src/Pure/proofterm.ML
author wenzelm
Thu Apr 27 15:06:35 2006 +0200 (2006-04-27)
changeset 19482 9f11af8f7ef9
parent 19357 dade85a75c9f
child 19502 369cde91963d
permissions -rw-r--r--
tuned basic list operators (flat, maps, map_filter);
berghofe@11519
     1
(*  Title:      Pure/proofterm.ML
berghofe@11519
     2
    ID:         $Id$
wenzelm@11540
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@11519
     4
wenzelm@11540
     5
LF style proof terms.
berghofe@11519
     6
*)
berghofe@11519
     7
berghofe@11615
     8
infix 8 % %% %>;
berghofe@11519
     9
berghofe@11519
    10
signature BASIC_PROOFTERM =
berghofe@11519
    11
sig
wenzelm@11543
    12
  val proofs: int ref
berghofe@11519
    13
berghofe@11519
    14
  datatype proof =
berghofe@11519
    15
     PBound of int
berghofe@11519
    16
   | Abst of string * typ option * proof
berghofe@11519
    17
   | AbsP of string * term option * proof
wenzelm@17756
    18
   | % of proof * term option
wenzelm@17756
    19
   | %% of proof * proof
berghofe@11519
    20
   | Hyp of term
berghofe@11519
    21
   | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
    22
   | PAxm of string * term * typ list option
berghofe@11519
    23
   | Oracle of string * term * typ list option
berghofe@17017
    24
   | MinProof of ((string * term) * proof) list * (string * term) list * (string * term) list;
berghofe@11519
    25
berghofe@11615
    26
  val %> : proof * term -> proof
berghofe@11519
    27
end;
berghofe@11519
    28
berghofe@11519
    29
signature PROOFTERM =
berghofe@11519
    30
sig
berghofe@11519
    31
  include BASIC_PROOFTERM
berghofe@11519
    32
berghofe@11519
    33
  val infer_derivs : (proof -> proof -> proof) -> bool * proof -> bool * proof -> bool * proof
berghofe@11519
    34
  val infer_derivs' : (proof -> proof) -> (bool * proof -> bool * proof)
berghofe@11519
    35
berghofe@11519
    36
  (** primitive operations **)
berghofe@11519
    37
  val proof_combt : proof * term list -> proof
berghofe@11519
    38
  val proof_combt' : proof * term option list -> proof
berghofe@11519
    39
  val proof_combP : proof * proof list -> proof
berghofe@11519
    40
  val strip_combt : proof -> proof * term option list
berghofe@11519
    41
  val strip_combP : proof -> proof * proof list
berghofe@11519
    42
  val strip_thm : proof -> proof
berghofe@11519
    43
  val map_proof_terms : (term -> term) -> (typ -> typ) -> proof -> proof
berghofe@11519
    44
  val fold_proof_terms : (term * 'a -> 'a) -> (typ * 'a -> 'a) -> 'a * proof -> 'a
berghofe@11519
    45
  val add_prf_names : string list * proof -> string list
berghofe@11519
    46
  val add_prf_tfree_names : string list * proof -> string list
berghofe@11519
    47
  val add_prf_tvar_ixns : indexname list * proof -> indexname list
berghofe@12868
    48
  val maxidx_of_proof : proof -> int
berghofe@13744
    49
  val size_of_proof : proof -> int
berghofe@12907
    50
  val change_type : typ list option -> proof -> proof
berghofe@11519
    51
  val prf_abstract_over : term -> proof -> proof
berghofe@11519
    52
  val prf_incr_bv : int -> int -> int -> int -> proof -> proof
berghofe@11519
    53
  val incr_pboundvars : int -> int -> proof -> proof
berghofe@11519
    54
  val prf_loose_bvar1 : proof -> int -> bool
berghofe@11519
    55
  val prf_loose_Pbvar1 : proof -> int -> bool
berghofe@12279
    56
  val prf_add_loose_bnos : int -> int -> proof ->
berghofe@12279
    57
    int list * int list -> int list * int list
berghofe@11519
    58
  val norm_proof : Envir.env -> proof -> proof
berghofe@11519
    59
  val norm_proof' : Envir.env -> proof -> proof
berghofe@11519
    60
  val prf_subst_bounds : term list -> proof -> proof
berghofe@11519
    61
  val prf_subst_pbounds : proof list -> proof -> proof
berghofe@11519
    62
  val freeze_thaw_prf : proof -> proof * (proof -> proof)
berghofe@17017
    63
  val proof_of_min_axm : string * term -> proof
berghofe@17017
    64
  val proof_of_min_thm : (string * term) * proof -> proof
berghofe@11519
    65
berghofe@17017
    66
  val thms_of_proof : proof -> (term * proof) list Symtab.table ->
berghofe@11519
    67
    (term * proof) list Symtab.table
berghofe@19357
    68
  val thms_of_proof' : proof -> (term * proof) list Symtab.table ->
berghofe@19357
    69
    (term * proof) list Symtab.table
berghofe@17017
    70
  val axms_of_proof : proof -> proof Symtab.table -> proof Symtab.table
berghofe@17017
    71
  val oracles_of_proof : (string * term) list -> proof -> (string * term) list
berghofe@11519
    72
berghofe@11519
    73
  (** proof terms for specific inference rules **)
berghofe@11519
    74
  val implies_intr_proof : term -> proof -> proof
berghofe@11519
    75
  val forall_intr_proof : term -> string -> proof -> proof
berghofe@15797
    76
  val varify_proof : term -> (string * sort) list -> proof -> proof
berghofe@11519
    77
  val freezeT : term -> proof -> proof
berghofe@11519
    78
  val rotate_proof : term list -> term -> int -> proof -> proof
berghofe@11519
    79
  val permute_prems_prf : term list -> int -> int -> proof -> proof
wenzelm@16880
    80
  val instantiate : ((indexname * sort) * typ) list * ((indexname * typ) * term) list
wenzelm@16880
    81
    -> proof -> proof
berghofe@11519
    82
  val lift_proof : term -> int -> term -> proof -> proof
berghofe@11519
    83
  val assumption_proof : term list -> term -> int -> proof -> proof
wenzelm@18485
    84
  val bicompose_proof : bool -> term list -> term list -> term list -> term option ->
berghofe@11519
    85
    int -> proof -> proof -> proof
berghofe@11519
    86
  val equality_axms : (string * term) list
berghofe@11519
    87
  val reflexive_axm : proof
berghofe@11519
    88
  val symmetric_axm : proof
berghofe@11519
    89
  val transitive_axm : proof
berghofe@11519
    90
  val equal_intr_axm : proof
berghofe@11519
    91
  val equal_elim_axm : proof
berghofe@11519
    92
  val abstract_rule_axm : proof
berghofe@11519
    93
  val combination_axm : proof
berghofe@11519
    94
  val reflexive : proof
berghofe@11519
    95
  val symmetric : proof -> proof
berghofe@11519
    96
  val transitive : term -> typ -> proof -> proof -> proof
berghofe@11519
    97
  val abstract_rule : term -> string -> proof -> proof
berghofe@11519
    98
  val combination : term -> term -> term -> term -> typ -> proof -> proof -> proof
berghofe@11519
    99
  val equal_intr : term -> term -> proof -> proof -> proof
berghofe@11519
   100
  val equal_elim : term -> term -> proof -> proof -> proof
berghofe@11519
   101
  val axm_proof : string -> term -> proof
berghofe@11519
   102
  val oracle_proof : string -> term -> proof
wenzelm@16458
   103
  val thm_proof : theory -> string * (string * string list) list ->
berghofe@11519
   104
    term list -> term -> proof -> proof
wenzelm@12923
   105
  val get_name_tags : term list -> term -> proof -> string * (string * string list) list
berghofe@11519
   106
berghofe@11519
   107
  (** rewriting on proof terms **)
berghofe@12233
   108
  val add_prf_rrules : (proof * proof) list -> theory -> theory
berghofe@12233
   109
  val add_prf_rprocs : (string * (Term.typ list -> proof -> proof option)) list ->
berghofe@12233
   110
    theory -> theory
wenzelm@17203
   111
  val rewrite_proof : theory -> (proof * proof) list *
berghofe@11519
   112
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
berghofe@11615
   113
  val rewrite_proof_notypes : (proof * proof) list *
berghofe@11615
   114
    (string * (typ list -> proof -> proof option)) list -> proof -> proof
wenzelm@16536
   115
  val init_data: theory -> theory
berghofe@11519
   116
  
berghofe@11519
   117
end
berghofe@11519
   118
berghofe@11519
   119
structure Proofterm : PROOFTERM =
berghofe@11519
   120
struct
berghofe@11519
   121
berghofe@11715
   122
open Envir;
berghofe@11715
   123
berghofe@11519
   124
datatype proof =
berghofe@11519
   125
   PBound of int
berghofe@11519
   126
 | Abst of string * typ option * proof
berghofe@11519
   127
 | AbsP of string * term option * proof
wenzelm@12497
   128
 | op % of proof * term option
wenzelm@12497
   129
 | op %% of proof * proof
berghofe@11519
   130
 | Hyp of term
berghofe@11519
   131
 | PThm of (string * (string * string list) list) * proof * term * typ list option
berghofe@11519
   132
 | PAxm of string * term * typ list option
berghofe@11519
   133
 | Oracle of string * term * typ list option
berghofe@17017
   134
 | MinProof of ((string * term) * proof) list * (string * term) list * (string * term) list;
berghofe@11519
   135
berghofe@17017
   136
fun proof_of_min_axm (s, prop) = PAxm (s, prop, NONE);
berghofe@17017
   137
fun proof_of_min_thm ((s, prop), prf) = PThm ((s, []), prf, prop, NONE);
berghofe@17017
   138
berghofe@17017
   139
val string_term_ord = prod_ord fast_string_ord Term.fast_term_ord;
berghofe@17017
   140
berghofe@17017
   141
fun oracles_of_proof oras prf =
berghofe@11519
   142
  let
berghofe@17017
   143
    fun oras_of (Abst (_, _, prf)) = oras_of prf
berghofe@17017
   144
      | oras_of (AbsP (_, _, prf)) = oras_of prf
berghofe@17017
   145
      | oras_of (prf % _) = oras_of prf
berghofe@17017
   146
      | oras_of (prf1 %% prf2) = oras_of prf1 #> oras_of prf2
berghofe@17017
   147
      | oras_of (PThm ((name, _), prf, prop, _)) = (fn tabs as (thms, oras) =>
wenzelm@17412
   148
          case Symtab.lookup thms name of
wenzelm@17412
   149
            NONE => oras_of prf (Symtab.update (name, [prop]) thms, oras)
wenzelm@17492
   150
          | SOME ps => if member (op =) ps prop then tabs else
wenzelm@17412
   151
              oras_of prf (Symtab.update (name, prop::ps) thms, oras))
berghofe@17017
   152
      | oras_of (Oracle (s, prop, _)) =
berghofe@17017
   153
          apsnd (OrdList.insert string_term_ord (s, prop))
berghofe@17017
   154
      | oras_of (MinProof (thms, _, oras)) =
berghofe@17017
   155
          apsnd (OrdList.union string_term_ord oras) #>
berghofe@17017
   156
          fold (oras_of o proof_of_min_thm) thms
berghofe@17017
   157
      | oras_of _ = I
berghofe@11519
   158
  in
berghofe@17017
   159
    snd (oras_of prf (Symtab.empty, oras))
berghofe@11519
   160
  end;
berghofe@11519
   161
berghofe@17017
   162
fun thms_of_proof (Abst (_, _, prf)) = thms_of_proof prf
berghofe@17017
   163
  | thms_of_proof (AbsP (_, _, prf)) = thms_of_proof prf
berghofe@17017
   164
