |
(TRYALL (action_simp_tac
|
wenzelm@51717
|
600 |
(ctxt addsimps [@{thm Init_stp}, @{thm Init_act}]) [] [@{thm squareE}])));
|
wenzelm@21624
|
601 |
*}
|
wenzelm@21624
|
602 |
|
wenzelm@42769
|
603 |
method_setup invariant = {*
|
wenzelm@42793
|
604 |
Method.sections Clasimp.clasimp_modifiers >> (K (SIMPLE_METHOD' o inv_tac))
|
wenzelm@42814
|
605 |
*}
|
wenzelm@42769
|
606 |
|
wenzelm@42769
|
607 |
method_setup auto_invariant = {*
|
wenzelm@42803
|
608 |
Method.sections Clasimp.clasimp_modifiers >> (K (SIMPLE_METHOD' o auto_inv_tac))
|
wenzelm@42814
|
609 |
*}
|
wenzelm@42769
|
610 |
|
wenzelm@21624
|
611 |
lemma unless: "|- []($P --> P` | Q`) --> (stable P) | <>Q"
|
wenzelm@21624
|
612 |
apply (unfold dmd_def)
|
wenzelm@21624
|
613 |
apply (clarsimp dest!: BoxPrime [temp_use])
|
wenzelm@42787
|
614 |
apply merge_box
|
wenzelm@21624
|
615 |
apply (erule contrapos_np)
|
nipkow@44890
|
616 |
apply (fastforce elim!: Stable [temp_use])
|
wenzelm@21624
|
617 |
done
|
wenzelm@21624
|
618 |
|
wenzelm@21624
|
619 |
|
wenzelm@21624
|
620 |
(* --------------------- Recursive expansions --------------------------------------- *)
|
wenzelm@21624
|
621 |
section "recursive expansions"
|
wenzelm@21624
|
622 |
|
wenzelm@21624
|
623 |
(* Recursive expansions of [] and <> for state predicates *)
|
wenzelm@21624
|
624 |
lemma BoxRec: "|- ([]P) = (Init P & []P`)"
|
wenzelm@21624
|
625 |
apply (auto intro!: STL2_gen [temp_use])
|
nipkow@44890
|
626 |
apply (fastforce elim!: TLA2E [temp_use])
|
wenzelm@21624
|
627 |
apply (auto simp: stable_def elim!: INV1 [temp_use] STL4E [temp_use])
|
wenzelm@21624
|
628 |
done
|
wenzelm@21624
|
629 |
|
wenzelm@21624
|
630 |
lemma DmdRec: "|- (<>P) = (Init P | <>P`)"
|
wenzelm@21624
|
631 |
apply (unfold dmd_def BoxRec [temp_rewrite])
|
wenzelm@21624
|
632 |
apply (auto simp: Init_simps)
|
wenzelm@21624
|
633 |
done
|
wenzelm@21624
|
634 |
|
wenzelm@21624
|
635 |
lemma DmdRec2: "!!sigma. [| sigma |= <>P; sigma |= []~P` |] ==> sigma |= Init P"
|
wenzelm@21624
|
636 |
apply (force simp: DmdRec [temp_rewrite] dmd_def)
|
wenzelm@21624
|
637 |
done
|
wenzelm@21624
|
638 |
|
wenzelm@21624
|
639 |
lemma InfinitePrime: "|- ([]<>P) = ([]<>P`)"
|
wenzelm@21624
|
640 |
apply auto
|
wenzelm@21624
|
641 |
apply (rule classical)
|
wenzelm@21624
|
642 |
apply (rule DBImplBD [temp_use])
|
wenzelm@21624
|
643 |
apply (subgoal_tac "sigma |= <>[]P")
|
nipkow@44890
|
644 |
apply (fastforce elim!: DmdImplE [temp_use] TLA2E [temp_use])
|
wenzelm@21624
|
645 |
apply (subgoal_tac "sigma |= <>[] (<>P & []~P`)")
|
wenzelm@21624
|
646 |
apply (force simp: boxInit_stp [temp_use]
|
wenzelm@21624
|
647 |
elim!: DmdImplE [temp_use] STL4E [temp_use] DmdRec2 [temp_use])
|
wenzelm@26305
|
648 |
apply (force intro!: STL6 [temp_use] simp: more_temp_simps3)
|
nipkow@44890
|
649 |
apply (fastforce intro: DmdPrime [temp_use] elim!: STL4E [temp_use])
|
wenzelm@21624
|
650 |
done
|
wenzelm@21624
|
651 |
|
wenzelm@21624
|
652 |
lemma InfiniteEnsures:
|
wenzelm@21624
|
653 |
"[| sigma |= []N; sigma |= []<>A; |- A & N --> P` |] ==> sigma |= []<>P"
|
wenzelm@21624
|
654 |
apply (unfold InfinitePrime [temp_rewrite])
|
wenzelm@21624
|
655 |
apply (rule InfImpl)
|
wenzelm@21624
|
656 |
apply assumption+
|
wenzelm@21624
|
657 |
done
|
wenzelm@21624
|
658 |
|
wenzelm@21624
|
659 |
(* ------------------------ fairness ------------------------------------------- *)
|
wenzelm@21624
|
660 |
section "fairness"
|
wenzelm@21624
|
661 |
|
wenzelm@21624
|
662 |
(* alternative definitions of fairness *)
|
wenzelm@21624
|
663 |
lemma WF_alt: "|- WF(A)_v = ([]<>~Enabled(<A>_v) | []<><A>_v)"
|
wenzelm@21624
|
664 |
apply (unfold WF_def dmd_def)
|
nipkow@44890
|
665 |
apply fastforce
|
wenzelm@21624
|
666 |
done
|
wenzelm@21624
|
667 |
|
wenzelm@21624
|
668 |
lemma SF_alt: "|- SF(A)_v = (<>[]~Enabled(<A>_v) | []<><A>_v)"
|
wenzelm@21624
|
669 |
apply (unfold SF_def dmd_def)
|
nipkow@44890
|
670 |
apply fastforce
|
wenzelm@21624
|
671 |
done
|
wenzelm@21624
|
672 |
