src/HOL/List.thy
author blanchet
Tue, 12 Nov 2013 13:47:24 +0100
changeset 54404 9f0f1152c875
parent 54295 45a5523d4a63
child 54489 03ff4d1e6784
child 54496 178922b63b58
permissions -rw-r--r--
port list comprehension simproc to 'Ctr_Sugar' abstraction
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
     1
(*  Title:      HOL/List.thy
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
     2
    Author:     Tobias Nipkow
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     3
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
     5
header {* The datatype of finite lists *}
13122
wenzelm
parents: 13114
diff changeset
     6
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15113
diff changeset
     7
theory List
53012
cb82606b8215 move Lifting/Transfer relevant parts of Library/Quotient_* to Main
kuncar
parents: 52435
diff changeset
     8
imports Presburger Code_Numeral Quotient ATP Lifting_Set Lifting_Option Lifting_Product
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15113
diff changeset
     9
begin
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    10
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    11
datatype 'a list =
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    12
    Nil    ("[]")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
    13
  | Cons 'a  "'a list"    (infixr "#" 65)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    14
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    15
syntax
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    16
  -- {* list Enumeration *}
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    17
  "_list" :: "args => 'a list"    ("[(_)]")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    18
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    19
translations
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    20
  "[x, xs]" == "x#[xs]"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    21
  "[x]" == "x#[]"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    22
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    23
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    24
subsection {* Basic list processing functions *}
15302
a643fcbc3468 Restructured List and added "rotate"
nipkow
parents: 15281
diff changeset
    25
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    26
primrec hd :: "'a list \<Rightarrow> 'a" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    27
"hd (x # xs) = x"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    28
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    29
primrec tl :: "'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    30
"tl [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    31
"tl (x # xs) = xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    32
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    33
primrec last :: "'a list \<Rightarrow> 'a" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    34
"last (x # xs) = (if xs = [] then x else last xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    35
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    36
primrec butlast :: "'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    37
"butlast []= []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    38
"butlast (x # xs) = (if xs = [] then [] else x # butlast xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    39
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    40
primrec set :: "'a list \<Rightarrow> 'a set" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    41
"set [] = {}" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    42
"set (x # xs) = insert x (set xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    43
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    44
definition coset :: "'a list \<Rightarrow> 'a set" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    45
[simp]: "coset xs = - set xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    46
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    47
primrec map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    48
"map f [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    49
"map f (x # xs) = f x # map f xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    50
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    51
primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    52
append_Nil: "[] @ ys = ys" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    53
append_Cons: "(x#xs) @ ys = x # xs @ ys"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    54
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    55
primrec rev :: "'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    56
"rev [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    57
"rev (x # xs) = rev xs @ [x]"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    58
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    59
primrec filter:: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    60
"filter P [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    61
"filter P (x # xs) = (if P x then x # filter P xs else filter P xs)"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    62
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    63
syntax
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    64
  -- {* Special syntax for filter *}
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    65
  "_filter" :: "[pttrn, 'a list, bool] => 'a list"    ("(1[_<-_./ _])")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    66
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    67
translations
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    68
  "[x<-xs . P]"== "CONST filter (%x. P) xs"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    69
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    70
syntax (xsymbols)
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    71
  "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    72
syntax (HTML output)
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
    73
  "_filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<leftarrow>_ ./ _])")
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    74
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    75
primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    76
fold_Nil:  "fold f [] = id" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    77
fold_Cons: "fold f (x # xs) = fold f xs \<circ> f x"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    78
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    79
primrec foldr :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    80
foldr_Nil:  "foldr f [] = id" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    81
foldr_Cons: "foldr f (x # xs) = f x \<circ> foldr f xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    82
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    83
primrec foldl :: "('b \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a list \<Rightarrow> 'b" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    84
foldl_Nil:  "foldl f a [] = a" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    85
foldl_Cons: "foldl f a (x # xs) = foldl f (f a x) xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    86
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    87
primrec concat:: "'a list list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    88
"concat [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    89
"concat (x # xs) = x @ concat xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    90
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    91
definition (in monoid_add) listsum :: "'a list \<Rightarrow> 'a" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    92
"listsum xs = foldr plus xs 0"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    93
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    94
primrec drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    95
drop_Nil: "drop n [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
    96
drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    97
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    98
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
    99
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   100
primrec take:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   101
take_Nil:"take n [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   102
take_Cons: "take n (x # xs) = (case n of 0 \<Rightarrow> [] | Suc m \<Rightarrow> x # take m xs)"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   103
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   104
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   105
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   106
primrec nth :: "'a list => nat => 'a" (infixl "!" 100) where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   107
nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   108
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   109
       theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   110
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   111
primrec list_update :: "'a list \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   112
"list_update [] i v = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   113
"list_update (x # xs) i v =
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   114
  (case i of 0 \<Rightarrow> v # xs | Suc j \<Rightarrow> x # list_update xs j v)"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   115
41229
d797baa3d57c replaced command 'nonterminals' by slightly modernized version 'nonterminal';
wenzelm
parents: 41075
diff changeset
   116
nonterminal lupdbinds and lupdbind
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
   117
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   118
syntax
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   119
  "_lupdbind":: "['a, 'a] => lupdbind"    ("(2_ :=/ _)")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   120
  "" :: "lupdbind => lupdbinds"    ("_")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   121
  "_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds"    ("_,/ _")
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   122
  "_LUpdate" :: "['a, lupdbinds] => 'a"    ("_/[(_)]" [900,0] 900)
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
   123
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   124
translations
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   125
  "_LUpdate xs (_lupdbinds b bs)" == "_LUpdate (_LUpdate xs b) bs"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   126
  "xs[i:=x]" == "CONST list_update xs i x"
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   127
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   128
primrec takeWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   129
"takeWhile P [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   130
"takeWhile P (x # xs) = (if P x then x # takeWhile P xs else [])"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   131
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   132
primrec dropWhile :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   133
"dropWhile P [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   134
"dropWhile P (x # xs) = (if P x then dropWhile P xs else x # xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   135
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   136
primrec zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   137
"zip xs [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   138
zip_Cons: "zip xs (y # ys) =
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   139
  (case xs of [] => [] | z # zs => (z, y) # zip zs ys)"
34941
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   140
  -- {*Warning: simpset does not contain this definition, but separate
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   141
       theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
156925dd67af dropped some old primrecs and some constdefs
haftmann
parents: 34886
diff changeset
   142
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   143
primrec product :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   144
"product [] _ = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   145
"product (x#xs) ys = map (Pair x) ys @ product xs ys"
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   146
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   147
hide_const (open) product
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   148
53721
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   149
primrec product_lists :: "'a list list \<Rightarrow> 'a list list" where
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   150
"product_lists [] = [[]]" |
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   151
"product_lists (xs # xss) = concat (map (\<lambda>x. map (Cons x) (product_lists xss)) xs)"
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   152
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   153
primrec upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   154
upt_0: "[i..<0] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   155
upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   156
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   157
definition insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   158
"insert x xs = (if x \<in> set xs then xs else x # xs)"
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   159
36176
3fe7e97ccca8 replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents: 36154
diff changeset
   160
hide_const (open) insert
3fe7e97ccca8 replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
wenzelm
parents: 36154
diff changeset
   161
hide_fact (open) insert_def
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   162
47122
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
   163
primrec find :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a option" where