  | thms_of_proof (prf1 %% prf2) = thms_of_proof prf1 #> thms_of_proof prf2
berghofe@17017
   165
  | thms_of_proof (prf % _) = thms_of_proof prf
berghofe@17017
   166
  | thms_of_proof (prf' as PThm ((s, _), prf, prop, _)) = (fn tab =>
wenzelm@17412
   167
      case Symtab.lookup tab s of
wenzelm@17412
   168
        NONE => thms_of_proof prf (Symtab.update (s, [(prop, prf')]) tab)
wenzelm@19304
   169
      | SOME ps => if exists (fn (p, _) => p = prop) ps then tab else
wenzelm@17412
   170
          thms_of_proof prf (Symtab.update (s, (prop, prf')::ps) tab))
berghofe@17017
   171
  | thms_of_proof (MinProof (prfs, _, _)) = fold (thms_of_proof o proof_of_min_thm) prfs
berghofe@17017
   172
  | thms_of_proof _ = I;
berghofe@11519
   173
berghofe@19357
   174
(* this version does not recursively descend into proofs of (named) theorems *)
berghofe@19357
   175
fun thms_of_proof' (Abst (_, _, prf)) = thms_of_proof' prf
berghofe@19357
   176
  | thms_of_proof' (AbsP (_, _, prf)) = thms_of_proof' prf
berghofe@19357
   177
  | thms_of_proof' (prf1 %% prf2) = thms_of_proof' prf1 #> thms_of_proof' prf2
berghofe@19357
   178
  | thms_of_proof' (prf % _) = thms_of_proof' prf
berghofe@19357
   179
  | thms_of_proof' (PThm (("", _), prf, prop, _)) = thms_of_proof' prf
berghofe@19357
   180
  | thms_of_proof' (prf' as PThm ((s, _), _, prop, _)) = (fn tab =>
berghofe@19357
   181
      case Symtab.lookup tab s of
berghofe@19357
   182
        NONE => Symtab.update (s, [(prop, prf')]) tab
berghofe@19357
   183
      | SOME ps => if exists (fn (p, _) => p = prop) ps then tab else
berghofe@19357
   184
          Symtab.update (s, (prop, prf')::ps) tab)
berghofe@19357
   185
  | thms_of_proof' (MinProof (prfs, _, _)) = fold (thms_of_proof' o proof_of_min_thm) prfs
berghofe@19357
   186
  | thms_of_proof' _ = I;
berghofe@19357
   187
berghofe@17017
   188
fun axms_of_proof (Abst (_, _, prf)) = axms_of_proof prf
berghofe@17017
   189
  | axms_of_proof (AbsP (_, _, prf)) = axms_of_proof prf
berghofe@17017
   190
  | axms_of_proof (prf1 %% prf2) = axms_of_proof prf1 #> axms_of_proof prf2
berghofe@17017
   191
  | axms_of_proof (prf % _) = axms_of_proof prf
wenzelm@17412
   192
  | axms_of_proof (prf as PAxm (s, _, _)) = Symtab.update (s, prf)
berghofe@17017
   193
  | axms_of_proof (MinProof (_, prfs, _)) = fold (axms_of_proof o proof_of_min_axm) prfs
berghofe@17017
   194
  | axms_of_proof _ = I;
berghofe@11519
   195
berghofe@11519
   196
(** collect all theorems, axioms and oracles **)
berghofe@11519
   197
berghofe@17017
   198
fun map3 f g h (thms, axms, oras) = (f thms, g axms, h oras);
berghofe@17017
   199
berghofe@17017
   200
fun mk_min_proof (Abst (_, _, prf)) = mk_min_proof prf
berghofe@17017
   201
  | mk_min_proof (AbsP (_, _, prf)) = mk_min_proof prf
berghofe@17017
   202
  | mk_min_proof (prf % _) = mk_min_proof prf
berghofe@17017
   203
  | mk_min_proof (prf1 %% prf2) = mk_min_proof prf1 #> mk_min_proof prf2
berghofe@17017
   204
  | mk_min_proof (PThm ((s, _), prf, prop, _)) =
berghofe@17017
   205
      map3 (OrdList.insert (string_term_ord o pairself fst) ((s, prop), prf)) I I
berghofe@17017
   206
  | mk_min_proof (PAxm (s, prop, _)) =
berghofe@17017
   207
      map3 I (OrdList.insert string_term_ord (s, prop)) I
berghofe@17017
   208
  | mk_min_proof (Oracle (s, prop, _)) =
berghofe@17017
   209
      map3 I I (OrdList.insert string_term_ord (s, prop))
berghofe@17017
   210
  | mk_min_proof (MinProof (thms, axms, oras)) =
berghofe@17017
   211
      map3 (OrdList.union (string_term_ord o pairself fst) thms)
berghofe@17017
   212
        (OrdList.union string_term_ord axms) (OrdList.union string_term_ord oras)
berghofe@17017
   213
  | mk_min_proof _ = I;
berghofe@11519
   214
berghofe@11519
   215
(** proof objects with different levels of detail **)
berghofe@11519
   216
wenzelm@11543
   217
val proofs = ref 2;
berghofe@11519
   218
wenzelm@11543
   219
fun err_illegal_level i =
wenzelm@11543
   220
  error ("Illegal level of detail for proof objects: " ^ string_of_int i);
berghofe@11519
   221
berghofe@11519
   222
fun if_ora b = if b then oracles_of_proof else K;
wenzelm@19222
   223
val min_proof = MinProof ([], [], []);
berghofe@11519
   224
berghofe@11519
   225
fun infer_derivs f (ora1, prf1) (ora2, prf2) =
wenzelm@19222
   226
  let val ora = ora1 orelse ora2 in
wenzelm@19222
   227
    (ora,
wenzelm@19222
   228
      case !proofs of
wenzelm@19222
   229
        2 => f prf1 prf2
wenzelm@19222
   230
      | 1 => MinProof (([], [], []) |> mk_min_proof prf1 |> mk_min_proof prf2)
wenzelm@19222
   231
      | 0 => if ora then MinProof ([], [], if_ora ora2 (if_ora ora1 [] prf1) prf2) else min_proof
wenzelm@19222
   232
      | i => err_illegal_level i)
wenzelm@19222
   233
  end;
berghofe@11519
   234
wenzelm@19222
   235
fun infer_derivs' f = infer_derivs (K f) (false, min_proof);
berghofe@11519
   236
skalberg@15531
   237
fun (prf %> t) = prf % SOME t;
berghofe@11519
   238
skalberg@15570
   239
val proof_combt = Library.foldl (op %>);
skalberg@15570
   240
val proof_combt' = Library.foldl (op %);
skalberg@15570
   241
val proof_combP = Library.foldl (op %%);
berghofe@11519
   242
berghofe@11519
   243
fun strip_combt prf = 
berghofe@11615
   244
    let fun stripc (prf % t, ts) = stripc (prf, t::ts)
berghofe@11519
   245
          | stripc  x =  x 
berghofe@11519
   246
    in  stripc (prf, [])  end;
berghofe@11519
   247
berghofe@11519
   248
fun strip_combP prf = 
berghofe@11615
   249
    let fun stripc (prf %% prf', prfs) = stripc (prf, prf'::prfs)
berghofe@11519
   250
          | stripc  x =  x
berghofe@11519
   251
    in  stripc (prf, [])  end;
berghofe@11519
   252
berghofe@11519
   253
fun strip_thm prf = (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
   254
      (PThm (_, prf', _, _), _) => prf'
berghofe@11519
   255
    | _ => prf);
berghofe@11519
   256
skalberg@15574
   257
val mk_Abst = foldr (fn ((s, T:typ), prf) => Abst (s, NONE, prf));
skalberg@15531
   258
fun mk_AbsP (i, prf) = funpow i (fn prf => AbsP ("H", NONE, prf)) prf;
berghofe@11519
   259
skalberg@15531
   260
fun apsome' f NONE = raise SAME
skalberg@15531
   261
  | apsome' f (SOME x) = SOME (f x);
berghofe@11715
   262
berghofe@11715
   263
fun same f x =
berghofe@11715
   264
  let val x' = f x
berghofe@11715
   265
  in if x = x' then raise SAME else x' end;
berghofe@11715
   266
berghofe@11715
   267
fun map_proof_terms f g =
berghofe@11715
   268
  let
berghofe@11715
   269
    fun mapp (Abst (s, T, prf)) = (Abst (s, apsome' (same g) T, mapph prf)
berghofe@11715
   270
          handle SAME => Abst (s, T, mapp prf))
berghofe@11715
   271
      | mapp (AbsP (s, t, prf)) = (AbsP (s, apsome' (same f) t, mapph prf)
berghofe@11715
   272
          handle SAME => AbsP (s, t, mapp prf))
skalberg@15570
   273
      | mapp (prf % t) = (mapp prf % Option.map f t
berghofe@11715
   274
          handle SAME => prf % apsome' (same f) t)
berghofe@11715
   275
      | mapp (prf1 %% prf2) = (mapp prf1 %% mapph prf2
berghofe@11715
   276
          handle SAME => prf1 %% mapp prf2)
skalberg@15531
   277
      | mapp (PThm (a, prf, prop, SOME Ts)) =
skalberg@15531
   278
          PThm (a, prf, prop, SOME (same (map g) Ts))
skalberg@15531
   279
      | mapp (PAxm (a, prop, SOME Ts)) =
skalberg@15531
   280
          PAxm (a, prop, SOME (same (map g) Ts))
berghofe@11715
   281
      | mapp _ = raise SAME
berghofe@11715
   282
    and mapph prf = (mapp prf handle SAME => prf)
berghofe@11715
   283
berghofe@11715
   284
  in mapph end;
berghofe@11519
   285
skalberg@15531
   286
fun fold_proof_terms f g (a, Abst (_, SOME T, prf)) = fold_proof_terms f g (g (T, a), prf)
skalberg@15531
   287
  | fold_proof_terms f g (a, Abst (_, NONE, prf)) = fold_proof_terms f g (a, prf)
skalberg@15531
   288
  | fold_proof_terms f g (a, AbsP (_, SOME t, prf)) = fold_proof_terms f g (f (t, a), prf)
skalberg@15531
   289
  | fold_proof_terms f g (a, AbsP (_, NONE, prf)) = fold_proof_terms f g (a, prf)
skalberg@15531
   290
  | fold_proof_terms f g (a, prf % SOME t) = f (t, fold_proof_terms f g (a, prf))
skalberg@15531
   291
  | fold_proof_terms f g (a, prf % NONE) = fold_proof_terms f g (a, prf)
berghofe@11615
   292
  | fold_proof_terms f g (a, prf1 %% prf2) = fold_proof_terms f g
berghofe@11519
   293
      (fold_proof_terms f g (a, prf1), prf2)
skalberg@15574
   294
  | fold_proof_terms _ g (a, PThm (_, _, _, SOME Ts)) = foldr g a Ts
skalberg@15574
   295
  | fold_proof_terms _ g (a, PAxm (_, prop, SOME Ts)) = foldr g a Ts
berghofe@11519
   296
  | fold_proof_terms _ _ (a, _) = a;
berghofe@11519
   297
berghofe@11519
   298
val add_prf_names = fold_proof_terms add_term_names ((uncurry K) o swap);
berghofe@11519
   299
val add_prf_tfree_names = fold_proof_terms add_term_tfree_names add_typ_tfree_names;
berghofe@11519
   300
val add_prf_tvar_ixns = fold_proof_terms add_term_tvar_ixns (add_typ_ixns o swap);
berghofe@11519
   301
berghofe@12868
   302
fun maxidx_of_proof prf = fold_proof_terms
berghofe@12868
   303
  (Int.max o apfst maxidx_of_term) (Int.max o apfst maxidx_of_typ) (~1, prf); 
berghofe@12868
   304
berghofe@13744
   305
fun size_of_proof (Abst (_, _, prf)) = 1 + size_of_proof prf
berghofe@13749
   306
  | size_of_proof (AbsP (_, t, prf)) = 1 + size_of_proof prf
berghofe@13744
   307
  | size_of_proof (prf1 %% prf2) = size_of_proof prf1 + size_of_proof prf2
berghofe@13749
   308
  | size_of_proof (prf % _) = 1 + size_of_proof prf
berghofe@13744
   309
  | size_of_proof _ = 1;
berghofe@13744
   310
berghofe@12907
   311
fun change_type opTs (PThm (name, prf, prop, _)) = PThm (name, prf, prop, opTs)
berghofe@12907
   312
  | change_type opTs (PAxm (name, prop, _)) = PAxm (name, prop, opTs)
berghofe@12907
   313
  | change_type opTs (Oracle (name, prop, _)) = Oracle (name, prop, opTs)
berghofe@12907
   314
  | change_type _ prf = prf;
berghofe@12907
   315
berghofe@11519
   316
berghofe@11519
   317
(***** utilities *****)
berghofe@11519
   318
berghofe@11519
   319
fun strip_abs (_::Ts) (Abs (_, _, t)) = strip_abs Ts t
berghofe@11519
   320
  | strip_abs _ t = t;
berghofe@11519
   321
skalberg@15570
   322
fun mk_abs Ts t = Library.foldl (fn (t', T) => Abs ("", T, t')) (t, Ts);
berghofe@11519
   323
berghofe@11519
   324
berghofe@11519
   325
(*Abstraction of a proof term over its occurrences of v, 
berghofe@11519
   326
    which must contain no loose bound variables.