|
wenzelm@21624
|
673 |
(* theorems to "box" fairness conditions *)
|
wenzelm@21624
|
674 |
lemma BoxWFI: "|- WF(A)_v --> []WF(A)_v"
|
wenzelm@26305
|
675 |
by (auto simp: WF_alt [try_rewrite] more_temp_simps3 intro!: BoxOr [temp_use])
|
wenzelm@21624
|
676 |
|
wenzelm@21624
|
677 |
lemma WF_Box: "|- ([]WF(A)_v) = WF(A)_v"
|
nipkow@44890
|
678 |
by (fastforce intro!: BoxWFI [temp_use] dest!: STL2 [temp_use])
|
wenzelm@21624
|
679 |
|
wenzelm@21624
|
680 |
lemma BoxSFI: "|- SF(A)_v --> []SF(A)_v"
|
wenzelm@26305
|
681 |
by (auto simp: SF_alt [try_rewrite] more_temp_simps3 intro!: BoxOr [temp_use])
|
wenzelm@21624
|
682 |
|
wenzelm@21624
|
683 |
lemma SF_Box: "|- ([]SF(A)_v) = SF(A)_v"
|
nipkow@44890
|
684 |
by (fastforce intro!: BoxSFI [temp_use] dest!: STL2 [temp_use])
|
wenzelm@21624
|
685 |
|
wenzelm@26305
|
686 |
lemmas more_temp_simps = more_temp_simps3 WF_Box [temp_rewrite] SF_Box [temp_rewrite]
|
wenzelm@21624
|
687 |
|
wenzelm@21624
|
688 |
lemma SFImplWF: "|- SF(A)_v --> WF(A)_v"
|
wenzelm@21624
|
689 |
apply (unfold SF_def WF_def)
|
nipkow@44890
|
690 |
apply (fastforce dest!: DBImplBD [temp_use])
|
wenzelm@21624
|
691 |
done
|
wenzelm@21624
|
692 |
|
wenzelm@21624
|
693 |
(* A tactic that "boxes" all fairness conditions. Apply more_temp_simps to "unbox". *)
|
wenzelm@21624
|
694 |
ML {*
|
wenzelm@26305
|
695 |
val box_fair_tac = SELECT_GOAL (REPEAT (dresolve_tac [@{thm BoxWFI}, @{thm BoxSFI}] 1))
|
wenzelm@21624
|
696 |
*}
|
wenzelm@21624
|
697 |
|
wenzelm@21624
|
698 |
|
wenzelm@21624
|
699 |
(* ------------------------------ leads-to ------------------------------ *)
|
wenzelm@21624
|
700 |
|
wenzelm@21624
|
701 |
section "~>"
|
wenzelm@21624
|
702 |
|
wenzelm@21624
|
703 |
lemma leadsto_init: "|- (Init F) & (F ~> G) --> <>G"
|
wenzelm@21624
|
704 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
705 |
apply (auto dest!: STL2 [temp_use])
|
wenzelm@21624
|
706 |
done
|
wenzelm@21624
|
707 |
|
wenzelm@21624
|
708 |
(* |- F & (F ~> G) --> <>G *)
|
wenzelm@45605
|
709 |
lemmas leadsto_init_temp = leadsto_init [where 'a = behavior, unfolded Init_simps]
|
wenzelm@21624
|
710 |
|
wenzelm@21624
|
711 |
lemma streett_leadsto: "|- ([]<>Init F --> []<>G) = (<>(F ~> G))"
|
wenzelm@21624
|
712 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
713 |
apply auto
|
wenzelm@21624
|
714 |
apply (simp add: more_temp_simps)
|
nipkow@44890
|
715 |
apply (fastforce elim!: DmdImplE [temp_use] STL4E [temp_use])
|
nipkow@44890
|
716 |
apply (fastforce intro!: InitDmd [temp_use] elim!: STL4E [temp_use])
|
wenzelm@21624
|
717 |
apply (subgoal_tac "sigma |= []<><>G")
|
wenzelm@21624
|
718 |
apply (simp add: more_temp_simps)
|
wenzelm@21624
|
719 |
apply (drule BoxDmdDmdBox [temp_use])
|
wenzelm@21624
|
720 |
apply assumption
|
nipkow@44890
|
721 |
apply (fastforce elim!: DmdImplE [temp_use] STL4E [temp_use])
|
wenzelm@21624
|
722 |
done
|
wenzelm@21624
|
723 |
|
wenzelm@21624
|
724 |
lemma leadsto_infinite: "|- []<>F & (F ~> G) --> []<>G"
|
wenzelm@21624
|
725 |
apply clarsimp
|
wenzelm@21624
|
726 |
apply (erule InitDmd [temp_use, THEN streett_leadsto [temp_unlift, THEN iffD2, THEN mp]])
|
wenzelm@21624
|
727 |
apply (simp add: dmdInitD)
|
wenzelm@21624
|
728 |
done
|
wenzelm@21624
|
729 |
|
wenzelm@21624
|
730 |
(* In particular, strong fairness is a Streett condition. The following
|
wenzelm@21624
|
731 |
rules are sometimes easier to use than WF2 or SF2 below.
|
wenzelm@21624
|
732 |
*)
|
wenzelm@21624
|
733 |
lemma leadsto_SF: "|- (Enabled(<A>_v) ~> <A>_v) --> SF(A)_v"
|
wenzelm@21624
|
734 |
apply (unfold SF_def)
|
wenzelm@21624
|
735 |
apply (clarsimp elim!: leadsto_infinite [temp_use])
|
wenzelm@21624
|
736 |
done
|
wenzelm@21624
|
737 |
|
wenzelm@21624
|
738 |
lemma leadsto_WF: "|- (Enabled(<A>_v) ~> <A>_v) --> WF(A)_v"
|
wenzelm@21624
|
739 |
by (clarsimp intro!: SFImplWF [temp_use] leadsto_SF [temp_use])
|
wenzelm@21624
|
740 |
|
wenzelm@21624
|
741 |
(* introduce an invariant into the proof of a leadsto assertion.