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   164
"find _ [] = None" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   165
"find P (x#xs) = (if P x then Some x else find P xs)"
47122
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
   166
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
   167
hide_const (open) find
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
   168
51096
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   169
primrec those :: "'a option list \<Rightarrow> 'a list option"
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   170
where
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   171
"those [] = Some []" |
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   172
"those (x # xs) = (case x of
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   173
  None \<Rightarrow> None
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   174
| Some y \<Rightarrow> Option.map (Cons y) (those xs))"
60e4b75fefe1 combinator List.those;
haftmann
parents: 50548
diff changeset
   175
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   176
primrec remove1 :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   177
"remove1 x [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   178
"remove1 x (y # xs) = (if x = y then xs else y # remove1 x xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   179
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   180
primrec removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   181
"removeAll x [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   182
"removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   183
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   184
primrec distinct :: "'a list \<Rightarrow> bool" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   185
"distinct [] \<longleftrightarrow> True" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   186
"distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   187
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   188
primrec remdups :: "'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   189
"remdups [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   190
"remdups (x # xs) = (if x \<in> set xs then remdups xs else x # remdups xs)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   191
53721
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   192
fun remdups_adj :: "'a list \<Rightarrow> 'a list" where
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   193
"remdups_adj [] = []" |
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   194
"remdups_adj [x] = [x]" |
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   195
"remdups_adj (x # y # xs) = (if x = y then remdups_adj (x # xs) else x # remdups_adj (y # xs))"
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   196
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   197
primrec replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   198
replicate_0: "replicate 0 x = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   199
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
3342
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3320
diff changeset
   200
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   201
text {*
14589
feae7b5fd425 tuned document;
wenzelm
parents: 14565
diff changeset
   202
  Function @{text size} is overloaded for all datatypes. Users may
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
   203
  refer to the list version as @{text length}. *}
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   204
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   205
abbreviation length :: "'a list \<Rightarrow> nat" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   206
"length \<equiv> size"
15307
10dd989282fd indentation
paulson
parents: 15305
diff changeset
   207
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 51170
diff changeset
   208
definition enumerate :: "nat \<Rightarrow> 'a list \<Rightarrow> (nat \<times> 'a) list" where
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 51170
diff changeset
   209
enumerate_eq_zip: "enumerate n xs = zip [n..<n + length xs] xs"
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 51170
diff changeset
   210
46440
d4994e2e7364 use 'primrec' to define "rotate1", for uniformity (and to help first-order tools that rely on "Spec_Rules")
blanchet
parents: 46439
diff changeset
   211
primrec rotate1 :: "'a list \<Rightarrow> 'a list" where
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   212
"rotate1 [] = []" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   213
"rotate1 (x # xs) = xs @ [x]"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   214
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   215
definition rotate :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   216
"rotate n = rotate1 ^^ n"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   217
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   218
definition list_all2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   219
"list_all2 P xs ys =
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   220
  (length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y))"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   221
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   222
definition sublist :: "'a list => nat set => 'a list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   223
"sublist xs A = map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [0..<size xs]))"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   224
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   225
primrec sublists :: "'a list \<Rightarrow> 'a list list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   226
"sublists [] = [[]]" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   227
"sublists (x#xs) = (let xss = sublists xs in map (Cons x) xss @ xss)"
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   228
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   229
primrec n_lists :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list list" where
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   230
"n_lists 0 xs = [[]]" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   231
"n_lists (Suc n) xs = concat (map (\<lambda>ys. map (\<lambda>y. y # ys) xs) (n_lists n xs))"
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   232
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   233
hide_const (open) n_lists
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   234
40593
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   235
fun splice :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   236
"splice [] ys = ys" |
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   237
"splice xs [] = xs" |
1e57b18d27b1 code eqn for slice was missing; redefined splice with fun
nipkow
parents: 40365
diff changeset
   238
"splice (x#xs) (y#ys) = x # y # splice xs ys"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   239
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   240
text{*
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   241
\begin{figure}[htbp]
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   242
\fbox{
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   243
\begin{tabular}{l}
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   244
@{lemma "[a,b]@[c,d] = [a,b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   245
@{lemma "length [a,b,c] = 3" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   246
@{lemma "set [a,b,c] = {a,b,c}" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   247
@{lemma "map f [a,b,c] = [f a, f b, f c]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   248
@{lemma "rev [a,b,c] = [c,b,a]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   249
@{lemma "hd [a,b,c,d] = a" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   250
@{lemma "tl [a,b,c,d] = [b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   251
@{lemma "last [a,b,c,d] = d" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   252
@{lemma "butlast [a,b,c,d] = [a,b,c]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   253
@{lemma[source] "filter (\<lambda>n::nat. n<2) [0,2,1] = [0,1]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   254
@{lemma "concat [[a,b],[c,d,e],[],[f]] = [a,b,c,d,e,f]" by simp}\\
46133
d9fe85d3d2cd incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
haftmann
parents: 46125
diff changeset
   255
@{lemma "fold f [a,b,c] x = f c (f b (f a x))" by simp}\\
47397
d654c73e4b12 no preference wrt. fold(l/r); prefer fold rather than foldr for iterating over lists in generated code
haftmann
parents: 47131
diff changeset
   256
@{lemma "foldr f [a,b,c] x = f a (f b (f c x))" by simp}\\
d654c73e4b12 no preference wrt. fold(l/r); prefer fold rather than foldr for iterating over lists in generated code
haftmann
parents: 47131
diff changeset
   257
@{lemma "foldl f x [a,b,c] = f (f (f x a) b) c" by simp}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   258
@{lemma "zip [a,b,c] [x,y,z] = [(a,x),(b,y),(c,z)]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   259
@{lemma "zip [a,b] [x,y,z] = [(a,x),(b,y)]" by simp}\\
51173
3cbb4e95a565 Sieve of Eratosthenes
haftmann
parents: 51170
diff changeset
   260
@{lemma "enumerate 3 [a,b,c] = [(3,a),(4,b),(5,c)]" by normalization}\\
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   261
@{lemma "List.product [a,b] [c,d] = [(a, c), (a, d), (b, c), (b, d)]" by simp}\\
53721
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   262
@{lemma "product_lists [[a,b], [c], [d,e]] = [[a,c,d], [a,c,e], [b,c,d], [b,c,e]]" by simp}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   263
@{lemma "splice [a,b,c] [x,y,z] = [a,x,b,y,c,z]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   264
@{lemma "splice [a,b,c,d] [x,y] = [a,x,b,y,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   265
@{lemma "take 2 [a,b,c,d] = [a,b]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   266
@{lemma "take 6 [a,b,c,d] = [a,b,c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   267
@{lemma "drop 2 [a,b,c,d] = [c,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   268
@{lemma "drop 6 [a,b,c,d] = []" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   269
@{lemma "takeWhile (%n::nat. n<3) [1,2,3,0] = [1,2]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   270
@{lemma "dropWhile (%n::nat. n<3) [1,2,3,0] = [3,0]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   271
@{lemma "distinct [2,0,1::nat]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   272
@{lemma "remdups [2,0,2,1::nat,2] = [0,1,2]" by simp}\\
53721
ccaceea6c768 added two functions to List (one contributed by Manuel Eberl)
traytel
parents: 53689
diff changeset
   273
@{lemma "remdups_adj [2,2,3,1,1::nat,2,1] = [2,3,1,2,1]" by simp}\\
34978
874150ddd50a canonical insert operation; generalized lemma foldl_apply_inv to foldl_apply
haftmann
parents: 34942
diff changeset
   274
@{lemma "List.insert 2 [0::nat,1,2] = [0,1,2]" by (simp add: List.insert_def)}\\
35295
397295fa8387 lemma distinct_insert
haftmann
parents: 35248
diff changeset
   275
@{lemma "List.insert 3 [0::nat,1,2] = [3,0,1,2]" by (simp add: List.insert_def)}\\
47122
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
   276
@{lemma "List.find (%i::int. i>0) [0,0] = None" by simp}\\
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
   277
@{lemma "List.find (%i::int. i>0) [0,1,0,2] = Some 1" by simp}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   278
@{lemma "remove1 2 [2,0,2,1::nat,2] = [0,2,1,2]" by simp}\\
27693
73253a4e3ee2 added removeAll
nipkow
parents: 27381
diff changeset
   279
@{lemma "removeAll 2 [2,0,2,1::nat,2] = [0,1]" by simp}\\
27381
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   280
@{lemma "nth [a,b,c,d] 2 = c" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   281
@{lemma "[a,b,c,d][2 := x] = [a,b,x,d]" by simp}\\
19ae7064f00f @{lemma}: 'by' keyword;
wenzelm
parents: 27368
diff changeset
   282
@{lemma "sublist [a,b,c,d,e] {0,2,3} = [a,c,d]" by (simp add:sublist_def)}\\
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   283
@{lemma "sublists [a,b] = [[a, b], [a], [b], []]" by simp}\\
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   284
@{lemma "List.n_lists 2 [a,b,c] = [[a, a], [b, a], [c, a], [a, b], [b, b], [c, b], [a, c], [b, c], [c, c]]" by (simp add: eval_nat_numeral)}\\
46440
d4994e2e7364 use 'primrec' to define "rotate1", for uniformity (and to help first-order tools that rely on "Spec_Rules")
blanchet
parents: 46439
diff changeset
   285
@{lemma "rotate1 [a,b,c,d] = [b,c,d,a]" by simp}\\
d4994e2e7364 use 'primrec' to define "rotate1", for uniformity (and to help first-order tools that rely on "Spec_Rules")
blanchet
parents: 46439
diff changeset
   286
@{lemma "rotate 3 [a,b,c,d] = [d,a,b,c]" by (simp add:rotate_def eval_nat_numeral)}\\
40077
c8a9eaaa2f59 nat_number -> eval_nat_numeral
nipkow
parents: 39963
diff changeset
   287
@{lemma "replicate 4 a = [a,a,a,a]" by (simp add:eval_nat_numeral)}\\
c8a9eaaa2f59 nat_number -> eval_nat_numeral
nipkow
parents: 39963
diff changeset
   288
@{lemma "[2..<5] = [2,3,4]" by (simp add:eval_nat_numeral)}\\
47397
d654c73e4b12 no preference wrt. fold(l/r); prefer fold rather than foldr for iterating over lists in generated code
haftmann
parents: 47131
diff changeset
   289
@{lemma "listsum [1,2,3::nat] = 6" by (simp add: listsum_def)}
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   290
\end{tabular}}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   291
\caption{Characteristic examples}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   292
\label{fig:Characteristic}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   293
\end{figure}
29927
ae8f42c245b2 Added nitpick attribute, and fixed typo.
blanchet
parents: 29856
diff changeset
   294
Figure~\ref{fig:Characteristic} shows characteristic examples
26771
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   295
that should give an intuitive understanding of the above functions.