berghofe@11519
   327
  The resulting proof term is ready to become the body of an Abst.*)
berghofe@11519
   328
berghofe@11519
   329
fun prf_abstract_over v =
berghofe@11519
   330
  let
berghofe@11715
   331
    fun abst' lev u = if v aconv u then Bound lev else
berghofe@11715
   332
      (case u of
berghofe@11715
   333
         Abs (a, T, t) => Abs (a, T, abst' (lev + 1) t)
berghofe@11715
   334
       | f $ t => (abst' lev f $ absth' lev t handle SAME => f $ abst' lev t)
berghofe@11715
   335
       | _ => raise SAME)
berghofe@11715
   336
    and absth' lev t = (abst' lev t handle SAME => t);
berghofe@11519
   337
berghofe@11715
   338
    fun abst lev (AbsP (a, t, prf)) =
berghofe@11715
   339
          (AbsP (a, apsome' (abst' lev) t, absth lev prf)
berghofe@11715
   340
           handle SAME => AbsP (a, t, abst lev prf))
berghofe@11715
   341
      | abst lev (Abst (a, T, prf)) = Abst (a, T, abst (lev + 1) prf)
berghofe@11715
   342
      | abst lev (prf1 %% prf2) = (abst lev prf1 %% absth lev prf2
berghofe@11715
   343
          handle SAME => prf1 %% abst lev prf2)
skalberg@15570
   344
      | abst lev (prf % t) = (abst lev prf % Option.map (absth' lev) t
berghofe@11715
   345
          handle SAME => prf % apsome' (abst' lev) t)
berghofe@11715
   346
      | abst _ _ = raise SAME
berghofe@11715
   347
    and absth lev prf = (abst lev prf handle SAME => prf)
berghofe@11519
   348
berghofe@11715
   349
  in absth 0 end;
berghofe@11519
   350
berghofe@11519
   351
berghofe@11519
   352
(*increments a proof term's non-local bound variables
berghofe@11519
   353
  required when moving a proof term within abstractions
berghofe@11519
   354
     inc is  increment for bound variables
berghofe@11519
   355
     lev is  level at which a bound variable is considered 'loose'*)
berghofe@11519
   356
berghofe@11519
   357
fun incr_bv' inct tlev t = incr_bv (inct, tlev, t);
berghofe@11519
   358
berghofe@11715
   359
fun prf_incr_bv' incP inct Plev tlev (PBound i) =
berghofe@11715
   360
      if i >= Plev then PBound (i+incP) else raise SAME 
berghofe@11715
   361
  | prf_incr_bv' incP inct Plev tlev (AbsP (a, t, body)) =
berghofe@11715
   362
      (AbsP (a, apsome' (same (incr_bv' inct tlev)) t,
berghofe@11715
   363
         prf_incr_bv incP inct (Plev+1) tlev body) handle SAME =>
berghofe@11715
   364
           AbsP (a, t, prf_incr_bv' incP inct (Plev+1) tlev body))
berghofe@11715
   365
  | prf_incr_bv' incP inct Plev tlev (Abst (a, T, body)) =
berghofe@11715
   366
      Abst (a, T, prf_incr_bv' incP inct Plev (tlev+1) body)
berghofe@11715
   367
  | prf_incr_bv' incP inct Plev tlev (prf %% prf') = 
berghofe@11715
   368
      (prf_incr_bv' incP inct Plev tlev prf %% prf_incr_bv incP inct Plev tlev prf'
berghofe@11715
   369
       handle SAME => prf %% prf_incr_bv' incP inct Plev tlev prf')
berghofe@11715
   370
  | prf_incr_bv' incP inct Plev tlev (prf % t) = 
skalberg@15570
   371
      (prf_incr_bv' incP inct Plev tlev prf % Option.map (incr_bv' inct tlev) t
berghofe@11715
   372
       handle SAME => prf % apsome' (same (incr_bv' inct tlev)) t)
berghofe@11715
   373
  | prf_incr_bv' _ _ _ _ _ = raise SAME
berghofe@11715
   374
and prf_incr_bv incP inct Plev tlev prf =
berghofe@11715
   375
      (prf_incr_bv' incP inct Plev tlev prf handle SAME => prf);
berghofe@11519
   376
berghofe@11519
   377
fun incr_pboundvars  0 0 prf = prf
berghofe@11519
   378
  | incr_pboundvars incP inct prf = prf_incr_bv incP inct 0 0 prf;
berghofe@11519
   379
berghofe@11519
   380
berghofe@11615
   381
fun prf_loose_bvar1 (prf1 %% prf2) k = prf_loose_bvar1 prf1 k orelse prf_loose_bvar1 prf2 k
skalberg@15531
   382
  | prf_loose_bvar1 (prf % SOME t) k = prf_loose_bvar1 prf k orelse loose_bvar1 (t, k)
skalberg@15531
   383
  | prf_loose_bvar1 (_ % NONE) _ = true
skalberg@15531
   384
  | prf_loose_bvar1 (AbsP (_, SOME t, prf)) k = loose_bvar1 (t, k) orelse prf_loose_bvar1 prf k
skalberg@15531
   385
  | prf_loose_bvar1 (AbsP (_, NONE, _)) k = true
berghofe@11519
   386
  | prf_loose_bvar1 (Abst (_, _, prf)) k = prf_loose_bvar1 prf (k+1)
berghofe@11519
   387
  | prf_loose_bvar1 _ _ = false;
berghofe@11519
   388
berghofe@11519
   389
fun prf_loose_Pbvar1 (PBound i) k = i = k
berghofe@11615
   390
  | prf_loose_Pbvar1 (prf1 %% prf2) k = prf_loose_Pbvar1 prf1 k orelse prf_loose_Pbvar1 prf2 k
berghofe@11615
   391
  | prf_loose_Pbvar1 (prf % _) k = prf_loose_Pbvar1 prf k
berghofe@11519
   392
  | prf_loose_Pbvar1 (AbsP (_, _, prf)) k = prf_loose_Pbvar1 prf (k+1)
berghofe@11519
   393
  | prf_loose_Pbvar1 (Abst (_, _, prf)) k = prf_loose_Pbvar1 prf k
berghofe@11519
   394
  | prf_loose_Pbvar1 _ _ = false;
berghofe@11519
   395
berghofe@12279
   396
fun prf_add_loose_bnos plev tlev (PBound i) (is, js) =
wenzelm@17492
   397
      if i < plev then (is, js) else (insert (op =) (i-plev) is, js)
berghofe@12279
   398
  | prf_add_loose_bnos plev tlev (prf1 %% prf2) p =
berghofe@12279
   399
      prf_add_loose_bnos plev tlev prf2
berghofe@12279
   400
        (prf_add_loose_bnos plev tlev prf1 p)
berghofe@12279
   401
  | prf_add_loose_bnos plev tlev (prf % opt) (is, js) =
berghofe@12279
   402
      prf_add_loose_bnos plev tlev prf (case opt of
wenzelm@17492
   403
          NONE => (is, insert (op =) ~1 js)
skalberg@15531
   404
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   405
  | prf_add_loose_bnos plev tlev (AbsP (_, opt, prf)) (is, js) =
berghofe@12279
   406
      prf_add_loose_bnos (plev+1) tlev prf (case opt of
wenzelm@17492
   407
          NONE => (is, insert (op =) ~1 js)
skalberg@15531
   408
        | SOME t => (is, add_loose_bnos (t, tlev, js)))
berghofe@12279
   409
  | prf_add_loose_bnos plev tlev (Abst (_, _, prf)) p =
berghofe@12279
   410
      prf_add_loose_bnos plev (tlev+1) prf p
berghofe@12279
   411
  | prf_add_loose_bnos _ _ _ _ = ([], []);
berghofe@12279
   412
berghofe@11519
   413
berghofe@11519
   414
(**** substitutions ****)
berghofe@11519
   415
berghofe@18316
   416
fun del_conflicting_tvars envT T = Term.instantiateT
wenzelm@19482
   417
  (map_filter (fn ixnS as (_, S) =>
berghofe@18316
   418
     (Type.lookup (envT, ixnS); NONE) handle TYPE _ =>
berghofe@18316
   419
        SOME (ixnS, TFree ("'dummy", S))) (typ_tvars T)) T;
berghofe@18316
   420
berghofe@18316
   421
fun del_conflicting_vars env t = Term.instantiate
wenzelm@19482
   422
  (map_filter (fn ixnS as (_, S) =>
berghofe@18316
   423
     (Type.lookup (type_env env, ixnS); NONE) handle TYPE _ =>
berghofe@18316
   424
        SOME (ixnS, TFree ("'dummy", S))) (term_tvars t),
wenzelm@19482
   425
   map_filter (fn Var (ixnT as (_, T)) =>
berghofe@18316
   426
     (Envir.lookup (env, ixnT); NONE) handle TYPE _ =>
berghofe@18316
   427
        SOME (ixnT, Free ("dummy", T))) (term_vars t)) t;
berghofe@18316
   428
berghofe@11519
   429
fun norm_proof env =
berghofe@11519
   430
  let
wenzelm@12497
   431
    val envT = type_env env;
berghofe@18316
   432
    fun msg s = warning ("type conflict in norm_proof:\n" ^ s);
berghofe@18316
   433
    fun htype f t = f env t handle TYPE (s, _, _) =>
berghofe@18316
   434
      (msg s; f env (del_conflicting_vars env t));
berghofe@18316
   435
    fun htypeT f T = f envT T handle TYPE (s, _, _) =>
berghofe@18316
   436
      (msg s; f envT (del_conflicting_tvars envT T));
berghofe@18316
   437
    fun htypeTs f Ts = f envT Ts handle TYPE (s, _, _) =>
berghofe@18316
   438
      (msg s; f envT (map (del_conflicting_tvars envT) Ts));
berghofe@18316
   439
    fun norm (Abst (s, T, prf)) = (Abst (s, apsome' (htypeT norm_type_same) T, normh prf)
berghofe@11519
   440
          handle SAME => Abst (s, T, norm prf))
berghofe@18316
   441
      | norm (AbsP (s, t, prf)) = (AbsP (s, apsome' (htype norm_term_same) t, normh prf)
berghofe@11519
   442
          handle SAME => AbsP (s, t, norm prf))
berghofe@18316
   443
      | norm (prf % t) = (norm prf % Option.map (htype norm_term) t
berghofe@18316
   444
          handle SAME => prf % apsome' (htype norm_term_same) t)
berghofe@11615
   445
      | norm (prf1 %% prf2) = (norm prf1 %% normh prf2
berghofe@11615
   446
          handle SAME => prf1 %% norm prf2)
berghofe@18316
   447
      | norm (PThm (s, prf, t, Ts)) = PThm (s, prf, t, apsome' (htypeTs norm_types_same) Ts)
berghofe@18316
   448
      | norm (PAxm (s, prop, Ts)) = PAxm (s, prop, apsome' (htypeTs norm_types_same) Ts)
berghofe@11519
   449
      | norm _ = raise SAME
berghofe@11519
   450
    and normh prf = (norm prf handle SAME => prf);
berghofe@11519
   451
  in normh end;
berghofe@11519
   452
berghofe@11519
   453
(***** Remove some types in proof term (to save space) *****)
berghofe@11519
   454
berghofe@11519
   455
fun remove_types (Abs (s, _, t)) = Abs (s, dummyT, remove_types t)
berghofe@11519
   456
  | remove_types (t $ u) = remove_types t $ remove_types u
berghofe@11519
   457
  | remove_types (Const (s, _)) = Const (s, dummyT)
berghofe@11519
   458
  | remove_types t = t;
berghofe@11519
   459
berghofe@11519
   460
fun remove_types_env (Envir.Envir {iTs, asol, maxidx}) =
berghofe@15797
   461