|
wenzelm@21624
|
742 |
[]I --> ((P ~> Q) = (P /\ I ~> Q))
|
wenzelm@21624
|
743 |
*)
|
wenzelm@21624
|
744 |
lemma INV_leadsto: "|- []I & (P & I ~> Q) --> (P ~> Q)"
|
wenzelm@21624
|
745 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
746 |
apply clarsimp
|
wenzelm@21624
|
747 |
apply (erule STL4Edup)
|
wenzelm@21624
|
748 |
apply assumption
|
wenzelm@21624
|
749 |
apply (auto simp: Init_simps dest!: STL2_gen [temp_use])
|
wenzelm@21624
|
750 |
done
|
wenzelm@21624
|
751 |
|
wenzelm@21624
|
752 |
lemma leadsto_classical: "|- (Init F & []~G ~> G) --> (F ~> G)"
|
wenzelm@21624
|
753 |
apply (unfold leadsto_def dmd_def)
|
wenzelm@21624
|
754 |
apply (force simp: Init_simps elim!: STL4E [temp_use])
|
wenzelm@21624
|
755 |
done
|
wenzelm@21624
|
756 |
|
wenzelm@21624
|
757 |
lemma leadsto_false: "|- (F ~> #False) = ([]~F)"
|
wenzelm@21624
|
758 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
759 |
apply (simp add: boxNotInitD)
|
wenzelm@21624
|
760 |
done
|
wenzelm@21624
|
761 |
|
wenzelm@21624
|
762 |
lemma leadsto_exists: "|- ((EX x. F x) ~> G) = (ALL x. (F x ~> G))"
|
wenzelm@21624
|
763 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
764 |
apply (auto simp: allT [try_rewrite] Init_simps elim!: STL4E [temp_use])
|
wenzelm@21624
|
765 |
done
|
wenzelm@21624
|
766 |
|
wenzelm@21624
|
767 |
(* basic leadsto properties, cf. Unity *)
|
wenzelm@21624
|
768 |
|
wenzelm@21624
|
769 |
lemma ImplLeadsto_gen: "|- [](Init F --> Init G) --> (F ~> G)"
|
wenzelm@21624
|
770 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
771 |
apply (auto intro!: InitDmd_gen [temp_use]
|
wenzelm@21624
|
772 |
elim!: STL4E_gen [temp_use] simp: Init_simps)
|
wenzelm@21624
|
773 |
done
|
wenzelm@21624
|
774 |
|
wenzelm@45605
|
775 |
lemmas ImplLeadsto =
|
wenzelm@45605
|
776 |
ImplLeadsto_gen [where 'a = behavior and 'b = behavior, unfolded Init_simps]
|
wenzelm@21624
|
777 |
|
wenzelm@21624
|
778 |
lemma ImplLeadsto_simple: "!!F G. |- F --> G ==> |- F ~> G"
|
wenzelm@21624
|
779 |
by (auto simp: Init_def intro!: ImplLeadsto_gen [temp_use] necT [temp_use])
|
wenzelm@21624
|
780 |
|
wenzelm@21624
|
781 |
lemma EnsuresLeadsto:
|
wenzelm@21624
|
782 |
assumes "|- A & $P --> Q`"
|
wenzelm@21624
|
783 |
shows "|- []A --> (P ~> Q)"
|
wenzelm@21624
|
784 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
785 |
apply (clarsimp elim!: INV_leadsto [temp_use])
|
wenzelm@21624
|
786 |
apply (erule STL4E_gen)
|
wenzelm@21624
|
787 |
apply (auto simp: Init_defs intro!: PrimeDmd [temp_use] assms [temp_use])
|
wenzelm@21624
|
788 |
done
|
wenzelm@21624
|
789 |
|
wenzelm@21624
|
790 |
lemma EnsuresLeadsto2: "|- []($P --> Q`) --> (P ~> Q)"
|
wenzelm@21624
|
791 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
792 |
apply clarsimp
|
wenzelm@21624
|
793 |
apply (erule STL4E_gen)
|
wenzelm@21624
|
794 |
apply (auto simp: Init_simps intro!: PrimeDmd [temp_use])
|
wenzelm@21624
|
795 |
done
|
wenzelm@21624
|
796 |
|
wenzelm@21624
|
797 |
lemma ensures:
|
wenzelm@21624
|
798 |
assumes 1: "|- $P & N --> P` | Q`"
|
wenzelm@21624
|
799 |
and 2: "|- ($P & N) & A --> Q`"
|
wenzelm@21624
|
800 |
shows "|- []N & []([]P --> <>A) --> (P ~> Q)"
|
wenzelm@21624
|
801 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
802 |
apply clarsimp
|
wenzelm@21624
|
803 |
apply (erule STL4Edup)
|
wenzelm@21624
|
804 |
apply assumption
|
wenzelm@21624
|
805 |
apply clarsimp
|
wenzelm@21624
|
806 |
apply (subgoal_tac "sigmaa |= [] ($P --> P` | Q`) ")
|
wenzelm@21624
|
807 |
apply (drule unless [temp_use])
|
wenzelm@21624
|
808 |
apply (clarsimp dest!: INV1 [temp_use])
|
wenzelm@21624
|
809 |
apply (rule 2 [THEN DmdImpl, temp_use, THEN DmdPrime [temp_use]])
|
wenzelm@21624
|
810 |
apply (force intro!: BoxDmd_simple [temp_use]
|
wenzelm@21624
|
811 |
simp: split_box_conj [try_rewrite] box_stp_act [try_rewrite])
|
wenzelm@21624
|
812 |
apply (force elim: STL4E [temp_use] dest: 1 [temp_use])
|
wenzelm@21624
|
813 |
done
|
wenzelm@21624
|
814 |
|
wenzelm@21624
|
815 |