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   296
*}
1d67ab20f358 Added documentation
nipkow
parents: 26749
diff changeset
   297
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   298
text{* The following simple sort functions are intended for proofs,
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   299
not for efficient implementations. *}
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   300
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   301
context linorder
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   302
begin
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   303
39915
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   304
inductive sorted :: "'a list \<Rightarrow> bool" where
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   305
  Nil [iff]: "sorted []"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   306
| Cons: "\<forall>y\<in>set xs. x \<le> y \<Longrightarrow> sorted xs \<Longrightarrow> sorted (x # xs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   307
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   308
lemma sorted_single [iff]:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   309
  "sorted [x]"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   310
  by (rule sorted.Cons) auto
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   311
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   312
lemma sorted_many:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   313
  "x \<le> y \<Longrightarrow> sorted (y # zs) \<Longrightarrow> sorted (x # y # zs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   314
  by (rule sorted.Cons) (cases "y # zs" rule: sorted.cases, auto)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   315
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   316
lemma sorted_many_eq [simp, code]:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   317
  "sorted (x # y # zs) \<longleftrightarrow> x \<le> y \<and> sorted (y # zs)"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   318
  by (auto intro: sorted_many elim: sorted.cases)
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   319
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   320
lemma [code]:
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   321
  "sorted [] \<longleftrightarrow> True"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   322
  "sorted [x] \<longleftrightarrow> True"
ecf97cf3d248 turned distinct and sorted into inductive predicates: yields nice induction principles for free; more elegant proofs
haftmann
parents: 39774
diff changeset
   323
  by simp_all
24697
b37d3980da3c fixed haftmann bug
nipkow
parents: 24657
diff changeset
   324
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   325
primrec insort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   326
"insort_key f x [] = [x]" |
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   327
"insort_key f x (y#ys) =
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   328
  (if f x \<le> f y then (x#y#ys) else y#(insort_key f x ys))"
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   329
35195
5163c2d00904 more lemmas about sort(_key)
haftmann
parents: 35115
diff changeset
   330
definition sort_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list" where
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   331
"sort_key f xs = foldr (insort_key f) xs []"
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   332
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   333
definition insort_insert_key :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b \<Rightarrow> 'b list \<Rightarrow> 'b list" where
50548
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   334
"insort_insert_key f x xs =
0aec55e63795 unified layout of defs
nipkow
parents: 50422
diff changeset
   335
  (if f x \<in> f ` set xs then xs else insort_key f x xs)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   336
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   337
abbreviation "sort \<equiv> sort_key (\<lambda>x. x)"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
   338
abbreviation "insort \<equiv> insort_key (\<lambda>x. x)"
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
   339
abbreviation "insort_insert \<equiv> insort_insert_key (\<lambda>x. x)"
35608
db4045d1406e added insort_insert
haftmann
parents: 35603
diff changeset
   340
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   341
end
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   342
24616
fac3dd4ade83 sorting
nipkow
parents: 24566
diff changeset
   343
23388
77645da0db85 tuned proofs: avoid implicit prems;
wenzelm
parents: 23279
diff changeset
   344
subsubsection {* List comprehension *}
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   345
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   346
text{* Input syntax for Haskell-like list comprehension notation.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   347
Typical example: @{text"[(x,y). x \<leftarrow> xs, y \<leftarrow> ys, x \<noteq> y]"},
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   348
the list of all pairs of distinct elements from @{text xs} and @{text ys}.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   349
The syntax is as in Haskell, except that @{text"|"} becomes a dot
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   350
(like in Isabelle's set comprehension): @{text"[e. x \<leftarrow> xs, \<dots>]"} rather than
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   351
\verb![e| x <- xs, ...]!.
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   352
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   353
The qualifiers after the dot are
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   354
\begin{description}
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   355
\item[generators] @{text"p \<leftarrow> xs"},
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   356
 where @{text p} is a pattern and @{text xs} an expression of list type, or
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   357
\item[guards] @{text"b"}, where @{text b} is a boolean expression.
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   358
%\item[local bindings] @ {text"let x = e"}.
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   359
\end{description}
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   360
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   361
Just like in Haskell, list comprehension is just a shorthand. To avoid
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   362
misunderstandings, the translation into desugared form is not reversed
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   363
upon output. Note that the translation of @{text"[e. x \<leftarrow> xs]"} is
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   364
optmized to @{term"map (%x. e) xs"}.
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   365
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   366
It is easy to write short list comprehensions which stand for complex
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   367
expressions. During proofs, they may become unreadable (and
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   368
mangled). In such cases it can be advisable to introduce separate
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   369
definitions for the list comprehensions in question.  *}
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   370
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   371
nonterminal lc_qual and lc_quals
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   372
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   373
syntax
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   374
  "_listcompr" :: "'a \<Rightarrow> lc_qual \<Rightarrow> lc_quals \<Rightarrow> 'a list"  ("[_ . __")
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   375
  "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual"  ("_ <- _")
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   376
  "_lc_test" :: "bool \<Rightarrow> lc_qual" ("_")
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   377
  (*"_lc_let" :: "letbinds => lc_qual"  ("let _")*)
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   378
  "_lc_end" :: "lc_quals" ("]")
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   379
  "_lc_quals" :: "lc_qual \<Rightarrow> lc_quals \<Rightarrow> lc_quals"  (", __")
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   380
  "_lc_abs" :: "'a => 'b list => 'b list"
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   381
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   382
(* These are easier than ML code but cannot express the optimized
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   383
   translation of [e. p<-xs]
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   384
translations
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   385
  "[e. p<-xs]" => "concat(map (_lc_abs p [e]) xs)"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   386
  "_listcompr e (_lc_gen p xs) (_lc_quals Q Qs)"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   387
   => "concat (map (_lc_abs p (_listcompr e Q Qs)) xs)"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   388
  "[e. P]" => "if P then [e] else []"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   389
  "_listcompr e (_lc_test P) (_lc_quals Q Qs)"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   390
   => "if P then (_listcompr e Q Qs) else []"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   391
  "_listcompr e (_lc_let b) (_lc_quals Q Qs)"
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   392
   => "_Let b (_listcompr e Q Qs)"
24476
f7ad9fbbeeaa turned list comprehension translations into ML to optimize base case
nipkow
parents: 24471
diff changeset
   393
*)
23240
7077dc80a14b tuned list comprehension
nipkow
parents: 23235
diff changeset
   394
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   395
syntax (xsymbols)
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   396
  "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual"  ("_ \<leftarrow> _")
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   397
syntax (HTML output)
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   398
  "_lc_gen" :: "'a \<Rightarrow> 'a list \<Rightarrow> lc_qual"  ("_ \<leftarrow> _")
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   399
52143
36ffe23b25f8 syntax translations always depend on context;
wenzelm
parents: 52131
diff changeset
   400
parse_translation {*
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   401
  let
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   402
    val NilC = Syntax.const @{const_syntax Nil};
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   403
    val ConsC = Syntax.const @{const_syntax Cons};
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   404
    val mapC = Syntax.const @{const_syntax map};
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   405
    val concatC = Syntax.const @{const_syntax concat};
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   406
    val IfC = Syntax.const @{const_syntax If};
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   407
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   408
    fun single x = ConsC $ x $ NilC;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   409
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   410
    fun pat_tr ctxt p e opti = (* %x. case x of p => e | _ => [] *)
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   411
      let
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   412
        (* FIXME proper name context!? *)
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   413
        val x =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   414
          Free (singleton (Name.variant_list (fold Term.add_free_names [p, e] [])) "x", dummyT);
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   415
        val e = if opti then single e else e;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   416
        val case1 = Syntax.const @{syntax_const "_case1"} $ p $ e;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   417
        val case2 =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   418
          Syntax.const @{syntax_const "_case1"} $
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   419
            Syntax.const @{const_syntax dummy_pattern} $ NilC;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   420
        val cs = Syntax.const @{syntax_const "_case2"} $ case1 $ case2;
51678
1e33b81c328a allow redundant cases in the list comprehension translation
traytel
parents: 51673
diff changeset
   421
      in Syntax_Trans.abs_tr [x, Case_Translation.case_tr false ctxt [x, cs]] end;
46138
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   422
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   423
    fun abs_tr ctxt p e opti =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   424
      (case Term_Position.strip_positions p of
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   425
        Free (s, T) =>
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   426
          let
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   427
            val thy = Proof_Context.theory_of ctxt;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   428
            val s' = Proof_Context.intern_const ctxt s;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   429
          in
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   430
            if Sign.declared_const thy s'
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   431
            then (pat_tr ctxt p e opti, false)
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   432
            else (Syntax_Trans.abs_tr [p, e], true)
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   433
          end
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   434
      | _ => (pat_tr ctxt p e opti, false));
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   435
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   436
    fun lc_tr ctxt [e, Const (@{syntax_const "_lc_test"}, _) $ b, qs] =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   437
          let
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   438
            val res =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   439
              (case qs of
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   440
                Const (@{syntax_const "_lc_end"}, _) => single e
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   441
              | Const (@{syntax_const "_lc_quals"}, _) $ q $ qs => lc_tr ctxt [e, q, qs]);
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   442
          in IfC $ b $ res $ NilC end
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   443
      | lc_tr ctxt
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   444
            [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   445
              Const(@{syntax_const "_lc_end"}, _)] =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   446
          (case abs_tr ctxt p e true of
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   447
            (f, true) => mapC $ f $ es
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   448
          | (f, false) => concatC $ (mapC $ f $ es))
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   449
      | lc_tr ctxt
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   450
            [e, Const (@{syntax_const "_lc_gen"}, _) $ p $ es,
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   451
              Const (@{syntax_const "_lc_quals"}, _) $ q $ qs] =
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   452
          let val e' = lc_tr ctxt [e, q, qs];
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   453