  Envir.Envir {iTs = iTs, asol = Vartab.map (apsnd remove_types) asol,
berghofe@15797
   462
    maxidx = maxidx};
berghofe@11519
   463
berghofe@11519
   464
fun norm_proof' env prf = norm_proof (remove_types_env env) prf;
berghofe@11519
   465
berghofe@11519
   466
(**** substitution of bound variables ****)
berghofe@11519
   467
berghofe@11519
   468
fun prf_subst_bounds args prf =
berghofe@11519
   469
  let
berghofe@11519
   470
    val n = length args;
berghofe@11519
   471
    fun subst' lev (Bound i) =
berghofe@11519
   472
         (if i<lev then raise SAME    (*var is locally bound*)
berghofe@11519
   473
          else  incr_boundvars lev (List.nth (args, i-lev))
berghofe@11519
   474
                  handle Subscript => Bound (i-n)  (*loose: change it*))
berghofe@11519
   475
      | subst' lev (Abs (a, T, body)) = Abs (a, T,  subst' (lev+1) body)
berghofe@11519
   476
      | subst' lev (f $ t) = (subst' lev f $ substh' lev t
berghofe@11519
   477
          handle SAME => f $ subst' lev t)
berghofe@11519
   478
      | subst' _ _ = raise SAME
berghofe@11519
   479
    and substh' lev t = (subst' lev t handle SAME => t);
berghofe@11519
   480
berghofe@11519
   481
    fun subst lev (AbsP (a, t, body)) = (AbsP (a, apsome' (subst' lev) t, substh lev body)
berghofe@11519
   482
          handle SAME => AbsP (a, t, subst lev body))
berghofe@11519
   483
      | subst lev (Abst (a, T, body)) = Abst (a, T, subst (lev+1) body)
berghofe@11615
   484
      | subst lev (prf %% prf') = (subst lev prf %% substh lev prf'
berghofe@11615
   485
          handle SAME => prf %% subst lev prf')
skalberg@15570
   486
      | subst lev (prf % t) = (subst lev prf % Option.map (substh' lev) t
berghofe@11615
   487
          handle SAME => prf % apsome' (subst' lev) t)
berghofe@11519
   488
      | subst _ _ = raise SAME
berghofe@11519
   489
    and substh lev prf = (subst lev prf handle SAME => prf)
berghofe@11519
   490
  in case args of [] => prf | _ => substh 0 prf end;
berghofe@11519
   491
berghofe@11519
   492
fun prf_subst_pbounds args prf =
berghofe@11519
   493
  let
berghofe@11519
   494
    val n = length args;
berghofe@11519
   495
    fun subst (PBound i) Plev tlev =
berghofe@11519
   496
 	 (if i < Plev then raise SAME    (*var is locally bound*)
berghofe@11519
   497
          else incr_pboundvars Plev tlev (List.nth (args, i-Plev))
berghofe@11519
   498
                 handle Subscript => PBound (i-n)  (*loose: change it*))
berghofe@11519
   499
      | subst (AbsP (a, t, body)) Plev tlev = AbsP (a, t, subst body (Plev+1) tlev)
berghofe@11519
   500
      | subst (Abst (a, T, body)) Plev tlev = Abst (a, T, subst body Plev (tlev+1))
berghofe@11615
   501
      | subst (prf %% prf') Plev tlev = (subst prf Plev tlev %% substh prf' Plev tlev
berghofe@11615
   502
          handle SAME => prf %% subst prf' Plev tlev)
berghofe@11615
   503
      | subst (prf % t) Plev tlev = subst prf Plev tlev % t
berghofe@11519
   504
      | subst  prf _ _ = raise SAME
berghofe@11519
   505
    and substh prf Plev tlev = (subst prf Plev tlev handle SAME => prf)
berghofe@11519
   506
  in case args of [] => prf | _ => substh prf 0 0 end;
berghofe@11519
   507
berghofe@11519
   508
berghofe@11519
   509
(**** Freezing and thawing of variables in proof terms ****)
berghofe@11519
   510
berghofe@11519
   511
fun frzT names =
haftmann@17325
   512
  map_type_tvar (fn (ixn, xs) => TFree ((the o AList.lookup (op =) names) ixn, xs));
berghofe@11519
   513
berghofe@11519
   514
fun thawT names =
haftmann@17325
   515
  map_type_tfree (fn (s, xs) => case AList.lookup (op =) names s of
skalberg@15531
   516
      NONE => TFree (s, xs)
skalberg@15531
   517
    | SOME ixn => TVar (ixn, xs));
berghofe@11519
   518
berghofe@11519
   519
fun freeze names names' (t $ u) =
berghofe@11519
   520
      freeze names names' t $ freeze names names' u
berghofe@11519
   521
  | freeze names names' (Abs (s, T, t)) =
berghofe@11519
   522
      Abs (s, frzT names' T, freeze names names' t)
berghofe@11519
   523
  | freeze names names' (Const (s, T)) = Const (s, frzT names' T)
berghofe@11519
   524
  | freeze names names' (Free (s, T)) = Free (s, frzT names' T)
berghofe@11519
   525
  | freeze names names' (Var (ixn, T)) =
haftmann@17325
   526
      Free ((the o AList.lookup (op =) names) ixn, frzT names' T)
berghofe@11519
   527
  | freeze names names' t = t;
berghofe@11519
   528
berghofe@11519
   529
fun thaw names names' (t $ u) =
berghofe@11519
   530
      thaw names names' t $ thaw names names' u
berghofe@11519
   531
  | thaw names names' (Abs (s, T, t)) =
berghofe@11519
   532
      Abs (s, thawT names' T, thaw names names' t)
berghofe@11519
   533
  | thaw names names' (Const (s, T)) = Const (s, thawT names' T)
berghofe@11519
   534
  | thaw names names' (Free (s, T)) = 
berghofe@11519
   535
      let val T' = thawT names' T
haftmann@17325
   536
      in case AList.lookup (op =) names s of
skalberg@15531
   537
          NONE => Free (s, T')
skalberg@15531
   538
        | SOME ixn => Var (ixn, T')
berghofe@11519
   539
      end
berghofe@11519
   540
  | thaw names names' (Var (ixn, T)) = Var (ixn, thawT names' T)
berghofe@11519
   541
  | thaw names names' t = t;
berghofe@11519
   542
berghofe@11519
   543
fun freeze_thaw_prf prf =
berghofe@11519
   544
  let
berghofe@11519
   545
    val (fs, Tfs, vs, Tvs) = fold_proof_terms
berghofe@11519
   546
      (fn (t, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   547
         (add_term_frees (t, fs), add_term_tfree_names (t, Tfs),
berghofe@11519
   548
          add_term_vars (t, vs), add_term_tvar_ixns (t, Tvs)))
berghofe@11519
   549
      (fn (T, (fs, Tfs, vs, Tvs)) =>
berghofe@11519
   550
         (fs, add_typ_tfree_names (T, Tfs),
berghofe@11519
   551
          vs, add_typ_ixns (Tvs, T)))
berghofe@11519
   552
            (([], [], [], []), prf);
berghofe@11519
   553
    val fs' = map (fst o dest_Free) fs;
berghofe@11519
   554
    val vs' = map (fst o dest_Var) vs;
berghofe@11519
   555
    val names = vs' ~~ variantlist (map fst vs', fs');
berghofe@11519
   556
    val names' = Tvs ~~ variantlist (map fst Tvs, Tfs);
berghofe@11519
   557
    val rnames = map swap names;
berghofe@11519
   558
    val rnames' = map swap names';
berghofe@11519
   559
  in
berghofe@11519
   560
    (map_proof_terms (freeze names names') (frzT names') prf,
berghofe@11519
   561
     map_proof_terms (thaw rnames rnames') (thawT rnames'))
berghofe@11519
   562
  end;
berghofe@11519
   563
berghofe@11519
   564
berghofe@11519
   565
(***** implication introduction *****)
berghofe@11519
   566
berghofe@11519
   567
fun implies_intr_proof h prf =
berghofe@11519
   568
  let
berghofe@11715
   569
    fun abshyp i (Hyp t) = if h aconv t then PBound i else raise SAME
berghofe@11519
   570
      | abshyp i (Abst (s, T, prf)) = Abst (s, T, abshyp i prf)
berghofe@11519
   571
      | abshyp i (AbsP (s, t, prf)) = AbsP (s, t, abshyp (i+1) prf)
berghofe@11615
   572
      | abshyp i (prf % t) = abshyp i prf % t
berghofe@11715
   573
      | abshyp i (prf1 %% prf2) = (abshyp i prf1 %% abshyph i prf2
berghofe@11715
   574
          handle SAME => prf1 %% abshyp i prf2)
berghofe@11715
   575
      | abshyp _ _ = raise SAME
berghofe@11715
   576
    and abshyph i prf = (abshyp i prf handle SAME => prf)
berghofe@11519
   577
  in
skalberg@15531
   578
    AbsP ("H", NONE (*h*), abshyph 0 prf)
berghofe@11519
   579
  end;
berghofe@11519
   580
berghofe@11519
   581
berghofe@11519
   582
(***** forall introduction *****)
berghofe@11519
   583
skalberg@15531
   584
fun forall_intr_proof x a prf = Abst (a, NONE, prf_abstract_over x prf);
berghofe@11519
   585
berghofe@11519
   586
berghofe@11519
   587
(***** varify *****)
berghofe@11519
   588
berghofe@11519
   589
fun varify_proof t fixed prf =
berghofe@11519
   590
  let
wenzelm@19304
   591
    val fs = Term.fold_types (Term.fold_atyps
wenzelm@19304
   592
      (fn TFree v => if member (op =) fixed v then I else insert (op =) v | _ => I)) t [];
berghofe@11519
   593
    val ixns = add_term_tvar_ixns (t, []);
berghofe@15797
   594
    val fmap = fs ~~ variantlist (map fst fs, map #1 ixns)
berghofe@11519
   595
    fun thaw (f as (a, S)) =
haftmann@17314
   596
      (case AList.lookup (op =) fmap f of
skalberg@15531
   597
        NONE => TFree f
skalberg@15531
   598
      | SOME b => TVar ((b, 0), S));
berghofe@11519
   599
  in map_proof_terms (map_term_types (map_type_tfree thaw)) (map_type_tfree thaw) prf
berghofe@11519
   600
  end;
berghofe@11519
   601
berghofe@11519
   602
berghofe@11519
   603
local
berghofe@11519
   604
berghofe@11519
   605
fun new_name (ix, (pairs,used)) =
berghofe@11519
   606
  let val v = variant used (string_of_indexname ix)
berghofe@11519
   607
  in  ((ix, v) :: pairs, v :: used)  end;
berghofe@11519
   608
haftmann@17325
   609
fun freeze_one alist (ix, sort) = (case AList.lookup (op =) alist ix of
skalberg@15531
   610
    NONE => TVar (ix, sort)
skalberg@15531
   611
  | SOME name => TFree (name, sort));
berghofe@11519
   612
berghofe@11519
   613
in
berghofe@11519
   614