lemma ensures_simple:
|
wenzelm@21624
|
816 |
"[| |- $P & N --> P` | Q`;
|
wenzelm@21624
|
817 |
|- ($P & N) & A --> Q`
|
wenzelm@21624
|
818 |
|] ==> |- []N & []<>A --> (P ~> Q)"
|
wenzelm@21624
|
819 |
apply clarsimp
|
wenzelm@21624
|
820 |
apply (erule (2) ensures [temp_use])
|
wenzelm@21624
|
821 |
apply (force elim!: STL4E [temp_use])
|
wenzelm@21624
|
822 |
done
|
wenzelm@21624
|
823 |
|
wenzelm@21624
|
824 |
lemma EnsuresInfinite:
|
wenzelm@21624
|
825 |
"[| sigma |= []<>P; sigma |= []A; |- A & $P --> Q` |] ==> sigma |= []<>Q"
|
wenzelm@21624
|
826 |
apply (erule leadsto_infinite [temp_use])
|
wenzelm@21624
|
827 |
apply (erule EnsuresLeadsto [temp_use])
|
wenzelm@21624
|
828 |
apply assumption
|
wenzelm@21624
|
829 |
done
|
wenzelm@21624
|
830 |
|
wenzelm@21624
|
831 |
|
wenzelm@21624
|
832 |
(*** Gronning's lattice rules (taken from TLP) ***)
|
wenzelm@21624
|
833 |
section "Lattice rules"
|
wenzelm@21624
|
834 |
|
wenzelm@21624
|
835 |
lemma LatticeReflexivity: "|- F ~> F"
|
wenzelm@21624
|
836 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
837 |
apply (rule necT InitDmd_gen)+
|
wenzelm@21624
|
838 |
done
|
wenzelm@21624
|
839 |
|
wenzelm@21624
|
840 |
lemma LatticeTransitivity: "|- (G ~> H) & (F ~> G) --> (F ~> H)"
|
wenzelm@21624
|
841 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
842 |
apply clarsimp
|
wenzelm@21624
|
843 |
apply (erule dup_boxE) (* [][] (Init G --> H) *)
|
wenzelm@42787
|
844 |
apply merge_box
|
wenzelm@21624
|
845 |
apply (clarsimp elim!: STL4E [temp_use])
|
wenzelm@21624
|
846 |
apply (rule dup_dmdD)
|
wenzelm@21624
|
847 |
apply (subgoal_tac "sigmaa |= <>Init G")
|
wenzelm@21624
|
848 |
apply (erule DmdImpl2)
|
wenzelm@21624
|
849 |
apply assumption
|
wenzelm@21624
|
850 |
apply (simp add: dmdInitD)
|
wenzelm@21624
|
851 |
done
|
wenzelm@21624
|
852 |
|
wenzelm@21624
|
853 |
lemma LatticeDisjunctionElim1: "|- (F | G ~> H) --> (F ~> H)"
|
wenzelm@21624
|
854 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
855 |
apply (auto simp: Init_simps elim!: STL4E [temp_use])
|
wenzelm@21624
|
856 |
done
|
wenzelm@21624
|
857 |
|
wenzelm@21624
|
858 |
lemma LatticeDisjunctionElim2: "|- (F | G ~> H) --> (G ~> H)"
|
wenzelm@21624
|
859 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
860 |
apply (auto simp: Init_simps elim!: STL4E [temp_use])
|
wenzelm@21624
|
861 |
done
|
wenzelm@21624
|
862 |
|
wenzelm@21624
|
863 |
lemma LatticeDisjunctionIntro: "|- (F ~> H) & (G ~> H) --> (F | G ~> H)"
|
wenzelm@21624
|
864 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
865 |
apply clarsimp
|
wenzelm@42787
|
866 |
apply merge_box
|
wenzelm@21624
|
867 |
apply (auto simp: Init_simps elim!: STL4E [temp_use])
|
wenzelm@21624
|
868 |
done
|
wenzelm@21624
|
869 |
|
wenzelm@21624
|
870 |
lemma LatticeDisjunction: "|- (F | G ~> H) = ((F ~> H) & (G ~> H))"
|
wenzelm@21624
|
871 |
by (auto intro: LatticeDisjunctionIntro [temp_use]
|
wenzelm@21624
|
872 |
LatticeDisjunctionElim1 [temp_use]
|
wenzelm@21624
|
873 |
LatticeDisjunctionElim2 [temp_use])
|
wenzelm@21624
|
874 |
|
wenzelm@21624
|
875 |
lemma LatticeDiamond: "|- (A ~> B | C) & (B ~> D) & (C ~> D) --> (A ~> D)"
|
wenzelm@21624
|
876 |
apply clarsimp
|
wenzelm@21624
|
877 |
apply (subgoal_tac "sigma |= (B | C) ~> D")
|
wenzelm@21624
|
878 |
apply (erule_tac G = "LIFT (B | C)" in LatticeTransitivity [temp_use])
|
nipkow@44890
|
879 |
apply (fastforce intro!: LatticeDisjunctionIntro [temp_use])+
|
wenzelm@21624
|
880 |
done
|
wenzelm@21624
|
881 |
|
wenzelm@21624
|
882 |
lemma LatticeTriangle: "|- (A ~> D | B) & (B ~> D) --> (A ~> D)"
|
wenzelm@21624
|
883 |
apply clarsimp
|
wenzelm@21624
|
884 |
apply (subgoal_tac "sigma |= (D | B) ~> D")
|
wenzelm@21624
|
885 |
apply (erule_tac G = "LIFT (D | B)" in LatticeTransitivity [temp_use])
|
wenzelm@21624
|
886 |
apply assumption
|
wenzelm@21624
|
887 |
apply (auto intro: LatticeDisjunctionIntro [temp_use] LatticeReflexivity [temp_use])
|
wenzelm@21624
|
888 |
done
|
wenzelm@21624
|
889 |
|
wenzelm@21624