          in concatC $ (mapC $ (fst (abs_tr ctxt p e' false)) $ es) end;
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   454
85f8d8a8c711 improved list comprehension syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents: 46133
diff changeset
   455
  in [(@{syntax_const "_listcompr"}, lc_tr)] end
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   456
*}
23279
e39dd93161d9 tuned list comprehension, changed filter syntax from : to <-
nipkow
parents: 23246
diff changeset
   457
51272
9c8d63b4b6be prefer stateless 'ML_val' for tests;
wenzelm
parents: 51173
diff changeset
   458
ML_val {*
42167
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   459
  let
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   460
    val read = Syntax.read_term @{context};
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   461
    fun check s1 s2 = read s1 aconv read s2 orelse error ("Check failed: " ^ quote s1);
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   462
  in
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   463
    check "[(x,y,z). b]" "if b then [(x, y, z)] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   464
    check "[(x,y,z). x\<leftarrow>xs]" "map (\<lambda>x. (x, y, z)) xs";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   465
    check "[e x y. x\<leftarrow>xs, y\<leftarrow>ys]" "concat (map (\<lambda>x. map (\<lambda>y. e x y) ys) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   466
    check "[(x,y,z). x<a, x>b]" "if x < a then if b < x then [(x, y, z)] else [] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   467
    check "[(x,y,z). x\<leftarrow>xs, x>b]" "concat (map (\<lambda>x. if b < x then [(x, y, z)] else []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   468
    check "[(x,y,z). x<a, x\<leftarrow>xs]" "if x < a then map (\<lambda>x. (x, y, z)) xs else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   469
    check "[(x,y). Cons True x \<leftarrow> xs]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   470
      "concat (map (\<lambda>xa. case xa of [] \<Rightarrow> [] | True # x \<Rightarrow> [(x, y)] | False # x \<Rightarrow> []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   471
    check "[(x,y,z). Cons x [] \<leftarrow> xs]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   472
      "concat (map (\<lambda>xa. case xa of [] \<Rightarrow> [] | [x] \<Rightarrow> [(x, y, z)] | x # aa # lista \<Rightarrow> []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   473
    check "[(x,y,z). x<a, x>b, x=d]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   474
      "if x < a then if b < x then if x = d then [(x, y, z)] else [] else [] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   475
    check "[(x,y,z). x<a, x>b, y\<leftarrow>ys]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   476
      "if x < a then if b < x then map (\<lambda>y. (x, y, z)) ys else [] else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   477
    check "[(x,y,z). x<a, x\<leftarrow>xs,y>b]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   478
      "if x < a then concat (map (\<lambda>x. if b < y then [(x, y, z)] else []) xs) else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   479
    check "[(x,y,z). x<a, x\<leftarrow>xs, y\<leftarrow>ys]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   480
      "if x < a then concat (map (\<lambda>x. map (\<lambda>y. (x, y, z)) ys) xs) else []";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   481
    check "[(x,y,z). x\<leftarrow>xs, x>b, y<a]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   482
      "concat (map (\<lambda>x. if b < x then if y < a then [(x, y, z)] else [] else []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   483
    check "[(x,y,z). x\<leftarrow>xs, x>b, y\<leftarrow>ys]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   484
      "concat (map (\<lambda>x. if b < x then map (\<lambda>y. (x, y, z)) ys else []) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   485
    check "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,y>x]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   486
      "concat (map (\<lambda>x. concat (map (\<lambda>y. if x < y then [(x, y, z)] else []) ys)) xs)";
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   487
    check "[(x,y,z). x\<leftarrow>xs, y\<leftarrow>ys,z\<leftarrow>zs]"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   488
      "concat (map (\<lambda>x. concat (map (\<lambda>y. map (\<lambda>z. (x, y, z)) zs) ys)) xs)"
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   489
  end;
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   490
*}
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   491
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   492
(*
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   493
term "[(x,y). x\<leftarrow>xs, let xx = x+x, y\<leftarrow>ys, y \<noteq> xx]"
23192
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   494
*)
ec73b9707d48 Moved list comprehension into List
nipkow
parents: 23096
diff changeset
   495
42167
7d8cb105373c actually check list comprehension examples;
wenzelm
parents: 42144
diff changeset
   496
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   497
ML {*
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   498
(* Simproc for rewriting list comprehensions applied to List.set to set
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   499
   comprehension. *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   500
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   501
signature LIST_TO_SET_COMPREHENSION =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   502
sig
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   503
  val simproc : Proof.context -> cterm -> thm option
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   504
end
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   505
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   506
structure List_to_Set_Comprehension : LIST_TO_SET_COMPREHENSION =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   507
struct
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   508
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   509
(* conversion *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   510
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   511
fun all_exists_conv cv ctxt ct =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   512
  (case Thm.term_of ct of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   513
    Const (@{const_name HOL.Ex}, _) $ Abs _ =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   514
      Conv.arg_conv (Conv.abs_conv (all_exists_conv cv o #2) ctxt) ct
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   515
  | _ => cv ctxt ct)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   516
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   517
fun all_but_last_exists_conv cv ctxt ct =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   518
  (case Thm.term_of ct of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   519
    Const (@{const_name HOL.Ex}, _) $ Abs (_, _, Const (@{const_name HOL.Ex}, _) $ _) =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   520
      Conv.arg_conv (Conv.abs_conv (all_but_last_exists_conv cv o #2) ctxt) ct
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   521
  | _ => cv ctxt ct)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   522
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   523
fun Collect_conv cv ctxt ct =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   524
  (case Thm.term_of ct of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   525
    Const (@{const_name Set.Collect}, _) $ Abs _ => Conv.arg_conv (Conv.abs_conv cv ctxt) ct
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   526
  | _ => raise CTERM ("Collect_conv", [ct]))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   527
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   528
fun rewr_conv' th = Conv.rewr_conv (mk_meta_eq th)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   529
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   530
fun conjunct_assoc_conv ct =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   531
  Conv.try_conv
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   532
    (rewr_conv' @{thm conj_assoc} then_conv HOLogic.conj_conv Conv.all_conv conjunct_assoc_conv) ct
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   533
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   534
fun right_hand_set_comprehension_conv conv ctxt =
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   535
  HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   536
    (Collect_conv (all_exists_conv conv o #2) ctxt))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   537
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   538
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   539
(* term abstraction of list comprehension patterns *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   540
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   541
datatype termlets = If | Case of (typ * int)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   542
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   543
fun simproc ctxt redex =
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   544
  let
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   545
    val set_Nil_I = @{thm trans} OF [@{thm set.simps(1)}, @{thm empty_def}]
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   546
    val set_singleton = @{lemma "set [a] = {x. x = a}" by simp}
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   547
    val inst_Collect_mem_eq = @{lemma "set A = {x. x : set A}" by simp}
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   548
    val del_refl_eq = @{lemma "(t = t & P) == P" by simp}
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   549
    fun mk_set T = Const (@{const_name List.set}, HOLogic.listT T --> HOLogic.mk_setT T)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   550
    fun dest_set (Const (@{const_name List.set}, _) $ xs) = xs
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   551
    fun dest_singleton_list (Const (@{const_name List.Cons}, _)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   552
          $ t $ (Const (@{const_name List.Nil}, _))) = t
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   553
      | dest_singleton_list t = raise TERM ("dest_singleton_list", [t])
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   554
    (* We check that one case returns a singleton list and all other cases
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   555
       return [], and return the index of the one singleton list case *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   556
    fun possible_index_of_singleton_case cases =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   557
      let
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   558
        fun check (i, case_t) s =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   559
          (case strip_abs_body case_t of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   560
            (Const (@{const_name List.Nil}, _)) => s
53412
01b804df0a30 list_to_set_comprehension: don't crash in case distinctions on datatypes with even number of constructors
traytel
parents: 53374
diff changeset
   561
          | _ => (case s of SOME NONE => SOME (SOME i) | _ => NONE))
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   562
      in
53412
01b804df0a30 list_to_set_comprehension: don't crash in case distinctions on datatypes with even number of constructors
traytel
parents: 53374
diff changeset
   563
        fold_index check cases (SOME NONE) |> the_default NONE
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   564
      end
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   565
    (* returns (case_expr type index chosen_case constr_name) option  *)
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   566
    fun dest_case case_term =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   567
      let
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   568
        val (case_const, args) = strip_comb case_term
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   569
      in
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   570
        (case try dest_Const case_const of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   571
          SOME (c, T) =>
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   572
            (case Ctr_Sugar.ctr_sugar_of_case ctxt c of
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   573
              SOME {ctrs, ...} =>
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   574
                (case possible_index_of_singleton_case (fst (split_last args)) of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   575
                  SOME i =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   576
                    let
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   577
                      val constr_names = map (fst o dest_Const) ctrs
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   578
                      val (Ts, _) = strip_type T
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   579
                      val T' = List.last Ts
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   580
                    in SOME (List.last args, T', i, nth args i, nth constr_names i) end
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   581
                | NONE => NONE)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   582
            | NONE => NONE)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   583
        | NONE => NONE)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   584
      end
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   585
    (* returns condition continuing term option *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   586
    fun dest_if (Const (@{const_name If}, _) $ cond $ then_t $ Const (@{const_name Nil}, _)) =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   587
          SOME (cond, then_t)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   588
      | dest_if _ = NONE
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   589
    fun tac _ [] = rtac set_singleton 1 ORELSE rtac inst_Collect_mem_eq 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   590
      | tac ctxt (If :: cont) =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   591
          Splitter.split_tac [@{thm split_if}] 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   592
          THEN rtac @{thm conjI} 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   593
          THEN rtac @{thm impI} 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   594
          THEN Subgoal.FOCUS (fn {prems, context, ...} =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   595
            CONVERSION (right_hand_set_comprehension_conv (K
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   596
              (HOLogic.conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_TrueI})) Conv.all_conv
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   597
               then_conv
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   598
               rewr_conv' @{lemma "(True & P) = P" by simp})) context) 1) ctxt 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   599
          THEN tac ctxt cont
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   600
          THEN rtac @{thm impI} 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   601
          THEN Subgoal.FOCUS (fn {prems, context, ...} =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   602
              CONVERSION (right_hand_set_comprehension_conv (K
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   603