berghofe@11519
   615
fun freezeT t prf =
berghofe@11519
   616
  let
berghofe@11519
   617
    val used = it_term_types add_typ_tfree_names (t, [])
berghofe@11519
   618
    and tvars = map #1 (it_term_types add_typ_tvars (t, []));
skalberg@15574
   619
    val (alist, _) = foldr new_name ([], used) tvars;
berghofe@11519
   620
  in
berghofe@11519
   621
    (case alist of
berghofe@11519
   622
      [] => prf (*nothing to do!*)
berghofe@11519
   623
    | _ =>
berghofe@11519
   624
      let val frzT = map_type_tvar (freeze_one alist)
berghofe@11519
   625
      in map_proof_terms (map_term_types frzT) frzT prf end)
berghofe@11519
   626
  end;
berghofe@11519
   627
berghofe@11519
   628
end;
berghofe@11519
   629
berghofe@11519
   630
berghofe@11519
   631
(***** rotate assumptions *****)
berghofe@11519
   632
berghofe@11519
   633
fun rotate_proof Bs Bi m prf =
berghofe@11519
   634
  let
berghofe@11519
   635
    val params = Term.strip_all_vars Bi;
berghofe@11519
   636
    val asms = Logic.strip_imp_prems (Term.strip_all_body Bi);
berghofe@11519
   637
    val i = length asms;
berghofe@11519
   638
    val j = length Bs;
berghofe@11519
   639
  in
berghofe@11519
   640
    mk_AbsP (j+1, proof_combP (prf, map PBound
skalberg@15574
   641
      (j downto 1) @ [mk_Abst (mk_AbsP (i,
berghofe@11519
   642
        proof_combP (proof_combt (PBound i, map Bound ((length params - 1) downto 0)),
skalberg@15574
   643
          map PBound (((i-m-1) downto 0) @ ((i-1) downto (i-m)))))) params]))
berghofe@11519
   644
  end;
berghofe@11519
   645
berghofe@11519
   646
berghofe@11519
   647
(***** permute premises *****)
berghofe@11519
   648
berghofe@11519
   649
fun permute_prems_prf prems j k prf =
berghofe@11519
   650
  let val n = length prems
berghofe@11519
   651
  in mk_AbsP (n, proof_combP (prf,
berghofe@11519
   652
    map PBound ((n-1 downto n-j) @ (k-1 downto 0) @ (n-j-1 downto k))))
berghofe@11519
   653
  end;
berghofe@11519
   654
berghofe@11519
   655
berghofe@11519
   656
(***** instantiation *****)
berghofe@11519
   657
wenzelm@16880
   658
fun instantiate (instT, inst) prf =
wenzelm@16880
   659
  map_proof_terms (Term.instantiate (instT, map (apsnd remove_types) inst))
wenzelm@16880
   660
    (Term.instantiateT instT) prf;
berghofe@11519
   661
berghofe@11519
   662
berghofe@11519
   663
(***** lifting *****)
berghofe@11519
   664
berghofe@11519
   665
fun lift_proof Bi inc prop prf =
berghofe@11519
   666
  let
berghofe@11519
   667
    fun lift'' Us Ts t = strip_abs Ts (Logic.incr_indexes (Us, inc) (mk_abs Ts t));
berghofe@11519
   668
berghofe@11715
   669
    fun lift' Us Ts (Abst (s, T, prf)) =
wenzelm@16880
   670
          (Abst (s, apsome' (same (Logic.incr_tvar inc)) T, lifth' Us (dummyT::Ts) prf)
berghofe@11715
   671
           handle SAME => Abst (s, T, lift' Us (dummyT::Ts) prf))
berghofe@11715
   672
      | lift' Us Ts (AbsP (s, t, prf)) =
berghofe@11715
   673
          (AbsP (s, apsome' (same (lift'' Us Ts)) t, lifth' Us Ts prf)
berghofe@11715
   674
           handle SAME => AbsP (s, t, lift' Us Ts prf))
skalberg@15570
   675
      | lift' Us Ts (prf % t) = (lift' Us Ts prf % Option.map (lift'' Us Ts) t
berghofe@11715
   676
          handle SAME => prf % apsome' (same (lift'' Us Ts)) t)
berghofe@11715
   677
      | lift' Us Ts (prf1 %% prf2) = (lift' Us Ts prf1 %% lifth' Us Ts prf2
berghofe@11715
   678
          handle SAME => prf1 %% lift' Us Ts prf2)
berghofe@11715
   679
      | lift' _ _ (PThm (s, prf, prop, Ts)) =
wenzelm@16880
   680
          PThm (s, prf, prop, apsome' (same (map (Logic.incr_tvar inc))) Ts)
berghofe@11715
   681
      | lift' _ _ (PAxm (s, prop, Ts)) =
wenzelm@16880
   682
          PAxm (s, prop, apsome' (same (map (Logic.incr_tvar inc))) Ts)
berghofe@11715
   683
      | lift' _ _ _ = raise SAME
berghofe@11715
   684
    and lifth' Us Ts prf = (lift' Us Ts prf handle SAME => prf);
berghofe@11519
   685
wenzelm@18030
   686
    val ps = map (Logic.lift_all inc Bi) (Logic.strip_imp_prems prop);
berghofe@11519
   687
    val k = length ps;
berghofe@11519
   688
berghofe@11519
   689
    fun mk_app (b, (i, j, prf)) = 
berghofe@11615
   690
          if b then (i-1, j, prf %% PBound i) else (i, j-1, prf %> Bound j);
berghofe@11519
   691
berghofe@11519
   692
    fun lift Us bs i j (Const ("==>", _) $ A $ B) =
skalberg@15531
   693
	    AbsP ("H", NONE (*A*), lift Us (true::bs) (i+1) j B)
berghofe@11519
   694
      | lift Us bs i j (Const ("all", _) $ Abs (a, T, t)) = 
skalberg@15531
   695
	    Abst (a, NONE (*T*), lift (T::Us) (false::bs) i (j+1) t)
berghofe@11715
   696
      | lift Us bs i j _ = proof_combP (lifth' (rev Us) [] prf,
skalberg@15574
   697
            map (fn k => (#3 (foldr mk_app (i-1, j-1, PBound k) bs)))
berghofe@11519
   698
              (i + k - 1 downto i));
berghofe@11519
   699
  in
berghofe@11519
   700
    mk_AbsP (k, lift [] [] 0 0 Bi)
berghofe@11519
   701
  end;
berghofe@11519
   702
berghofe@11519
   703
berghofe@11519
   704
(***** proof by assumption *****)
berghofe@11519
   705
skalberg@15531
   706
fun mk_asm_prf (Const ("==>", _) $ A $ B) i = AbsP ("H", NONE (*A*), mk_asm_prf B (i+1))
skalberg@15531
   707
  | mk_asm_prf (Const ("all", _) $ Abs (a, T, t)) i = Abst (a, NONE (*T*), mk_asm_prf t i)
berghofe@11519
   708
  | mk_asm_prf _ i = PBound i;
berghofe@11519
   709
berghofe@11519
   710
fun assumption_proof Bs Bi n prf =
berghofe@11519
   711
  mk_AbsP (length Bs, proof_combP (prf,
berghofe@11519
   712
    map PBound (length Bs - 1 downto 0) @ [mk_asm_prf Bi (~n)]));
berghofe@11519
   713
berghofe@11519
   714
berghofe@11519
   715
(***** Composition of object rule with proof state *****)
berghofe@11519
   716
berghofe@11519
   717
fun flatten_params_proof i j n (Const ("==>", _) $ A $ B, k) =
skalberg@15531
   718
      AbsP ("H", NONE (*A*), flatten_params_proof (i+1) j n (B, k))
berghofe@11519
   719
  | flatten_params_proof i j n (Const ("all", _) $ Abs (a, T, t), k) =
skalberg@15531
   720
      Abst (a, NONE (*T*), flatten_params_proof i (j+1) n (t, k))
berghofe@11519
   721
  | flatten_params_proof i j n (_, k) = proof_combP (proof_combt (PBound (k+i),
wenzelm@19304
   722
      map Bound (j-1 downto 0)), map PBound (remove (op =) (i-n) (i-1 downto 0)));
berghofe@11519
   723
wenzelm@18485
   724
fun bicompose_proof flatten Bs oldAs newAs A n rprf sprf =
berghofe@11519
   725
  let
berghofe@11519
   726
    val la = length newAs;
berghofe@11519
   727
    val lb = length Bs;
berghofe@11519
   728
  in
berghofe@11519
   729
    mk_AbsP (lb+la, proof_combP (sprf,
berghofe@11615
   730
      map PBound (lb + la - 1 downto la)) %%
wenzelm@18485
   731
        proof_combP (rprf, (if n>0 then [mk_asm_prf (the A) (~n)] else []) @
wenzelm@18485
   732
          map (if flatten then flatten_params_proof 0 0 n else PBound o snd)
wenzelm@18485
   733
            (oldAs ~~ (la - 1 downto 0))))
berghofe@11519
   734
  end;
berghofe@11519
   735
berghofe@11519
   736
berghofe@11519
   737
(***** axioms for equality *****)
berghofe@11519
   738
wenzelm@14854
   739
val aT = TFree ("'a", []);
wenzelm@14854
   740
val bT = TFree ("'b", []);
berghofe@11519
   741
val x = Free ("x", aT);
berghofe@11519
   742
val y = Free ("y", aT);
berghofe@11519
   743
val z = Free ("z", aT);
berghofe@11519
   744
val A = Free ("A", propT);
berghofe@11519
   745
val B = Free ("B", propT);
berghofe@11519
   746
val f = Free ("f", aT --> bT);
berghofe@11519
   747
val g = Free ("g", aT --> bT);
berghofe@11519
   748
berghofe@11519
   749
local open Logic in
berghofe@11519
   750
berghofe@11519
   751
val equality_axms =
berghofe@11519
   752
  [("reflexive", mk_equals (x, x)),
berghofe@11519
   753
   ("symmetric", mk_implies (mk_equals (x, y), mk_equals (y, x))),
berghofe@11519
   754
   ("transitive", list_implies ([mk_equals (x, y), mk_equals (y, z)], mk_equals (x, z))),
berghofe@11519
   755
   ("equal_intr", list_implies ([mk_implies (A, B), mk_implies (B, A)], mk_equals (A, B))),
berghofe@11519
   756
   ("equal_elim", list_implies ([mk_equals (A, B), A], B)),
berghofe@11519
   757
   ("abstract_rule", Logic.mk_implies
berghofe@11519
   758
      (all aT $ Abs ("x", aT, equals bT $ (f $ Bound 0) $ (g $ Bound 0)),
berghofe@11519
   759
       equals (aT --> bT) $
berghofe@11519
   760
         Abs ("x", aT, f $ Bound 0) $ Abs ("x", aT, g $ Bound 0))),
berghofe@11519
   761
   ("combination", Logic.list_implies
berghofe@11519
   762
      ([Logic.mk_equals (f, g), Logic.mk_equals (x, y)],
berghofe@11519
   763
       Logic.mk_equals (f $ x, g $ y)))];
berghofe@11519
   764
berghofe@11519
   765
val [reflexive_axm, symmetric_axm, transitive_axm, equal_intr_axm,
berghofe@11519
   766
  equal_elim_axm, abstract_rule_axm, combination_axm] =
skalberg@15531
   767
    map (fn (s, t) => PAxm ("ProtoPure." ^ s, varify t, NONE)) equality_axms;
berghofe@11519
   768
berghofe@11519
   769
end;
berghofe@11519
   770
skalberg@15531
   771
val reflexive = reflexive_axm % NONE;
berghofe@11519
   772
berghofe@11615
   773
fun symmetric (prf as PAxm ("ProtoPure.reflexive", _, _) % _) = prf