|
890 |
lemma LatticeTriangle2: "|- (A ~> B | D) & (B ~> D) --> (A ~> D)"
|
wenzelm@21624
|
891 |
apply clarsimp
|
wenzelm@21624
|
892 |
apply (subgoal_tac "sigma |= B | D ~> D")
|
wenzelm@21624
|
893 |
apply (erule_tac G = "LIFT (B | D)" in LatticeTransitivity [temp_use])
|
wenzelm@21624
|
894 |
apply assumption
|
wenzelm@21624
|
895 |
apply (auto intro: LatticeDisjunctionIntro [temp_use] LatticeReflexivity [temp_use])
|
wenzelm@21624
|
896 |
done
|
wenzelm@21624
|
897 |
|
wenzelm@21624
|
898 |
(*** Lamport's fairness rules ***)
|
wenzelm@21624
|
899 |
section "Fairness rules"
|
wenzelm@21624
|
900 |
|
wenzelm@21624
|
901 |
lemma WF1:
|
wenzelm@21624
|
902 |
"[| |- $P & N --> P` | Q`;
|
wenzelm@21624
|
903 |
|- ($P & N) & <A>_v --> Q`;
|
wenzelm@21624
|
904 |
|- $P & N --> $(Enabled(<A>_v)) |]
|
wenzelm@21624
|
905 |
==> |- []N & WF(A)_v --> (P ~> Q)"
|
wenzelm@21624
|
906 |
apply (clarsimp dest!: BoxWFI [temp_use])
|
wenzelm@21624
|
907 |
apply (erule (2) ensures [temp_use])
|
wenzelm@21624
|
908 |
apply (erule (1) STL4Edup)
|
wenzelm@21624
|
909 |
apply (clarsimp simp: WF_def)
|
wenzelm@21624
|
910 |
apply (rule STL2 [temp_use])
|
wenzelm@21624
|
911 |
apply (clarsimp elim!: mp intro!: InitDmd [temp_use])
|
wenzelm@21624
|
912 |
apply (erule STL4 [temp_use, THEN box_stp_actD [temp_use]])
|
wenzelm@21624
|
913 |
apply (simp add: split_box_conj box_stp_actI)
|
wenzelm@21624
|
914 |
done
|
wenzelm@21624
|
915 |
|
wenzelm@21624
|
916 |
(* Sometimes easier to use; designed for action B rather than state predicate Q *)
|
wenzelm@21624
|
917 |
lemma WF_leadsto:
|
wenzelm@21624
|
918 |
assumes 1: "|- N & $P --> $Enabled (<A>_v)"
|
wenzelm@21624
|
919 |
and 2: "|- N & <A>_v --> B"
|
wenzelm@21624
|
920 |
and 3: "|- [](N & [~A]_v) --> stable P"
|
wenzelm@21624
|
921 |
shows "|- []N & WF(A)_v --> (P ~> B)"
|
wenzelm@21624
|
922 |
apply (unfold leadsto_def)
|
wenzelm@21624
|
923 |
apply (clarsimp dest!: BoxWFI [temp_use])
|
wenzelm@21624
|
924 |
apply (erule (1) STL4Edup)
|
wenzelm@21624
|
925 |
apply clarsimp
|
wenzelm@21624
|
926 |
apply (rule 2 [THEN DmdImpl, temp_use])
|
wenzelm@21624
|
927 |
apply (rule BoxDmd_simple [temp_use])
|
wenzelm@21624
|
928 |
apply assumption
|
wenzelm@21624
|
929 |
apply (rule classical)
|
wenzelm@21624
|
930 |
apply (rule STL2 [temp_use])
|
wenzelm@21624
|
931 |
apply (clarsimp simp: WF_def elim!: mp intro!: InitDmd [temp_use])
|
wenzelm@21624
|
932 |
apply (rule 1 [THEN STL4, temp_use, THEN box_stp_actD])
|
wenzelm@21624
|
933 |
apply (simp (no_asm_simp) add: split_box_conj [try_rewrite] box_stp_act [try_rewrite])
|
wenzelm@21624
|
934 |
apply (erule INV1 [temp_use])
|
wenzelm@21624
|
935 |
apply (rule 3 [temp_use])
|
wenzelm@21624
|
936 |
apply (simp add: split_box_conj [try_rewrite] NotDmd [temp_use] not_angle [try_rewrite])
|
wenzelm@21624
|
937 |
done
|
wenzelm@21624
|
938 |
|
wenzelm@21624
|
939 |
lemma SF1:
|
wenzelm@21624
|
940 |
"[| |- $P & N --> P` | Q`;
|
wenzelm@21624
|
941 |
|- ($P & N) & <A>_v --> Q`;
|
wenzelm@21624
|
942 |
|- []P & []N & []F --> <>Enabled(<A>_v) |]
|
wenzelm@21624
|
943 |
==> |- []N & SF(A)_v & []F --> (P ~> Q)"
|
wenzelm@21624
|
944 |
apply (clarsimp dest!: BoxSFI [temp_use])
|
wenzelm@21624
|
945 |
apply (erule (2) ensures [temp_use])
|
wenzelm@21624
|
946 |
apply (erule_tac F = F in dup_boxE)
|
wenzelm@42787
|
947 |
apply merge_temp_box
|
wenzelm@21624
|
948 |
apply (erule STL4Edup)
|
wenzelm@21624
|
949 |
apply assumption
|
wenzelm@21624
|
950 |
apply (clarsimp simp: SF_def)
|
wenzelm@21624
|
951 |
apply (rule STL2 [temp_use])
|
wenzelm@21624
|
952 |
apply (erule mp)
|
wenzelm@21624
|
953 |
apply (erule STL4 [temp_use])
|
wenzelm@21624
|
954 |
apply (simp add: split_box_conj [try_rewrite] STL3 [try_rewrite])
|
wenzelm@21624
|
955 |
done
|
wenzelm@21624
|
956 |
|
wenzelm@21624
|
957 |
lemma WF2:
|
wenzelm@21624
|
958 |
assumes 1: "|- N & <B>_f --> <M>_g"
|
wenzelm@21624
|
959 |
and 2: "|- $P & P` & <N & A>_f --> B"
|
wenzelm@21624
|
960 |