                (HOLogic.conj_conv (Conv.rewr_conv (List.last prems RS @{thm Eq_FalseI})) Conv.all_conv
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   604
                 then_conv rewr_conv' @{lemma "(False & P) = False" by simp})) context) 1) ctxt 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   605
          THEN rtac set_Nil_I 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   606
      | tac ctxt (Case (T, i) :: cont) =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   607
          let
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   608
            val SOME {injects, distincts, case_thms, split, ...} =
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   609
              Ctr_Sugar.ctr_sugar_of ctxt (fst (dest_Type T))
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   610
          in
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   611
            (* do case distinction *)
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   612
            Splitter.split_tac [split] 1
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   613
            THEN EVERY (map_index (fn (i', _) =>
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   614
              (if i' < length case_thms - 1 then rtac @{thm conjI} 1 else all_tac)
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   615
              THEN REPEAT_DETERM (rtac @{thm allI} 1)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   616
              THEN rtac @{thm impI} 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   617
              THEN (if i' = i then
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   618
                (* continue recursively *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   619
                Subgoal.FOCUS (fn {prems, context, ...} =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   620
                  CONVERSION (Thm.eta_conversion then_conv right_hand_set_comprehension_conv (K
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   621
                      ((HOLogic.conj_conv
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   622
                        (HOLogic.eq_conv Conv.all_conv (rewr_conv' (List.last prems)) then_conv
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   623
                          (Conv.try_conv (Conv.rewrs_conv (map mk_meta_eq injects))))
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   624
                        Conv.all_conv)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   625
                        then_conv (Conv.try_conv (Conv.rewr_conv del_refl_eq))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   626
                        then_conv conjunct_assoc_conv)) context
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   627
                    then_conv (HOLogic.Trueprop_conv (HOLogic.eq_conv Conv.all_conv (Collect_conv (fn (_, ctxt) =>
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   628
                      Conv.repeat_conv
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   629
                        (all_but_last_exists_conv
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   630
                          (K (rewr_conv'
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   631
                            @{lemma "(EX x. x = t & P x) = P t" by simp})) ctxt)) context)))) 1) ctxt 1
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   632
                THEN tac ctxt cont
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   633
              else
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   634
                Subgoal.FOCUS (fn {prems, context, ...} =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   635
                  CONVERSION
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   636
                    (right_hand_set_comprehension_conv (K
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   637
                      (HOLogic.conj_conv
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   638
                        ((HOLogic.eq_conv Conv.all_conv
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   639
                          (rewr_conv' (List.last prems))) then_conv
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   640
                          (Conv.rewrs_conv (map (fn th => th RS @{thm Eq_FalseI}) distincts)))
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   641
                        Conv.all_conv then_conv
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   642
                        (rewr_conv' @{lemma "(False & P) = False" by simp}))) context then_conv
51314
eac4bb5adbf9 just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents: 51272
diff changeset
   643
                      HOLogic.Trueprop_conv
51315
536a5603a138 provide common HOLogic.conj_conv and HOLogic.eq_conv;
wenzelm
parents: 51314
diff changeset
   644
                        (HOLogic.eq_conv Conv.all_conv
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   645
                          (Collect_conv (fn (_, ctxt) =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   646
                            Conv.repeat_conv
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   647
                              (Conv.bottom_conv
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   648
                                (K (rewr_conv'
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   649
                                  @{lemma "(EX x. P) = P" by simp})) ctxt)) context))) 1) ctxt 1
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   650
                THEN rtac set_Nil_I 1)) case_thms)
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   651
          end
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   652
    fun make_inner_eqs bound_vs Tis eqs t =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   653
      (case dest_case t of
54404
9f0f1152c875 port list comprehension simproc to 'Ctr_Sugar' abstraction
blanchet
parents: 54295
diff changeset
   654
        SOME (x, T, i, cont, constr_name) =>
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   655
          let
52131
366fa32ee2a3 tuned signature;
wenzelm
parents: 52122
diff changeset
   656
            val (vs, body) = strip_abs (Envir.eta_long (map snd bound_vs) cont)
50422
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   657
            val x' = incr_boundvars (length vs) x
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   658
            val eqs' = map (incr_boundvars (length vs)) eqs
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   659
            val constr_t =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   660
              list_comb
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   661
                (Const (constr_name, map snd vs ---> T), map Bound (((length vs) - 1) downto 0))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   662
            val constr_eq = Const (@{const_name HOL.eq}, T --> T --> @{typ bool}) $ constr_t $ x'
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   663
          in
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   664
            make_inner_eqs (rev vs @ bound_vs) (Case (T, i) :: Tis) (constr_eq :: eqs') body
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   665
          end
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   666
      | NONE =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   667
          (case dest_if t of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   668
            SOME (condition, cont) => make_inner_eqs bound_vs (If :: Tis) (condition :: eqs) cont
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   669
          | NONE =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   670
            if eqs = [] then NONE (* no rewriting, nothing to be done *)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   671
            else
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   672
              let
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   673
                val Type (@{type_name List.list}, [rT]) = fastype_of1 (map snd bound_vs, t)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   674
                val pat_eq =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   675
                  (case try dest_singleton_list t of
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   676
                    SOME t' =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   677
                      Const (@{const_name HOL.eq}, rT --> rT --> @{typ bool}) $
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   678
                        Bound (length bound_vs) $ t'
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   679
                  | NONE =>
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   680
                      Const (@{const_name Set.member}, rT --> HOLogic.mk_setT rT --> @{typ bool}) $
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   681
                        Bound (length bound_vs) $ (mk_set rT $ t))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   682
                val reverse_bounds = curry subst_bounds
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   683
                  ((map Bound ((length bound_vs - 1) downto 0)) @ [Bound (length bound_vs)])
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   684
                val eqs' = map reverse_bounds eqs
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   685
                val pat_eq' = reverse_bounds pat_eq
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   686
                val inner_t =
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   687
                  fold (fn (_, T) => fn t => HOLogic.exists_const T $ absdummy T t)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   688
                    (rev bound_vs) (fold (curry HOLogic.mk_conj) eqs' pat_eq')
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   689
                val lhs = term_of redex
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   690
                val rhs = HOLogic.mk_Collect ("x", rT, inner_t)
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   691
                val rewrite_rule_t = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   692
              in
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   693
                SOME
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   694
                  ((Goal.prove ctxt [] [] rewrite_rule_t
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   695
                    (fn {context, ...} => tac context (rev Tis))) RS @{thm eq_reflection})
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   696
              end))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   697
  in
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   698
    make_inner_eqs [] [] [] (dest_set (term_of redex))
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   699
  end
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   700
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   701
end
ee729dbd1b7f avoid ML_file in large theory files to improve performance of dependency discovery of main HOL (approx. 1s CPU time) -- relevant for any application using it, e.g. small paper sessions;
wenzelm
parents: 50134
diff changeset
   702
*}
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   703
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   704
simproc_setup list_to_set_comprehension ("set xs") = {* K List_to_Set_Comprehension.simproc *}
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
   705
46133
d9fe85d3d2cd incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
haftmann
parents: 46125
diff changeset
   706
code_datatype set coset
d9fe85d3d2cd incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
haftmann
parents: 46125
diff changeset
   707
d9fe85d3d2cd incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
haftmann
parents: 46125
diff changeset
   708
hide_const (open) coset
35115
446c5063e4fd modernized translations;
wenzelm
parents: 35028
diff changeset
   709
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   710
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   711
subsubsection {* @{const Nil} and @{const Cons} *}
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   712
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   713
lemma not_Cons_self [simp]:
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   714
  "xs \<noteq> x # xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   715
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   716
41697
19890332febc explicit is better than implicit;
wenzelm
parents: 41505
diff changeset
   717
lemma not_Cons_self2 [simp]:
19890332febc explicit is better than implicit;
wenzelm
parents: 41505
diff changeset
   718
  "x # xs \<noteq> xs"
19890332febc explicit is better than implicit;
wenzelm
parents: 41505
diff changeset
   719
by (rule not_Cons_self [symmetric])
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   720
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   721
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   722
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   723
53689
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   724
lemma tl_Nil: "tl xs = [] \<longleftrightarrow> xs = [] \<or> (EX x. xs = [x])"
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   725
by (cases xs) auto
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   726
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   727
lemma Nil_tl: "[] = tl xs \<longleftrightarrow> xs = [] \<or> (EX x. xs = [x])"
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   728
by (cases xs) auto
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   729
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   730
lemma length_induct:
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   731
  "(\<And>xs. \<forall>ys. length ys < length xs \<longrightarrow> P ys \<Longrightarrow> P xs) \<Longrightarrow> P xs"
53689
705f0b728b1b added and tuned lemmas
nipkow
parents: 53412
diff changeset
   732
by (fact measure_induct)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   733
37289
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   734
lemma list_nonempty_induct [consumes 1, case_names single cons]:
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   735
  assumes "xs \<noteq> []"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   736
  assumes single: "\<And>x. P [x]"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   737
  assumes cons: "\<And>x xs. xs \<noteq> [] \<Longrightarrow> P xs \<Longrightarrow> P (x # xs)"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   738
  shows "P xs"
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   739
using `xs \<noteq> []` proof (induct xs)
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   740
  case Nil then show ?case by simp
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   741
next
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   742
  case (Cons x xs)
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   743
  show ?case
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   744
  proof (cases xs)
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   745
    case Nil
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   746
    with single show ?thesis by simp
37289
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   747
  next
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   748
    case Cons
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   749
    show ?thesis
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   750
    proof (rule cons)
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   751
      from Cons show "xs \<noteq> []" by simp
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   752
      with Cons.hyps show "P xs" .