skalberg@15531
   774
  | symmetric prf = symmetric_axm % NONE % NONE %% prf;
berghofe@11519
   775
berghofe@11615
   776
fun transitive _ _ (PAxm ("ProtoPure.reflexive", _, _) % _) prf2 = prf2
berghofe@11615
   777
  | transitive _ _ prf1 (PAxm ("ProtoPure.reflexive", _, _) % _) = prf1
berghofe@11519
   778
  | transitive u (Type ("prop", [])) prf1 prf2 =
skalberg@15531
   779
      transitive_axm % NONE % SOME (remove_types u) % NONE %% prf1 %% prf2
berghofe@11519
   780
  | transitive u T prf1 prf2 =
skalberg@15531
   781
      transitive_axm % NONE % NONE % NONE %% prf1 %% prf2;
berghofe@11519
   782
berghofe@11519
   783
fun abstract_rule x a prf =
skalberg@15531
   784
  abstract_rule_axm % NONE % NONE %% forall_intr_proof x a prf;
berghofe@11519
   785
berghofe@11615
   786
fun check_comb (PAxm ("ProtoPure.combination", _, _) % f % g % _ % _ %% prf %% _) =
skalberg@15570
   787
      isSome f orelse check_comb prf
berghofe@11615
   788
  | check_comb (PAxm ("ProtoPure.transitive", _, _) % _ % _ % _ %% prf1 %% prf2) =
berghofe@11519
   789
      check_comb prf1 andalso check_comb prf2
berghofe@11615
   790
  | check_comb (PAxm ("ProtoPure.symmetric", _, _) % _ % _ %% prf) = check_comb prf
berghofe@11519
   791
  | check_comb _ = false;
berghofe@11519
   792
berghofe@11519
   793
fun combination f g t u (Type (_, [T, U])) prf1 prf2 =
berghofe@11519
   794
  let
berghofe@11519
   795
    val f = Envir.beta_norm f;
berghofe@11519
   796
    val g = Envir.beta_norm g;
berghofe@11519
   797
    val prf =  if check_comb prf1 then
skalberg@15531
   798
        combination_axm % NONE % NONE
berghofe@11519
   799
      else (case prf1 of
berghofe@11615
   800
          PAxm ("ProtoPure.reflexive", _, _) % _ =>
skalberg@15531
   801
            combination_axm %> remove_types f % NONE
berghofe@11615
   802
        | _ => combination_axm %> remove_types f %> remove_types g)
berghofe@11519
   803
  in
berghofe@11519
   804
    (case T of
berghofe@11615
   805
       Type ("fun", _) => prf %
berghofe@11519
   806
         (case head_of f of
skalberg@15531
   807
            Abs _ => SOME (remove_types t)
skalberg@15531
   808
          | Var _ => SOME (remove_types t)
skalberg@15531
   809
          | _ => NONE) %
berghofe@11519
   810
         (case head_of g of
skalberg@15531
   811
            Abs _ => SOME (remove_types u)
skalberg@15531
   812
          | Var _ => SOME (remove_types u)
skalberg@15531
   813
          | _ => NONE) %% prf1 %% prf2
skalberg@15531
   814
     | _ => prf % NONE % NONE %% prf1 %% prf2)
berghofe@11519
   815
  end;
berghofe@11519
   816
berghofe@11519
   817
fun equal_intr A B prf1 prf2 =
berghofe@11615
   818
  equal_intr_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   819
berghofe@11519
   820
fun equal_elim A B prf1 prf2 =
berghofe@11615
   821
  equal_elim_axm %> remove_types A %> remove_types B %% prf1 %% prf2;
berghofe@11519
   822
berghofe@11519
   823
berghofe@11519
   824
(***** axioms and theorems *****)
berghofe@11519
   825
wenzelm@17492
   826
fun vars_of t = rev (fold_aterms (fn v as Var _ => insert (op =) v | _ => I) t []);
berghofe@11519
   827
berghofe@11519
   828
fun test_args _ [] = true
berghofe@11519
   829
  | test_args is (Bound i :: ts) =
wenzelm@17492
   830
      not (member (op =) is i) andalso test_args (i :: is) ts
berghofe@11519
   831
  | test_args _ _ = false;
berghofe@11519
   832
berghofe@11519
   833
fun is_fun (Type ("fun", _)) = true
berghofe@11519
   834
  | is_fun (TVar _) = true
berghofe@11519
   835
  | is_fun _ = false;
berghofe@11519
   836
berghofe@11519
   837
fun add_funvars Ts (vs, t) =
berghofe@11519
   838
  if is_fun (fastype_of1 (Ts, t)) then
wenzelm@19482
   839
    vs union map_filter (fn Var (ixn, T) =>
skalberg@15531
   840
      if is_fun T then SOME ixn else NONE | _ => NONE) (vars_of t)
berghofe@11519
   841
  else vs;
berghofe@11519
   842
berghofe@11519
   843
fun add_npvars q p Ts (vs, Const ("==>", _) $ t $ u) =
berghofe@11519
   844
      add_npvars q p Ts (add_npvars q (not p) Ts (vs, t), u)
berghofe@11519
   845
  | add_npvars q p Ts (vs, Const ("all", Type (_, [Type (_, [T, _]), _])) $ t) =
berghofe@11519
   846
      add_npvars q p Ts (vs, if p andalso q then betapply (t, Var (("",0), T)) else t)
berghofe@12041
   847
  | add_npvars q p Ts (vs, Abs (_, T, t)) = add_npvars q p (T::Ts) (vs, t)
berghofe@12041
   848
  | add_npvars _ _ Ts (vs, t) = add_npvars' Ts (vs, t)
berghofe@12041
   849
and add_npvars' Ts (vs, t) = (case strip_comb t of
berghofe@11519
   850
    (Var (ixn, _), ts) => if test_args [] ts then vs
haftmann@17314
   851
      else Library.foldl (add_npvars' Ts)
haftmann@17314
   852
        (AList.update (op =) (ixn,
haftmann@17314
   853
          Library.foldl (add_funvars Ts) ((these ooo AList.lookup) (op =) vs ixn, ts)) vs, ts)
skalberg@15570
   854
  | (Abs (_, T, u), ts) => Library.foldl (add_npvars' (T::Ts)) (vs, u :: ts)
skalberg@15570
   855
  | (_, ts) => Library.foldl (add_npvars' Ts) (vs, ts));
berghofe@11519
   856
berghofe@11519
   857
fun prop_vars (Const ("==>", _) $ P $ Q) = prop_vars P union prop_vars Q
berghofe@11519
   858
  | prop_vars (Const ("all", _) $ Abs (_, _, t)) = prop_vars t
berghofe@11519
   859
  | prop_vars t = (case strip_comb t of
berghofe@11519
   860
      (Var (ixn, _), _) => [ixn] | _ => []);
berghofe@11519
   861
berghofe@11519
   862
fun is_proj t =
berghofe@11519
   863
  let
berghofe@11519
   864
    fun is_p i t = (case strip_comb t of
berghofe@11519
   865
        (Bound j, []) => false
berghofe@11519
   866
      | (Bound j, ts) => j >= i orelse exists (is_p i) ts
berghofe@11519
   867
      | (Abs (_, _, u), _) => is_p (i+1) u
berghofe@11519
   868
      | (_, ts) => exists (is_p i) ts)
berghofe@11519
   869
  in (case strip_abs_body t of
berghofe@11519
   870
        Bound _ => true
berghofe@11519
   871
      | t' => is_p 0 t')
berghofe@11519
   872
  end;
berghofe@11519
   873
berghofe@11519
   874
fun needed_vars prop = 
skalberg@15570
   875
  Library.foldl op union ([], map op ins (add_npvars true true [] ([], prop))) union
berghofe@11519
   876
  prop_vars prop;
berghofe@11519
   877
berghofe@11519
   878
fun gen_axm_proof c name prop =
berghofe@11519
   879
  let
berghofe@11519
   880
    val nvs = needed_vars prop;
berghofe@11519
   881
    val args = map (fn (v as Var (ixn, _)) =>
wenzelm@17492
   882
        if member (op =) nvs ixn then SOME v else NONE) (vars_of prop) @
wenzelm@16983
   883
      map SOME (sort Term.term_ord (term_frees prop));
berghofe@11519
   884
  in
skalberg@15531
   885
    proof_combt' (c (name, prop, NONE), args)
berghofe@11519
   886
  end;
berghofe@11519
   887
berghofe@11519
   888
val axm_proof = gen_axm_proof PAxm;
berghofe@17017
   889
berghofe@17017
   890
val dummy = Const (Term.dummy_patternN, dummyT);
berghofe@17017
   891
berghofe@17017
   892
fun oracle_proof name prop =
berghofe@17017
   893
  if !proofs = 0 then Oracle (name, dummy, NONE)
berghofe@17017
   894
  else gen_axm_proof Oracle name prop;
berghofe@11519
   895
wenzelm@17492
   896
fun shrink_proof thy =
wenzelm@17492
   897
  let
wenzelm@17492
   898
    val compress_typ = Compress.typ thy;
wenzelm@17492
   899
    val compress_term = Compress.term thy;
wenzelm@17492
   900
  
wenzelm@17492
   901
    fun shrink ls lev (prf as Abst (a, T, body)) =
wenzelm@17492
   902
          let val (b, is, ch, body') = shrink ls (lev+1) body
wenzelm@17492
   903
          in (b, is, ch, if ch then Abst (a, Option.map compress_typ T, body') else prf) end
wenzelm@17492
   904
      | shrink ls lev (prf as AbsP (a, t, body)) =
wenzelm@17492
   905
          let val (b, is, ch, body') = shrink (lev::ls) lev body
wenzelm@19482
   906
          in (b orelse member (op =) is 0, map_filter (fn 0 => NONE | i => SOME (i-1)) is,
wenzelm@17492
   907
            ch, if ch then AbsP (a, Option.map compress_term t, body') else prf)
wenzelm@17492
   908
          end
wenzelm@17492
   909
      | shrink ls lev prf =
wenzelm@17492
   910
          let val (is, ch, _, prf') = shrink' ls lev [] [] prf
wenzelm@17492
   911
          in (false, is, ch, prf') end
wenzelm@17492
   912
    and shrink' ls lev ts prfs (prf as prf1 %% prf2) =
wenzelm@17492
   913
          let
wenzelm@17492
   914
            val p as (_, is', ch', prf') = shrink ls lev prf2;
wenzelm@17492
   915
            val (is, ch, ts', prf'') = shrink' ls lev ts (p::prfs) prf1
wenzelm@17492
   916
          in (is union is', ch orelse ch', ts',
wenzelm@17492
   917
              if ch orelse ch' then prf'' %% prf' else prf)
wenzelm@17492
   918
          end
wenzelm@17492
   919
      | shrink' ls lev ts prfs (prf as prf1 % t) =
wenzelm@17492
   920
          let val (is, ch, (ch', t')::ts', prf') = shrink' ls lev (t::ts) prfs prf1
wenzelm@17492
   921
          in (is, ch orelse ch', ts',
wenzelm@17492
   922
              if ch orelse ch' then prf' % Option.map compress_term t' else prf) end
wenzelm@17492
   923
      | shrink' ls lev ts prfs (prf as PBound i) =
wenzelm@17492
   924
          (if exists (fn SOME (Bound j) => lev-j <= List.nth (ls, i) | _ => true) ts