and 3: "|- P & Enabled(<M>_g) --> Enabled(<A>_f)"
|
wenzelm@21624
|
961 |
and 4: "|- [](N & [~B]_f) & WF(A)_f & []F & <>[]Enabled(<M>_g) --> <>[]P"
|
wenzelm@21624
|
962 |
shows "|- []N & WF(A)_f & []F --> WF(M)_g"
|
wenzelm@21624
|
963 |
apply (clarsimp dest!: BoxWFI [temp_use] BoxDmdBox [temp_use, THEN iffD2]
|
wenzelm@21624
|
964 |
simp: WF_def [where A = M])
|
wenzelm@21624
|
965 |
apply (erule_tac F = F in dup_boxE)
|
wenzelm@42787
|
966 |
apply merge_temp_box
|
wenzelm@21624
|
967 |
apply (erule STL4Edup)
|
wenzelm@21624
|
968 |
apply assumption
|
wenzelm@21624
|
969 |
apply (clarsimp intro!: BoxDmd_simple [temp_use, THEN 1 [THEN DmdImpl, temp_use]])
|
wenzelm@21624
|
970 |
apply (rule classical)
|
wenzelm@21624
|
971 |
apply (subgoal_tac "sigmaa |= <> (($P & P` & N) & <A>_f)")
|
wenzelm@21624
|
972 |
apply (force simp: angle_def intro!: 2 [temp_use] elim!: DmdImplE [temp_use])
|
wenzelm@21624
|
973 |
apply (rule BoxDmd_simple [THEN DmdImpl, unfolded DmdDmd [temp_rewrite], temp_use])
|
wenzelm@21624
|
974 |
apply (simp add: NotDmd [temp_use] not_angle [try_rewrite])
|
wenzelm@42787
|
975 |
apply merge_act_box
|
wenzelm@21624
|
976 |
apply (frule 4 [temp_use])
|
wenzelm@21624
|
977 |
apply assumption+
|
wenzelm@21624
|
978 |
apply (drule STL6 [temp_use])
|
wenzelm@21624
|
979 |
apply assumption
|
wenzelm@21624
|
980 |
apply (erule_tac V = "sigmaa |= <>[]P" in thin_rl)
|
wenzelm@21624
|
981 |
apply (erule_tac V = "sigmaa |= []F" in thin_rl)
|
wenzelm@21624
|
982 |
apply (drule BoxWFI [temp_use])
|
wenzelm@21624
|
983 |
apply (erule_tac F = "ACT N & [~B]_f" in dup_boxE)
|
wenzelm@42787
|
984 |
apply merge_temp_box
|
wenzelm@21624
|
985 |
apply (erule DmdImpldup)
|
wenzelm@21624
|
986 |
apply assumption
|
wenzelm@21624
|
987 |
apply (auto simp: split_box_conj [try_rewrite] STL3 [try_rewrite]
|
wenzelm@21624
|
988 |
WF_Box [try_rewrite] box_stp_act [try_rewrite])
|
wenzelm@21624
|
989 |
apply (force elim!: TLA2E [where P = P, temp_use])
|
wenzelm@21624
|
990 |
apply (rule STL2 [temp_use])
|
wenzelm@21624
|
991 |
apply (force simp: WF_def split_box_conj [try_rewrite]
|
wenzelm@21624
|
992 |
elim!: mp intro!: InitDmd [temp_use] 3 [THEN STL4, temp_use])
|
wenzelm@21624
|
993 |
done
|
wenzelm@21624
|
994 |
|
wenzelm@21624
|
995 |
lemma SF2:
|
wenzelm@21624
|
996 |
assumes 1: "|- N & <B>_f --> <M>_g"
|
wenzelm@21624
|
997 |
and 2: "|- $P & P` & <N & A>_f --> B"
|
wenzelm@21624
|
998 |
and 3: "|- P & Enabled(<M>_g) --> Enabled(<A>_f)"
|
wenzelm@21624
|
999 |
and 4: "|- [](N & [~B]_f) & SF(A)_f & []F & []<>Enabled(<M>_g) --> <>[]P"
|
wenzelm@21624
|
1000 |
shows "|- []N & SF(A)_f & []F --> SF(M)_g"
|
wenzelm@21624
|
1001 |
apply (clarsimp dest!: BoxSFI [temp_use] simp: 2 [try_rewrite] SF_def [where A = M])
|
wenzelm@21624
|
1002 |
apply (erule_tac F = F in dup_boxE)
|
wenzelm@21624
|
1003 |
apply (erule_tac F = "TEMP <>Enabled (<M>_g) " in dup_boxE)
|
wenzelm@42787
|
1004 |
apply merge_temp_box
|
wenzelm@21624
|
1005 |
apply (erule STL4Edup)
|
wenzelm@21624
|
1006 |
apply assumption
|
wenzelm@21624
|
1007 |
apply (clarsimp intro!: BoxDmd_simple [temp_use, THEN 1 [THEN DmdImpl, temp_use]])
|
wenzelm@21624
|
1008 |
apply (rule classical)
|
wenzelm@21624
|
1009 |
apply (subgoal_tac "sigmaa |= <> (($P & P` & N) & <A>_f)")
|
wenzelm@21624
|
1010 |
apply (force simp: angle_def intro!: 2 [temp_use] elim!: DmdImplE [temp_use])
|
wenzelm@21624
|
1011 |
apply (rule BoxDmd_simple [THEN DmdImpl, unfolded DmdDmd [temp_rewrite], temp_use])
|
wenzelm@21624
|
1012 |
apply (simp add: NotDmd [temp_use] not_angle [try_rewrite])
|
wenzelm@42787
|
1013 |
apply merge_act_box
|
wenzelm@21624
|
1014 |
apply (frule 4 [temp_use])
|
wenzelm@21624
|
1015 |
apply assumption+
|
wenzelm@21624
|
1016 |
apply (erule_tac V = "sigmaa |= []F" in thin_rl)
|
wenzelm@21624
|
1017 |
apply (drule BoxSFI [temp_use])
|
wenzelm@21624
|
1018 |
apply (erule_tac F = "TEMP <>Enabled (<M>_g)" in dup_boxE)
|
wenzelm@21624
|
1019 |
apply (erule_tac F = "ACT N & [~B]_f" in dup_boxE)
|
wenzelm@42787