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
   753
    qed
37289
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   754
  qed
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   755
qed
881fa5012451 induction over non-empty lists
haftmann
parents: 37123
diff changeset
   756
45714
ad4242285560 cardinality of sets of lists
hoelzl
parents: 45607
diff changeset
   757
lemma inj_split_Cons: "inj_on (\<lambda>(xs, n). n#xs) X"
ad4242285560 cardinality of sets of lists
hoelzl
parents: 45607
diff changeset
   758
  by (auto intro!: inj_onI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   759
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
   760
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   761
subsubsection {* @{const length} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   762
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   763
text {*
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   764
  Needs to come before @{text "@"} because of theorem @{text
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
   765
  append_eq_append_conv}.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   766
*}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   767
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   768
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   769
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   770
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   771
lemma length_map [simp]: "length (map f xs) = length xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   772
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   773
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   774
lemma length_rev [simp]: "length (rev xs) = length xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   775
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   776
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   777
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   778
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   779
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   780
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   781
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   782
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   783
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   784
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   785
23479
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   786
lemma length_pos_if_in_set: "x : set xs \<Longrightarrow> length xs > 0"
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   787
by auto
10adbdcdc65b new lemmas
nipkow
parents: 23388
diff changeset
   788
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   789
lemma length_Suc_conv:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   790
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   791
by (induct xs) auto
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   792
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   793
lemma Suc_length_conv:
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   794
"(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   795
apply (induct xs, simp, simp)
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   796
apply blast
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   797
done
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
   798
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   799
lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False"
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   800
  by (induct xs) auto
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
   801
26442
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   802
lemma list_induct2 [consumes 1, case_names Nil Cons]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   803
  "length xs = length ys \<Longrightarrow> P [] [] \<Longrightarrow>
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   804
   (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys))
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   805
   \<Longrightarrow> P xs ys"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   806
proof (induct xs arbitrary: ys)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   807
  case Nil then show ?case by simp
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   808
next
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   809
  case (Cons x xs ys) then show ?case by (cases ys) simp_all
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   810
qed
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   811
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   812
lemma list_induct3 [consumes 2, case_names Nil Cons]:
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   813
  "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow>
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   814
   (\<And>x xs y ys z zs. length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P xs ys zs \<Longrightarrow> P (x#xs) (y#ys) (z#zs))
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   815
   \<Longrightarrow> P xs ys zs"
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   816
proof (induct xs arbitrary: ys zs)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   817
  case Nil then show ?case by simp
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   818
next
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   819
  case (Cons x xs ys zs) then show ?case by (cases ys, simp_all)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   820
    (cases zs, simp_all)
57fb6a8b099e restructuring; explicit case names for rule list_induct2
haftmann
parents: 26300
diff changeset
   821
qed
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   822
36154
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   823
lemma list_induct4 [consumes 3, case_names Nil Cons]:
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   824
  "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow>
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   825
   P [] [] [] [] \<Longrightarrow> (\<And>x xs y ys z zs w ws. length xs = length ys \<Longrightarrow>
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   826
   length ys = length zs \<Longrightarrow> length zs = length ws \<Longrightarrow> P xs ys zs ws \<Longrightarrow>
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   827
   P (x#xs) (y#ys) (z#zs) (w#ws)) \<Longrightarrow> P xs ys zs ws"
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   828
proof (induct xs arbitrary: ys zs ws)
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   829
  case Nil then show ?case by simp
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   830
next
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   831
  case (Cons x xs ys zs ws) then show ?case by ((cases ys, simp_all), (cases zs,simp_all)) (cases ws, simp_all)
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   832
qed
11c6106d7787 Respectfullness and preservation of list_rel
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents: 35828
diff changeset
   833
22493
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   834
lemma list_induct2': 
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   835
  "\<lbrakk> P [] [];
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   836
  \<And>x xs. P (x#xs) [];
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   837
  \<And>y ys. P [] (y#ys);
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   838
   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   839
 \<Longrightarrow> P xs ys"
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   840
by (induct xs arbitrary: ys) (case_tac x, auto)+
db930e490fe5 added another rule for simultaneous induction, and lemmas for zip
krauss
parents: 22422
diff changeset
   841
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   842
lemma neq_if_length_neq: "length xs \<noteq> length ys \<Longrightarrow> (xs = ys) == False"
24349
0dd8782fb02d Final mods for list comprehension
nipkow
parents: 24335
diff changeset
   843
by (rule Eq_FalseI) auto
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   844
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   845
simproc_setup list_neq ("(xs::'a list) = ys") = {*
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   846
(*
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   847
Reduces xs=ys to False if xs and ys cannot be of the same length.
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   848
This is the case if the atomic sublists of one are a submultiset
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   849
of those of the other list and there are fewer Cons's in one than the other.
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   850
*)
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   851
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   852
let
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   853
29856
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   854
fun len (Const(@{const_name Nil},_)) acc = acc
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   855
  | len (Const(@{const_name Cons},_) $ _ $ xs) (ts,n) = len xs (ts,n+1)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   856
  | len (Const(@{const_name append},_) $ xs $ ys) acc = len xs (len ys acc)
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   857
  | len (Const(@{const_name rev},_) $ xs) acc = len xs acc
984191be0357 const_name antiquotations
huffman
parents: 29829
diff changeset
   858
  | len (Const(@{const_name map},_) $ _ $ xs) acc = len xs acc
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   859
  | len t (ts,n) = (t::ts,n);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   860
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   861
val ss = simpset_of @{context};
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   862
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   863
fun list_neq ctxt ct =
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   864
  let
24037
0a41d2ebc0cd proper simproc_setup for "list_neq";
wenzelm
parents: 23983
diff changeset
   865
    val (Const(_,eqT) $ lhs $ rhs) = Thm.term_of ct;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   866
    val (ls,m) = len lhs ([],0) and (rs,n) = len rhs ([],0);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   867
    fun prove_neq() =
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   868
      let
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   869
        val Type(_,listT::_) = eqT;
22994
02440636214f abstract size function in hologic.ML
haftmann
parents: 22940
diff changeset
   870
        val size = HOLogic.size_const listT;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   871
        val eq_len = HOLogic.mk_eq (size $ lhs, size $ rhs);
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   872
        val neq_len = HOLogic.mk_Trueprop (HOLogic.Not $ eq_len);
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   873
        val thm = Goal.prove ctxt [] [] neq_len
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   874
          (K (simp_tac (put_simpset ss ctxt) 1));
22633
haftmann
parents: 22551
diff changeset
   875
      in SOME (thm RS @{thm neq_if_length_neq}) end
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   876
  in
23214
dc23c062b58c renamed gen_submultiset to submultiset;
wenzelm
parents: 23212
diff changeset
   877
    if m < n andalso submultiset (op aconv) (ls,rs) orelse
dc23c062b58c renamed gen_submultiset to submultiset;
wenzelm
parents: 23212
diff changeset
   878
       n < m andalso submultiset (op aconv) (rs,ls)
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   879
    then prove_neq() else NONE
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   880
  end;
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   881
in K list_neq end;
22143
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   882
*}
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   883
cf58486ca11b Added simproc list_neq (prompted by an application)
nipkow
parents: 21911
diff changeset
   884
15392
290bc97038c7 First step in reorganizing Finite_Set
nipkow
parents: 15307
diff changeset
   885
subsubsection {* @{text "@"} -- append *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   886
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   887
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   888
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   889
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   890
lemma append_Nil2 [simp]: "xs @ [] = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   891
by (induct xs) auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   892
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   893
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   894
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   895
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   896
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   897
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   898
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   899
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   900
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   901
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   902
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   903
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   904
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53954
diff changeset
   905
lemma append_eq_append_conv [simp]:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   906
 "length xs = length ys \<or> length us = length vs
13883
0451e0fb3f22 Re-structured some proofs in order to get rid of rule_format attribute.
berghofe
parents: 13863
diff changeset
   907
 ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   908
apply (induct xs arbitrary: ys)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   909
 apply (case_tac ys, simp, force)
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
   910
apply (case_tac ys, force, simp)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   911
done
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   912
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   913
lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) =
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   914
  (EX us. xs = zs @ us & us @ ys = ts | xs @ us = zs & ys = us@ ts)"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
   915
apply (induct xs arbitrary: ys zs ts)
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44635
diff changeset
   916
 apply fastforce
14495
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   917
apply(case_tac zs)
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   918
 apply simp
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44635
diff changeset
   919
apply fastforce
14495
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   920
done
e2a1c31cf6d3 Added append_eq_append_conv2
nipkow
parents: 14402
diff changeset
   921
34910
b23bd3ee4813 same_append_eq / append_same_eq are now used for simplifying induction rules.