haftmann@18928
   925
             orelse has_duplicates (op =)
haftmann@18928
   926
               (Library.foldl (fn (js, SOME (Bound j)) => j :: js | (js, _) => js) ([], ts))
wenzelm@17492
   927
             orelse exists #1 prfs then [i] else [], false, map (pair false) ts, prf)
wenzelm@17492
   928
      | shrink' ls lev ts prfs (Hyp t) = ([], false, map (pair false) ts, Hyp (compress_term t))
wenzelm@17492
   929
      | shrink' ls lev ts prfs (prf as MinProof _) =
wenzelm@17492
   930
          ([], false, map (pair false) ts, prf)
wenzelm@17492
   931
      | shrink' ls lev ts prfs prf =
wenzelm@17492
   932
          let
wenzelm@17492
   933
            val prop = (case prf of PThm (_, _, prop, _) => prop | PAxm (_, prop, _) => prop
wenzelm@17492
   934
              | Oracle (_, prop, _) => prop | _ => error "shrink: proof not in normal form");
wenzelm@17492
   935
            val vs = vars_of prop;
wenzelm@19012
   936
            val (ts', ts'') = chop (length vs) ts;
wenzelm@17492
   937
            val insts = Library.take (length ts', map (fst o dest_Var) vs) ~~ ts';
wenzelm@17492
   938
            val nvs = Library.foldl (fn (ixns', (ixn, ixns)) =>
wenzelm@17492
   939
              insert (op =) ixn (case AList.lookup (op =) insts ixn of
wenzelm@17492
   940
                  SOME (SOME t) => if is_proj t then ixns union ixns' else ixns'
wenzelm@17492
   941
                | _ => ixns union ixns'))
wenzelm@17492
   942
                  (needed prop ts'' prfs, add_npvars false true [] ([], prop));
wenzelm@17492
   943
            val insts' = map
wenzelm@17492
   944
              (fn (ixn, x as SOME _) => if member (op =) nvs ixn then (false, x) else (true, NONE)
wenzelm@17492
   945
                | (_, x) => (false, x)) insts
wenzelm@17492
   946
          in ([], false, insts' @ map (pair false) ts'', prf) end
wenzelm@17492
   947
    and needed (Const ("==>", _) $ t $ u) ts ((b, _, _, _)::prfs) =
wenzelm@17492
   948
          (if b then map (fst o dest_Var) (vars_of t) else []) union needed u ts prfs
wenzelm@17492
   949
      | needed (Var (ixn, _)) (_::_) _ = [ixn]
wenzelm@17492
   950
      | needed _ _ _ = [];
wenzelm@17492
   951
  in shrink end;
berghofe@11519
   952
berghofe@11519
   953
berghofe@11519
   954
(**** Simple first order matching functions for terms and proofs ****)
berghofe@11519
   955
berghofe@11519
   956
exception PMatch;
berghofe@11519
   957
berghofe@11519
   958
(** see pattern.ML **)
berghofe@11519
   959
skalberg@15570
   960
fun flt (i: int) = List.filter (fn n => n < i);
berghofe@12279
   961
berghofe@12279
   962
fun fomatch Ts tymatch j =
berghofe@11519
   963
  let
berghofe@11519
   964
    fun mtch (instsp as (tyinsts, insts)) = fn
berghofe@11519
   965
        (Var (ixn, T), t)  =>
berghofe@12279
   966
          if j>0 andalso not (null (flt j (loose_bnos t)))
berghofe@12279
   967
          then raise PMatch
berghofe@12279
   968
          else (tymatch (tyinsts, fn () => (T, fastype_of1 (Ts, t))),
berghofe@12279
   969
            (ixn, t) :: insts)
berghofe@11519
   970
      | (Free (a, T), Free (b, U)) =>
berghofe@12279
   971
	  if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   972
      | (Const (a, T), Const (b, U))  =>
berghofe@12279
   973
	  if a=b then (tymatch (tyinsts, K (T, U)), insts) else raise PMatch
berghofe@11519
   974
      | (f $ t, g $ u) => mtch (mtch instsp (f, g)) (t, u)
berghofe@12279
   975
      | (Bound i, Bound j) => if i=j then instsp else raise PMatch
berghofe@11519
   976
      | _ => raise PMatch
berghofe@11519
   977
  in mtch end;
berghofe@11519
   978
berghofe@12279
   979
fun match_proof Ts tymatch =
berghofe@11519
   980
  let
skalberg@15531
   981
    fun optmatch _ inst (NONE, _) = inst
skalberg@15531
   982
      | optmatch _ _ (SOME _, NONE) = raise PMatch
skalberg@15531
   983
      | optmatch mtch inst (SOME x, SOME y) = mtch inst (x, y)
berghofe@12279
   984
berghofe@12279
   985
    fun matcht Ts j (pinst, tinst) (t, u) =
berghofe@12279
   986
      (pinst, fomatch Ts tymatch j tinst (t, Envir.beta_norm u));
berghofe@12279
   987
    fun matchT (pinst, (tyinsts, insts)) p =
berghofe@12279
   988
      (pinst, (tymatch (tyinsts, K p), insts));
skalberg@15570
   989
    fun matchTs inst (Ts, Us) = Library.foldl (uncurry matchT) (inst, Ts ~~ Us);
berghofe@12279
   990
berghofe@12279
   991
    fun mtch Ts i j (pinst, tinst) (Hyp (Var (ixn, _)), prf) =
berghofe@12279
   992
          if i = 0 andalso j = 0 then ((ixn, prf) :: pinst, tinst)
berghofe@12279
   993
          else (case apfst (flt i) (apsnd (flt j)
berghofe@12279
   994
                  (prf_add_loose_bnos 0 0 prf ([], []))) of
berghofe@12279
   995
              ([], []) => ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
   996
            | ([], _) => if j = 0 then
berghofe@12279
   997
                   ((ixn, incr_pboundvars (~i) (~j) prf) :: pinst, tinst)
berghofe@12279
   998
                 else raise PMatch
berghofe@12279
   999
            | _ => raise PMatch)
berghofe@12279
  1000
      | mtch Ts i j inst (prf1 % opt1, prf2 % opt2) =
berghofe@12279
  1001
          optmatch (matcht Ts j) (mtch Ts i j inst (prf1, prf2)) (opt1, opt2)
berghofe@12279
  1002
      | mtch Ts i j inst (prf1 %% prf2, prf1' %% prf2') =
berghofe@12279
  1003
          mtch Ts i j (mtch Ts i j inst (prf1, prf1')) (prf2, prf2')
berghofe@12279
  1004
      | mtch Ts i j inst (Abst (_, opT, prf1), Abst (_, opU, prf2)) =
wenzelm@18485
  1005
          mtch (the_default dummyT opU :: Ts) i (j+1)
berghofe@12279
  1006
            (optmatch matchT inst (opT, opU)) (prf1, prf2)
berghofe@12279
  1007
      | mtch Ts i j inst (prf1, Abst (_, opU, prf2)) =
wenzelm@18485
  1008
          mtch (the_default dummyT opU :: Ts) i (j+1) inst
berghofe@12279
  1009
            (incr_pboundvars 0 1 prf1 %> Bound 0, prf2)
berghofe@12279
  1010
      | mtch Ts i j inst (AbsP (_, opt, prf1), AbsP (_, opu, prf2)) =
berghofe@12279
  1011
          mtch Ts (i+1) j (optmatch (matcht Ts j) inst (opt, opu)) (prf1, prf2)
berghofe@12279
  1012
      | mtch Ts i j inst (prf1, AbsP (_, _, prf2)) =
berghofe@12279
  1013
          mtch Ts (i+1) j inst (incr_pboundvars 1 0 prf1 %% PBound 0, prf2)
berghofe@12279
  1014
      | mtch Ts i j inst (PThm ((name1, _), _, prop1, opTs),
berghofe@12279
  1015
            PThm ((name2, _), _, prop2, opUs)) =
berghofe@11519
  1016
          if name1=name2 andalso prop1=prop2 then
berghofe@12279
  1017
            optmatch matchTs inst (opTs, opUs)
berghofe@11519
  1018
          else raise PMatch
berghofe@12279
  1019
      | mtch Ts i j inst (PAxm (s1, _, opTs), PAxm (s2, _, opUs)) =
berghofe@12279
  1020
          if s1=s2 then optmatch matchTs inst (opTs, opUs)
berghofe@11519
  1021
          else raise PMatch
berghofe@12279
  1022
      | mtch _ _ _ inst (PBound i, PBound j) = if i = j then inst else raise PMatch
berghofe@12279
  1023
      | mtch _ _ _ _ _ = raise PMatch
berghofe@12279
  1024
  in mtch Ts 0 0 end;
berghofe@11519
  1025
berghofe@11519
  1026
fun prf_subst (pinst, (tyinsts, insts)) =
berghofe@11519
  1027
  let
berghofe@15797
  1028
    val substT = Envir.typ_subst_TVars tyinsts;
berghofe@11519
  1029
haftmann@17325
  1030
    fun subst' lev (t as Var (ixn, _)) = (case AList.lookup (op =) insts ixn of
skalberg@15531
  1031
          NONE => t
skalberg@15531
  1032
        | SOME u => incr_boundvars lev u)
berghofe@11519
  1033
      | subst' lev (Const (s, T)) = Const (s, substT T)
berghofe@11519
  1034
      | subst' lev (Free (s, T)) = Free (s, substT T)
berghofe@11519
  1035
      | subst' lev (Abs (a, T, body)) = Abs (a, substT T, subst' (lev+1) body)
berghofe@11519
  1036
      | subst' lev (f $ t) = subst' lev f $ subst' lev t
berghofe@11519
  1037
      | subst' _ t = t;
berghofe@11519
  1038
berghofe@11519
  1039
    fun subst plev tlev (AbsP (a, t, body)) =
skalberg@15570
  1040
          AbsP (a, Option.map (subst' tlev) t, subst (plev+1) tlev body)
berghofe@11519
  1041
      | subst plev tlev (Abst (a, T, body)) =
skalberg@15570
  1042
          Abst (a, Option.map substT T, subst plev (tlev+1) body)
berghofe@11615
  1043
      | subst plev tlev (prf %% prf') = subst plev tlev prf %% subst plev tlev prf'
skalberg@15570
  1044
      | subst plev tlev (prf % t) = subst plev tlev prf % Option.map (subst' tlev) t
haftmann@17325
  1045
      | subst plev tlev (prf as Hyp (Var (ixn, _))) = (case AList.lookup (op =) pinst ixn of
skalberg@15531
  1046
          NONE => prf
skalberg@15531
  1047
        | SOME prf' => incr_pboundvars plev tlev prf')
berghofe@11519
  1048
      | subst _ _ (PThm (id, prf, prop, Ts)) =
skalberg@15570
  1049
          PThm (id, prf, prop, Option.map (map substT) Ts)
berghofe@11519
  1050
      | subst _ _ (PAxm (id, prop, Ts)) =
skalberg@15570
  1051
          PAxm (id, prop, Option.map (map substT) Ts)
berghofe@11519
  1052
      | subst _ _ t = t
berghofe@11519
  1053
  in subst 0 0 end;
berghofe@11519
  1054
berghofe@12871
  1055
(*A fast unification filter: true unless the two terms cannot be unified. 