|
1020 |
apply merge_temp_box
|
wenzelm@21624
|
1021 |
apply (erule DmdImpldup)
|
wenzelm@21624
|
1022 |
apply assumption
|
wenzelm@21624
|
1023 |
apply (auto simp: split_box_conj [try_rewrite] STL3 [try_rewrite]
|
wenzelm@21624
|
1024 |
SF_Box [try_rewrite] box_stp_act [try_rewrite])
|
wenzelm@21624
|
1025 |
apply (force elim!: TLA2E [where P = P, temp_use])
|
wenzelm@21624
|
1026 |
apply (rule STL2 [temp_use])
|
wenzelm@21624
|
1027 |
apply (force simp: SF_def split_box_conj [try_rewrite]
|
wenzelm@21624
|
1028 |
elim!: mp InfImpl [temp_use] intro!: 3 [temp_use])
|
wenzelm@21624
|
1029 |
done
|
wenzelm@21624
|
1030 |
|
wenzelm@21624
|
1031 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
1032 |
(*** Liveness proofs by well-founded orderings ***)
|
wenzelm@21624
|
1033 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
1034 |
section "Well-founded orderings"
|
wenzelm@21624
|
1035 |
|
wenzelm@21624
|
1036 |
lemma wf_leadsto:
|
wenzelm@21624
|
1037 |
assumes 1: "wf r"
|
wenzelm@21624
|
1038 |
and 2: "!!x. sigma |= F x ~> (G | (EX y. #((y,x):r) & F y)) "
|
wenzelm@21624
|
1039 |
shows "sigma |= F x ~> G"
|
wenzelm@21624
|
1040 |
apply (rule 1 [THEN wf_induct])
|
wenzelm@21624
|
1041 |
apply (rule LatticeTriangle [temp_use])
|
wenzelm@21624
|
1042 |
apply (rule 2)
|
wenzelm@21624
|
1043 |
apply (auto simp: leadsto_exists [try_rewrite])
|
wenzelm@21624
|
1044 |
apply (case_tac "(y,x) :r")
|
wenzelm@21624
|
1045 |
apply force
|
wenzelm@21624
|
1046 |
apply (force simp: leadsto_def Init_simps intro!: necT [temp_use])
|
wenzelm@21624
|
1047 |
done
|
wenzelm@21624
|
1048 |
|
wenzelm@21624
|
1049 |
(* If r is well-founded, state function v cannot decrease forever *)
|
wenzelm@21624
|
1050 |
lemma wf_not_box_decrease: "!!r. wf r ==> |- [][ (v`, $v) : #r ]_v --> <>[][#False]_v"
|
wenzelm@21624
|
1051 |
apply clarsimp
|
wenzelm@21624
|
1052 |
apply (rule ccontr)
|
wenzelm@21624
|
1053 |
apply (subgoal_tac "sigma |= (EX x. v=#x) ~> #False")
|
wenzelm@21624
|
1054 |
apply (drule leadsto_false [temp_use, THEN iffD1, THEN STL2_gen [temp_use]])
|
wenzelm@21624
|
1055 |
apply (force simp: Init_defs)
|
wenzelm@21624
|
1056 |
apply (clarsimp simp: leadsto_exists [try_rewrite] not_square [try_rewrite] more_temp_simps)
|
wenzelm@21624
|
1057 |
apply (erule wf_leadsto)
|
wenzelm@21624
|
1058 |
apply (rule ensures_simple [temp_use])
|
wenzelm@21624
|
1059 |
apply (auto simp: square_def angle_def)
|
wenzelm@21624
|
1060 |
done
|
wenzelm@21624
|
1061 |
|
wenzelm@21624
|
1062 |
(* "wf r ==> |- <>[][ (v`, $v) : #r ]_v --> <>[][#False]_v" *)
|
wenzelm@21624
|
1063 |
lemmas wf_not_dmd_box_decrease =
|
wenzelm@45605
|
1064 |
wf_not_box_decrease [THEN DmdImpl, unfolded more_temp_simps]
|
wenzelm@21624
|
1065 |
|
wenzelm@21624
|
1066 |
(* If there are infinitely many steps where v decreases, then there
|
wenzelm@21624
|
1067 |
have to be infinitely many non-stuttering steps where v doesn't decrease.
|
wenzelm@21624
|
1068 |
*)
|
wenzelm@21624
|
1069 |
lemma wf_box_dmd_decrease:
|
wenzelm@21624
|
1070 |
assumes 1: "wf r"
|
wenzelm@21624
|
1071 |
shows "|- []<>((v`, $v) : #r) --> []<><(v`, $v) ~: #r>_v"
|
wenzelm@21624
|
1072 |
apply clarsimp
|
wenzelm@21624
|
1073 |
apply (rule ccontr)
|
wenzelm@21624
|
1074 |
apply (simp add: not_angle [try_rewrite] more_temp_simps)
|
wenzelm@21624
|
1075 |
apply (drule 1 [THEN wf_not_dmd_box_decrease [temp_use]])
|
wenzelm@21624
|
1076 |
apply (drule BoxDmdDmdBox [temp_use])
|
wenzelm@21624
|
1077 |
apply assumption
|
wenzelm@21624
|
1078 |
apply (subgoal_tac "sigma |= []<> ((#False) ::action)")
|
wenzelm@21624
|
1079 |
apply force
|
wenzelm@21624
|
1080 |
apply (erule STL4E)
|
wenzelm@21624
|
1081 |
apply (rule DmdImpl)
|
wenzelm@21624
|
1082 |
apply (force intro: 1 [THEN wf_irrefl, temp_use])
|
wenzelm@21624
|
1083 |
done
|
wenzelm@21624
|
1084 |
|
wenzelm@21624
|
1085 |
(* In particular, for natural numbers, if n decreases infinitely often
|
wenzelm@21624
|
1086 |
then it has to increase infinitely often.