berghofe
parents: 34064
diff changeset
   922
lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   923
by simp
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   924
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   925
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   926
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   927
34910
b23bd3ee4813 same_append_eq / append_same_eq are now used for simplifying induction rules.
berghofe
parents: 34064
diff changeset
   928
lemma append_same_eq [iff, induct_simp]: "(ys @ xs = zs @ xs) = (ys = zs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   929
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   930
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   931
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   932
using append_same_eq [of _ _ "[]"] by auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   933
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   934
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   935
using append_same_eq [of "[]"] by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   936
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53954
diff changeset
   937
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   938
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   939
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   940
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   941
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   942
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   943
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   944
by (simp add: hd_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   945
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   946
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   947
by (simp split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   948
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   949
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   950
by (simp add: tl_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   951
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   952
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   953
lemma Cons_eq_append_conv: "x#xs = ys@zs =
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   954
 (ys = [] & x#xs = zs | (EX ys'. x#ys' = ys & xs = ys'@zs))"
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   955
by(cases ys) auto
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   956
15281
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   957
lemma append_eq_Cons_conv: "(ys@zs = x#xs) =
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   958
 (ys = [] & zs = x#xs | (EX ys'. ys = x#ys' & ys'@zs = xs))"
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   959
by(cases ys) auto
bd4611956c7b More lemmas
nipkow
parents: 15251
diff changeset
   960
14300
bf8b8c9425c3 *** empty log message ***
nipkow
parents: 14247
diff changeset
   961
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   962
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   963
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   964
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   965
by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   966
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   967
lemma Cons_eq_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   968
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   969
by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   970
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   971
lemma append_eq_appendI:
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   972
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   973
by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   974
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   975
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   976
text {*
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   977
Simplification procedure for all list equalities.
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   978
Currently only tries to rearrange @{text "@"} to see if
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   979
- both lists end in a singleton list,
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
   980
- or both lists end in the same list.
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   981
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   982
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   983
simproc_setup list_eq ("(xs::'a list) = ys")  = {*
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
   984
  let
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   985
    fun last (cons as Const (@{const_name Cons}, _) $ _ $ xs) =
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   986
          (case xs of Const (@{const_name Nil}, _) => cons | _ => last xs)
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   987
      | last (Const(@{const_name append},_) $ _ $ ys) = last ys
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   988
      | last t = t;
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   989
    
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   990
    fun list1 (Const(@{const_name Cons},_) $ _ $ Const(@{const_name Nil},_)) = true
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   991
      | list1 _ = false;
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   992
    
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   993
    fun butlast ((cons as Const(@{const_name Cons},_) $ x) $ xs) =
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   994
          (case xs of Const (@{const_name Nil}, _) => xs | _ => cons $ butlast xs)
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   995
      | butlast ((app as Const (@{const_name append}, _) $ xs) $ ys) = app $ butlast ys
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   996
      | butlast xs = Const(@{const_name Nil}, fastype_of xs);
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   997
    
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
   998
    val rearr_ss =
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
   999
      simpset_of (put_simpset HOL_basic_ss @{context}
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
  1000
        addsimps [@{thm append_assoc}, @{thm append_Nil}, @{thm append_Cons}]);
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1001
    
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
  1002
    fun list_eq ctxt (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
13462
56610e2ba220 sane interface for simprocs;
wenzelm
parents: 13366
diff changeset
  1003
      let
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1004
        val lastl = last lhs and lastr = last rhs;
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1005
        fun rearr conv =
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1006
          let
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1007
            val lhs1 = butlast lhs and rhs1 = butlast rhs;
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1008
            val Type(_,listT::_) = eqT
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1009
            val appT = [listT,listT] ---> listT
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1010
            val app = Const(@{const_name append},appT)
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1011
            val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1012
            val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (F,F2));
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
  1013
            val thm = Goal.prove ctxt [] [] eq
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
  1014
              (K (simp_tac (put_simpset rearr_ss ctxt) 1));
43594
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1015
          in SOME ((conv RS (thm RS trans)) RS eq_reflection) end;
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1016
      in
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1017
        if list1 lastl andalso list1 lastr then rearr @{thm append1_eq_conv}
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1018
        else if lastl aconv lastr then rearr @{thm append_same_eq}
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1019
        else NONE
ef1ddc59b825 modernized some simproc setup;
wenzelm
parents: 43580
diff changeset
  1020
      end;
51717
9e7d1c139569 simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents: 51678
diff changeset
  1021
  in fn _ => fn ctxt => fn ct => list_eq ctxt (term_of ct) end;
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1022
*}
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1023
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1024
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
  1025
subsubsection {* @{const map} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1026
40210
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1027
lemma hd_map:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1028
  "xs \<noteq> [] \<Longrightarrow> hd (map f xs) = f (hd xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1029
  by (cases xs) simp_all
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1030
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1031
lemma map_tl:
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1032
  "map f (tl xs) = tl (map f xs)"
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1033
  by (cases xs) simp_all
aee7ef725330 sorting: avoid _key suffix if lemma applies both to simple and generalized variant; generalized insort_insert to insort_insert_key; additional lemmas
haftmann
parents: 40195
diff changeset
  1034
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1035
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1036
by (induct xs) simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1037
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1038
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1039
by (rule ext, induct_tac xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1040
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1041
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1042
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1043
33639
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1044
lemma map_map [simp]: "map f (map g xs) = map (f \<circ> g) xs"
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1045
by (induct xs) auto
603320b93668 New list theorems; added map_map to simpset, this is the prefered direction; allow sorting by a key
hoelzl
parents: 33593
diff changeset
  1046
35208
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
  1047
lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)"
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
  1048
apply(rule ext)
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
  1049
apply(simp)
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
  1050
done
2b9bce05e84b added lemma
nipkow
parents: 35195
diff changeset
  1051
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1052
lemma rev_map: "rev (map f xs) = map f (rev xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1053
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1054
13737
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
  1055
lemma map_eq_conv[simp]: "(map f xs = map g xs) = (!x : set xs. f x = g x)"
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
  1056
by (induct xs) auto
e564c3d2d174 added a few lemmas
nipkow
parents: 13601
diff changeset
  1057
44013
5cfc1c36ae97 moved recdef package to HOL/Library/Old_Recdef.thy
krauss
parents: 43594
diff changeset
  1058
lemma map_cong [fundef_cong]:
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1059
  "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> f x = g x) \<Longrightarrow> map f xs = map g ys"
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1060
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1061
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1062
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1063
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1064
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1065
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1066
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1067
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1068
lemma map_eq_Cons_conv:
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
  1069
 "(map f xs = y#ys) = (\<exists>z zs. xs = z#zs \<and> f z = y \<and> map f zs = ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1070
by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1071
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1072
lemma Cons_eq_map_conv:
14025
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
  1073
 "(x#xs = map f ys) = (\<exists>z zs. ys = z#zs \<and> x = f z \<and> xs = map f zs)"
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
  1074
by (cases ys) auto
d9b155757dc8 *** empty log message ***
nipkow
parents: 13913
diff changeset
  1075
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1076
lemmas map_eq_Cons_D = map_eq_Cons_conv [THEN iffD1]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1077
lemmas Cons_eq_map_D = Cons_eq_map_conv [THEN iffD1]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1078
declare map_eq_Cons_D [dest!]  Cons_eq_map_D [dest!]
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1079
14111
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
  1080
lemma ex_map_conv:
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
  1081
  "(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
18447
da548623916a removed or modified some instances of [iff]
paulson
parents: 18423
diff changeset
  1082
by(induct ys, auto simp add: Cons_eq_map_conv)
14111
993471c762b8 Some new thm (ex_map_conv?)