berghofe@12871
  1056
  Terms must be NORMAL.  Treats all Vars as distinct. *)
berghofe@12871
  1057
fun could_unify prf1 prf2 =
berghofe@12871
  1058
  let
berghofe@12871
  1059
    fun matchrands (prf1 %% prf2) (prf1' %% prf2') =
berghofe@12871
  1060
          could_unify prf2 prf2' andalso matchrands prf1 prf1'
skalberg@15531
  1061
      | matchrands (prf % SOME t) (prf' % SOME t') =
berghofe@12871
  1062
          Term.could_unify (t, t') andalso matchrands prf prf'
berghofe@12871
  1063
      | matchrands (prf % _) (prf' % _) = matchrands prf prf'
berghofe@12871
  1064
      | matchrands _ _ = true
berghofe@12871
  1065
berghofe@12871
  1066
    fun head_of (prf %% _) = head_of prf
berghofe@12871
  1067
      | head_of (prf % _) = head_of prf
berghofe@12871
  1068
      | head_of prf = prf
berghofe@12871
  1069
berghofe@12871
  1070
  in case (head_of prf1, head_of prf2) of
berghofe@12871
  1071
        (_, Hyp (Var _)) => true
berghofe@12871
  1072
      | (Hyp (Var _), _) => true
berghofe@12871
  1073
      | (PThm ((a, _), _, propa, _), PThm ((b, _), _, propb, _)) =>
berghofe@12871
  1074
          a = b andalso propa = propb andalso matchrands prf1 prf2
berghofe@12871
  1075
      | (PAxm (a, _, _), PAxm (b, _, _)) => a = b andalso matchrands prf1 prf2
berghofe@12871
  1076
      | (PBound i, PBound j) =>  i = j andalso matchrands prf1 prf2
berghofe@12871
  1077
      | (AbsP _, _) =>  true   (*because of possible eta equality*)
berghofe@12871
  1078
      | (Abst _, _) =>  true
berghofe@12871
  1079
      | (_, AbsP _) =>  true
berghofe@12871
  1080
      | (_, Abst _) =>  true
berghofe@12871
  1081
      | _ => false
berghofe@12871
  1082
  end;
berghofe@12871
  1083
berghofe@11519
  1084
(**** rewriting on proof terms ****)
berghofe@11519
  1085
berghofe@13102
  1086
val skel0 = PBound 0;
berghofe@13102
  1087
berghofe@12279
  1088
fun rewrite_prf tymatch (rules, procs) prf =
berghofe@11519
  1089
  let
skalberg@15531
  1090
    fun rew _ (Abst (_, _, body) % SOME t) = SOME (prf_subst_bounds [t] body, skel0)
skalberg@15531
  1091
      | rew _ (AbsP (_, _, body) %% prf) = SOME (prf_subst_pbounds [prf] body, skel0)
berghofe@11519
  1092
      | rew Ts prf = (case get_first (fn (_, r) => r Ts prf) procs of
skalberg@15531
  1093
          SOME prf' => SOME (prf', skel0)
skalberg@15531
  1094
        | NONE => get_first (fn (prf1, prf2) => SOME (prf_subst
berghofe@13102
  1095
            (match_proof Ts tymatch ([], (Vartab.empty, [])) (prf1, prf)) prf2, prf2)
skalberg@15570
  1096
               handle PMatch => NONE) (List.filter (could_unify prf o fst) rules));
berghofe@11519
  1097
berghofe@11615
  1098
    fun rew0 Ts (prf as AbsP (_, _, prf' %% PBound 0)) =
berghofe@11519
  1099
          if prf_loose_Pbvar1 prf' 0 then rew Ts prf
berghofe@11519
  1100
          else
berghofe@11519
  1101
            let val prf'' = incr_pboundvars (~1) 0 prf'
skalberg@15570
  1102
            in SOME (getOpt (rew Ts prf'', (prf'', skel0))) end
skalberg@15531
  1103
      | rew0 Ts (prf as Abst (_, _, prf' % SOME (Bound 0))) =
berghofe@11519
  1104
          if prf_loose_bvar1 prf' 0 then rew Ts prf
berghofe@11519
  1105
          else
berghofe@11519
  1106
            let val prf'' = incr_pboundvars 0 (~1) prf'
skalberg@15570
  1107
            in SOME (getOpt (rew Ts prf'', (prf'', skel0))) end
berghofe@11519
  1108
      | rew0 Ts prf = rew Ts prf;
berghofe@11519
  1109
skalberg@15531
  1110
    fun rew1 _ (Hyp (Var _)) _ = NONE
berghofe@13102
  1111
      | rew1 Ts skel prf = (case rew2 Ts skel prf of
skalberg@15531
  1112
          SOME prf1 => (case rew0 Ts prf1 of
skalberg@15570
  1113
              SOME (prf2, skel') => SOME (getOpt (rew1 Ts skel' prf2, prf2))
skalberg@15531
  1114
            | NONE => SOME prf1)
skalberg@15531
  1115
        | NONE => (case rew0 Ts prf of
skalberg@15570
  1116
              SOME (prf1, skel') => SOME (getOpt (rew1 Ts skel' prf1, prf1))
skalberg@15531
  1117
            | NONE => NONE))
berghofe@11519
  1118
skalberg@15531
  1119
    and rew2 Ts skel (prf % SOME t) = (case prf of
berghofe@11519
  1120
            Abst (_, _, body) =>
berghofe@11519
  1121
              let val prf' = prf_subst_bounds [t] body
skalberg@15570
  1122
              in SOME (getOpt (rew2 Ts skel0 prf', prf')) end
berghofe@13102
  1123
          | _ => (case rew1 Ts (case skel of skel' % _ => skel' | _ => skel0) prf of
skalberg@15531
  1124
              SOME prf' => SOME (prf' % SOME t)
skalberg@15531
  1125
            | NONE => NONE))
skalberg@15570
  1126
      | rew2 Ts skel (prf % NONE) = Option.map (fn prf' => prf' % NONE)
berghofe@13102
  1127
          (rew1 Ts (case skel of skel' % _ => skel' | _ => skel0) prf)
berghofe@13102
  1128
      | rew2 Ts skel (prf1 %% prf2) = (case prf1 of
berghofe@11519
  1129
            AbsP (_, _, body) =>
berghofe@11519
  1130
              let val prf' = prf_subst_pbounds [prf2] body
skalberg@15570
  1131
              in SOME (getOpt (rew2 Ts skel0 prf', prf')) end
berghofe@13102
  1132
          | _ =>
berghofe@13102
  1133
            let val (skel1, skel2) = (case skel of
berghofe@13102
  1134
                skel1 %% skel2 => (skel1, skel2)
berghofe@13102
  1135
              | _ => (skel0, skel0))
berghofe@13102
  1136
            in case rew1 Ts skel1 prf1 of
skalberg@15531
  1137
                SOME prf1' => (case rew1 Ts skel2 prf2 of
skalberg@15531
  1138
                    SOME prf2' => SOME (prf1' %% prf2')
skalberg@15531
  1139
                  | NONE => SOME (prf1' %% prf2))
skalberg@15531
  1140
              | NONE => (case rew1 Ts skel2 prf2 of
skalberg@15531
  1141
                    SOME prf2' => SOME (prf1 %% prf2')
skalberg@15531
  1142
                  | NONE => NONE)
berghofe@13102
  1143
            end)
skalberg@15570
  1144
      | rew2 Ts skel (Abst (s, T, prf)) = (case rew1 (getOpt (T,dummyT) :: Ts)
berghofe@13102
  1145
              (case skel of Abst (_, _, skel') => skel' | _ => skel0) prf of
skalberg@15531
  1146
            SOME prf' => SOME (Abst (s, T, prf'))
skalberg@15531
  1147
          | NONE => NONE)
berghofe@13102
  1148
      | rew2 Ts skel (AbsP (s, t, prf)) = (case rew1 Ts
berghofe@13102
  1149
              (case skel of AbsP (_, _, skel') => skel' | _ => skel0) prf of
skalberg@15531
  1150
            SOME prf' => SOME (AbsP (s, t, prf'))
skalberg@15531
  1151
          | NONE => NONE)
skalberg@15531
  1152
      | rew2 _ _ _ = NONE
berghofe@11519
  1153
skalberg@15570
  1154
  in getOpt (rew1 [] skel0 prf, prf) end;
berghofe@11519
  1155
wenzelm@17203
  1156
fun rewrite_proof thy = rewrite_prf (fn (tyenv, f) =>
wenzelm@17203
  1157
  Sign.typ_match thy (f ()) tyenv handle Type.TYPE_MATCH => raise PMatch);
berghofe@11519
  1158
berghofe@11715
  1159
fun rewrite_proof_notypes rews = rewrite_prf fst rews;
berghofe@11615
  1160
wenzelm@16940
  1161
berghofe@11519
  1162
(**** theory data ****)
berghofe@11519
  1163
wenzelm@16458
  1164
structure ProofData = TheoryDataFun
wenzelm@16458
  1165
(struct
berghofe@11519
  1166
  val name = "Pure/proof";
berghofe@11519
  1167
  type T = ((proof * proof) list *
berghofe@12233
  1168
    (string * (typ list -> proof -> proof option)) list);
berghofe@11519
  1169
berghofe@12233
  1170
  val empty = ([], []);
berghofe@12233
  1171
  val copy = I;
wenzelm@16458
  1172
  val extend = I;
wenzelm@16458
  1173
  fun merge _ ((rules1, procs1), (rules2, procs2)) =
wenzelm@12293
  1174
    (merge_lists rules1 rules2, merge_alists procs1 procs2);
berghofe@11519
  1175
  fun print _ _ = ();
wenzelm@16458
  1176
end);
berghofe@11519
  1177
wenzelm@16536
  1178
val init_data = ProofData.init;
berghofe@11519
  1179
berghofe@12233
  1180
fun add_prf_rrules rs thy =
berghofe@11519
  1181
  let val r = ProofData.get thy
berghofe@12233
  1182
  in ProofData.put (rs @ fst r, snd r) thy end;
berghofe@11519
  1183
berghofe@12233
  1184
fun add_prf_rprocs ps thy =
berghofe@11519
  1185
  let val r = ProofData.get thy
berghofe@12233
  1186
  in ProofData.put (fst r, ps @ snd r) thy end;
berghofe@11519
  1187
wenzelm@16458
  1188
fun thm_proof thy (name, tags) hyps prop prf =
berghofe@11519
  1189
  let
wenzelm@12923
  1190
    val prop = Logic.list_implies (hyps, prop);
berghofe@11519
  1191
    val nvs = needed_vars prop;
berghofe@11519
  1192
    val args = map (fn (v as Var (ixn, _)) =>
wenzelm@17492
  1193
        if member (op =) nvs ixn then SOME v else NONE) (vars_of prop) @
wenzelm@16983
  1194
      map SOME (sort Term.term_ord (term_frees prop));
wenzelm@11543
  1195
    val opt_prf = if ! proofs = 2 then
wenzelm@17492
  1196
        #4 (shrink_proof thy [] 0 (rewrite_prf fst (ProofData.get thy)
skalberg@15574
  1197
          (foldr (uncurry implies_intr_proof) prf hyps)))
berghofe@17017
  1198
      else MinProof (mk_min_proof prf ([], [], []));
berghofe@12233
  1199
    val head = (case strip_combt (fst (strip_combP prf)) of
skalberg@15531
  1200
        (PThm ((old_name, _), prf', prop', NONE), args') =>
berghofe@11519
  1201
          if (old_name="" orelse old_name=name) andalso
berghofe@11519
  1202
             prop = prop' andalso args = args' then
skalberg@15531
  1203
            PThm ((name, tags), prf', prop, NONE)
berghofe@11519
  1204
          else
skalberg@15531
  1205
            PThm ((name, tags), opt_prf, prop, NONE)
skalberg@15531
  1206
      | _ => PThm ((name, tags), opt_prf, prop, NONE))
berghofe@11519
  1207
  in
wenzelm@12923
  1208
    proof_combP (proof_combt' (head, args), map Hyp hyps)
berghofe@11519
  1209
  end;
berghofe@11519
  1210
wenzelm@12923
  1211
fun get_name_tags hyps prop prf =
wenzelm@12923
  1212
  let val prop = Logic.list_implies (hyps, prop) in
wenzelm@12923
  1213
    (case strip_combt (fst (strip_combP prf)) of
berghofe@11519
  1214
      (PThm ((name, tags), _, prop', _), _) =>
berghofe@11519
  1215
        if prop=prop' then (name, tags) else ("", [])
berghofe@11519
  1216
    | (PAxm (name, prop', _), _) =>
berghofe@11519
  1217
        if prop=prop' then (name, []) else ("", [])
wenzelm@12923
  1218
    | _ => ("", []))
wenzelm@12923
  1219
  end;
berghofe@11519
  1220
berghofe@11519
  1221
end;
berghofe@11519
  1222
berghofe@11519
  1223
structure BasicProofterm : BASIC_PROOFTERM = Proofterm;
berghofe@11519
  1224
open BasicProofterm;