|
wenzelm@21624
|
1087 |
*)
|
wenzelm@21624
|
1088 |
lemma nat_box_dmd_decrease: "!!n::nat stfun. |- []<>(n` < $n) --> []<>($n < n`)"
|
wenzelm@21624
|
1089 |
apply clarsimp
|
wenzelm@21624
|
1090 |
apply (subgoal_tac "sigma |= []<><~ ((n`,$n) : #less_than) >_n")
|
wenzelm@21624
|
1091 |
apply (erule thin_rl)
|
wenzelm@21624
|
1092 |
apply (erule STL4E)
|
wenzelm@21624
|
1093 |
apply (rule DmdImpl)
|
wenzelm@21624
|
1094 |
apply (clarsimp simp: angle_def [try_rewrite])
|
wenzelm@21624
|
1095 |
apply (rule wf_box_dmd_decrease [temp_use])
|
wenzelm@21624
|
1096 |
apply (auto elim!: STL4E [temp_use] DmdImplE [temp_use])
|
wenzelm@21624
|
1097 |
done
|
wenzelm@21624
|
1098 |
|
wenzelm@21624
|
1099 |
|
wenzelm@21624
|
1100 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
1101 |
(*** Flexible quantification over state variables ***)
|
wenzelm@21624
|
1102 |
(* ------------------------------------------------------------------------- *)
|
wenzelm@21624
|
1103 |
section "Flexible quantification"
|
wenzelm@21624
|
1104 |
|
wenzelm@21624
|
1105 |
lemma aallI:
|
wenzelm@21624
|
1106 |
assumes 1: "basevars vs"
|
wenzelm@21624
|
1107 |
and 2: "(!!x. basevars (x,vs) ==> sigma |= F x)"
|
wenzelm@21624
|
1108 |
shows "sigma |= (AALL x. F x)"
|
wenzelm@21624
|
1109 |
by (auto simp: aall_def elim!: eexE [temp_use] intro!: 1 dest!: 2 [temp_use])
|
wenzelm@21624
|
1110 |
|
wenzelm@21624
|
1111 |
lemma aallE: "|- (AALL x. F x) --> F x"
|
wenzelm@21624
|
1112 |
apply (unfold aall_def)
|
wenzelm@21624
|
1113 |
apply clarsimp
|
wenzelm@21624
|
1114 |
apply (erule contrapos_np)
|
wenzelm@21624
|
1115 |
apply (force intro!: eexI [temp_use])
|
wenzelm@21624
|
1116 |
done
|
wenzelm@21624
|
1117 |
|
wenzelm@21624
|
1118 |
(* monotonicity of quantification *)
|
wenzelm@21624
|
1119 |
lemma eex_mono:
|
wenzelm@21624
|
1120 |
assumes 1: "sigma |= EEX x. F x"
|
wenzelm@21624
|
1121 |
and 2: "!!x. sigma |= F x --> G x"
|
wenzelm@21624
|
1122 |
shows "sigma |= EEX x. G x"
|
wenzelm@21624
|
1123 |
apply (rule unit_base [THEN 1 [THEN eexE]])
|
wenzelm@21624
|
1124 |
apply (rule eexI [temp_use])
|
wenzelm@21624
|
1125 |
apply (erule 2 [unfolded intensional_rews, THEN mp])
|
wenzelm@21624
|
1126 |
done
|
wenzelm@21624
|
1127 |
|
wenzelm@21624
|
1128 |
lemma aall_mono:
|
wenzelm@21624
|
1129 |
assumes 1: "sigma |= AALL x. F(x)"
|
wenzelm@21624
|
1130 |
and 2: "!!x. sigma |= F(x) --> G(x)"
|
wenzelm@21624
|
1131 |
shows "sigma |= AALL x. G(x)"
|
wenzelm@21624
|
1132 |
apply (rule unit_base [THEN aallI])
|
wenzelm@21624
|
1133 |
apply (rule 2 [unfolded intensional_rews, THEN mp])
|
wenzelm@21624
|
1134 |
apply (rule 1 [THEN aallE [temp_use]])
|
wenzelm@21624
|
1135 |
done
|
wenzelm@21624
|
1136 |
|
wenzelm@21624
|
1137 |
(* Derived history introduction rule *)
|
wenzelm@21624
|
1138 |
lemma historyI:
|
wenzelm@21624
|
1139 |
assumes 1: "sigma |= Init I"
|
wenzelm@21624
|
1140 |
and 2: "sigma |= []N"
|
wenzelm@21624
|
1141 |
and 3: "basevars vs"
|
wenzelm@21624
|
1142 |
and 4: "!!h. basevars(h,vs) ==> |- I & h = ha --> HI h"
|
wenzelm@21624
|
1143 |
and 5: "!!h s t. [| basevars(h,vs); N (s,t); h t = hb (h s) (s,t) |] ==> HN h (s,t)"
|
wenzelm@21624
|
1144 |
shows "sigma |= EEX h. Init (HI h) & [](HN h)"
|
wenzelm@21624
|
1145 |
apply (rule history [temp_use, THEN eexE])
|
wenzelm@21624
|
1146 |
apply (rule 3)
|
wenzelm@21624
|
1147 |
apply (rule eexI [temp_use])
|
wenzelm@21624
|
1148 |
apply clarsimp
|
wenzelm@21624
|
1149 |
apply (rule conjI)
|
wenzelm@21624
|
1150 |
prefer 2
|
wenzelm@21624
|
1151 |
apply (insert 2)
|
wenzelm@42787
|
1152 |
apply merge_box
|
wenzelm@21624
|
1153 |
apply (force elim!: STL4E [temp_use] 5 [temp_use])
|
wenzelm@21624
|
1154 |
apply (insert 1)
|
wenzelm@21624
|
1155 |
apply (force simp: Init_defs elim!: 4 [temp_use])
|
wenzelm@21624
|
1156 |
done
|
wenzelm@21624
|
1157 |
|
wenzelm@21624
|
1158 |
(* ----------------------------------------------------------------------
|
wenzelm@21624
|
1159 |
example of a history variable: existence of a clock
|
wenzelm@21624
|
1160 |
*)
|
wenzelm@21624
|
1161 |
|
wenzelm@21624
|
1162 |
lemma "|- EEX h. Init(h = #True) & [](h` = (~$h))"
|
wenzelm@21624
|
1163 |
apply (rule tempI)
|
wenzelm@21624
|
1164 |
apply (rule historyI)
|
wenzelm@21624
|
1165 |
apply (force simp: Init_defs intro!: unit_base [temp_use] necT [temp_use])+
|
wenzelm@21624
|
1166 |
done
|
wenzelm@21624
|
1167 |
|
wenzelm@21624
|
1168 |
end
|