nipkow
parents: 14099
diff changeset
  1083
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1084
lemma map_eq_imp_length_eq:
35510
64d2d54cbf03 Slightly generalised a theorem
paulson
parents: 35296
diff changeset
  1085
  assumes "map f xs = map g ys"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1086
  shows "length xs = length ys"
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
  1087
  using assms
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
  1088
proof (induct ys arbitrary: xs)
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1089
  case Nil then show ?case by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1090
next
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1091
  case (Cons y ys) then obtain z zs where xs: "xs = z # zs" by auto
35510
64d2d54cbf03 Slightly generalised a theorem
paulson
parents: 35296
diff changeset
  1092
  from Cons xs have "map f zs = map g ys" by simp
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 53017
diff changeset
  1093
  with Cons have "length zs = length ys" by blast
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1094
  with xs show ?case by simp
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1095
qed
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1096
  
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1097
lemma map_inj_on:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1098
 "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1099
  ==> xs = ys"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1100
apply(frule map_eq_imp_length_eq)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1101
apply(rotate_tac -1)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1102
apply(induct rule:list_induct2)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1103
 apply simp
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1104
apply(simp)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1105
apply (blast intro:sym)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1106
done
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1107
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1108
lemma inj_on_map_eq_map:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1109
 "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1110
by(blast dest:map_inj_on)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1111
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1112
lemma map_injective:
24526
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1113
 "map f xs = map f ys ==> inj f ==> xs = ys"
7fa202789bf6 tuned lemma; replaced !! by arbitrary
nipkow
parents: 24476
diff changeset
  1114
by (induct ys arbitrary: xs) (auto dest!:injD)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1115
14339
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
  1116
lemma inj_map_eq_map[simp]: "inj f \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
  1117
by(blast dest:map_injective)
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
  1118
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1119
lemma inj_mapI: "inj f ==> inj (map f)"
17589
58eeffd73be1 renamed rules to iprover
nipkow
parents: 17501
diff changeset
  1120
by (iprover dest: map_injective injD intro: inj_onI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1121
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1122
lemma inj_mapD: "inj (map f) ==> inj f"
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1123
apply (unfold inj_on_def, clarify)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1124
apply (erule_tac x = "[x]" in ballE)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1125
 apply (erule_tac x = "[y]" in ballE, simp, blast)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1126
apply blast
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1127
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1128
14339
ec575b7bde7a *** empty log message ***
nipkow
parents: 14338
diff changeset
  1129
lemma inj_map[iff]: "inj (map f) = inj f"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1130
by (blast dest: inj_mapD intro: inj_mapI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1131
15303
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
  1132
lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
  1133
apply(rule inj_onI)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
  1134
apply(erule map_inj_on)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
  1135
apply(blast intro:inj_onI dest:inj_onD)
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
  1136
done
eedbb8d22ca2 added lemmas
nipkow
parents: 15302
diff changeset
  1137
14343
6bc647f472b9 map_idI
kleing
parents: 14339
diff changeset
  1138
lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
6bc647f472b9 map_idI
kleing
parents: 14339
diff changeset
  1139
by (induct xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1140
14402
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1141
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1142
by (induct xs) auto
4201e1916482 moved lemmas from MicroJava/Comp/AuxLemmas.thy to List.thy
nipkow
parents: 14395
diff changeset
  1143
15110
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1144
lemma map_fst_zip[simp]:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1145
  "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1146
by (induct rule:list_induct2, simp_all)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1147
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1148
lemma map_snd_zip[simp]:
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1149
  "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1150
by (induct rule:list_induct2, simp_all)
78b5636eabc7 Added a number of new thms and the new function remove1
nipkow
parents: 15072
diff changeset
  1151
41505
6d19301074cf "enriched_type" replaces less specific "type_lifting"
haftmann
parents: 41463
diff changeset
  1152
enriched_type map: map
47122
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
  1153
by (simp_all add: id_def)
790fb5eb5969 Functions and lemmas by Christian Sternagel
nipkow
parents: 47108
diff changeset
  1154
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
  1155
declare map.id [simp]
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
  1156
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
  1157
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
  1158
subsubsection {* @{const rev} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1159
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1160
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1161
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1162
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1163
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1164
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1165
15870
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1166
lemma rev_swap: "(rev xs = ys) = (xs = rev ys)"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1167
by auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1168
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1169
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1170
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1171
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1172
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1173
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1174
15870
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1175
lemma rev_singleton_conv [simp]: "(rev xs = [x]) = (xs = [x])"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1176
by (cases xs) auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1177
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1178
lemma singleton_rev_conv [simp]: "([x] = rev xs) = (xs = [x])"
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1179
by (cases xs) auto
4320bce5873f more on rev
kleing
parents: 15868
diff changeset
  1180
54147
97a8ff4e4ac9 killed most "no_atp", to make Sledgehammer more complete
blanchet
parents: 53954
diff changeset
  1181
lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
21061
580dfc999ef6 added normal post setup; cleaned up "execution" constants
haftmann
parents: 21046
diff changeset
  1182
apply (induct xs arbitrary: ys, force)
14208
144f45277d5a misc tidying
paulson
parents: 14187
diff changeset
  1183
apply (case_tac ys, simp, force)
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1184
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1185
15439
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  1186
lemma inj_on_rev[iff]: "inj_on rev A"
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  1187
by(simp add:inj_on_def)
71c0f98e31f1 made diff_less a simp rule
nipkow
parents: 15426
diff changeset
  1188
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
  1189
lemma rev_induct [case_names Nil snoc]:
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
  1190
  "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
15489
d136af442665 Replaced application of subst by simplesubst in proof of rev_induct
berghofe
parents: 15439
diff changeset
  1191
apply(simplesubst rev_rev_ident[symmetric])
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1192
apply(rule_tac list = "rev xs" in list.induct, simp_all)
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1193
done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1194
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
  1195
lemma rev_exhaust [case_names Nil snoc]:
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
  1196
  "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1197
by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1198
13366
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
  1199
lemmas rev_cases = rev_exhaust
114b7c14084a moved stuff from Main.thy;
wenzelm
parents: 13187
diff changeset
  1200
18423
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1201
lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])"
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1202
by(rule rev_cases[of xs]) auto
d7859164447f new lemmas
nipkow
parents: 18336
diff changeset
  1203
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1204
49948
744934b818c7 moved quite generic material from theory Enum to more appropriate places
haftmann
parents: 49808
diff changeset
  1205
subsubsection {* @{const set} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1206
46698
f1dfcf8be88d converting "set [...]" to "{...}" in evaluation results
nipkow
parents: 46669
diff changeset
  1207
declare set.simps [code_post]  --"pretty output"
f1dfcf8be88d converting "set [...]" to "{...}" in evaluation results
nipkow
parents: 46669
diff changeset
  1208
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1209
lemma finite_set [iff]: "finite (set xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1210
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1211
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1212
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1213
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1214
17830
695a2365d32f added hd lemma
nipkow
parents: 17765
diff changeset
  1215
lemma hd_in_set[simp]: "xs \<noteq> [] \<Longrightarrow> hd xs : set xs"
695a2365d32f added hd lemma
nipkow
parents: 17765
diff changeset
  1216
by(cases xs) auto
14099
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
  1217
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1218
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1219
by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1220
14099
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
  1221
lemma set_ConsD: "y \<in> set (x # xs) \<Longrightarrow> y=x \<or> y \<in> set xs" 
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
  1222
by auto
55d244f3c86d added fold_red, o2l, postfix, some thms
oheimb
parents: 14050
diff changeset
  1223
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1224
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1225
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1226
15245
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  1227
lemma set_empty2[iff]: "({} = set xs) = (xs = [])"
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  1228
by(induct xs) auto
5a21d9a8f14b Added a few lemmas
nipkow
parents: 15236
diff changeset
  1229
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1230
lemma set_rev [simp]: "set (rev xs) = set xs"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1231
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1232
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1233
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1234
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1235
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1236
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
13145
59bc43b51aa2 *** empty log message ***
nipkow
parents: 13142
diff changeset
  1237
by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1238
32417
e87d9c78910c tuned code generation for lists
nipkow
parents: 32415
diff changeset
  1239
lemma set_upt [simp]: "set[i..<j] = {i..<j}"
41463
edbf0a86fb1c adding simproc to rewrite list comprehensions to set comprehensions; adopting proofs
bulwahn
parents: 41372
diff changeset
  1240
by (induct j) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1241
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1242
25221
5ded95dda5df append/member: more light-weight way to declare authentic syntax;
wenzelm
parents: 25215
diff changeset
  1243
lemma split_list: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs"
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1244
proof (induct xs)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1245
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1246
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1247
  case Cons thus ?case by (auto intro: Cons_eq_appendI)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1248
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1249
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1250
lemma in_set_conv_decomp: "x \<in> set xs \<longleftrightarrow> (\<exists>ys zs. xs = ys @ x # zs)"
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1251
  by (auto elim: split_list)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1252
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1253
lemma split_list_first: "x : set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys"
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1254
proof (induct xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1255
  case Nil thus ?case by simp
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1256
next
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1257
  case (Cons a xs)
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1258
  show ?case
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1259
  proof cases
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44635
diff changeset
  1260
    assume "x = a" thus ?case using Cons by fastforce
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1261
  next
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44635
diff changeset
  1262
    assume "x \<noteq> a" thus ?case using Cons by(fastforce intro!: Cons_eq_appendI)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1263
  qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1264
qed
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1265
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1266
lemma in_set_conv_decomp_first:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1267
  "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set ys)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1268
  by (auto dest!: split_list_first)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1269
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1270
lemma split_list_last: "x \<in> set xs \<Longrightarrow> \<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs"
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1271
proof (induct xs rule: rev_induct)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1272
  case Nil thus ?case by simp
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1273
next
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1274
  case (snoc a xs)
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1275
  show ?case
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1276
  proof cases
40122
1d8ad2ff3e01 dropped (almost) redundant distinct.induct rule; distinct_simps again named distinct.simps
haftmann
parents: 40077
diff changeset
  1277
    assume "x = a" thus ?case using snoc by (metis List.set.simps(1) emptyE)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1278
  next
44890
22f665a2e91c new fastforce replacing fastsimp - less confusing name
nipkow
parents: 44635
diff changeset
  1279
    assume "x \<noteq> a" thus ?case using snoc by fastforce
18049
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1280
  qed
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1281
qed
156bba334c12 A few new lemmas
nipkow
parents: 17956
diff changeset
  1282
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1283
lemma in_set_conv_decomp_last:
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1284
  "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs \<and> x \<notin> set zs)"
26734
a92057c1ee21 dropped some metis calls
haftmann
parents: 26584
diff changeset
  1285
  by (auto dest!: split_list_last)
26073
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changeset
  1286
0e70d3bd2eb4 more lemmas
nipkow
parents: 25966
diff changese