src/HOL/Library/FuncSet.thy
author haftmann
Thu Jun 26 10:07:01 2008 +0200 (2008-06-26)
changeset 27368 9f90ac19e32b
parent 27183 0fc4c0f97a1b
child 27487 c8a6ce181805
permissions -rw-r--r--
established Plain theory and image
paulson@13586
     1
(*  Title:      HOL/Library/FuncSet.thy
paulson@13586
     2
    ID:         $Id$
paulson@13586
     3
    Author:     Florian Kammueller and Lawrence C Paulson
paulson@13586
     4
*)
paulson@13586
     5
wenzelm@14706
     6
header {* Pi and Function Sets *}
paulson@13586
     7
nipkow@15131
     8
theory FuncSet
haftmann@27368
     9
imports Plain Hilbert_Choice
nipkow@15131
    10
begin
paulson@13586
    11
wenzelm@19736
    12
definition
wenzelm@21404
    13
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
wenzelm@19736
    14
  "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
paulson@13586
    15
wenzelm@21404
    16
definition
wenzelm@21404
    17
  extensional :: "'a set => ('a => 'b) set" where
wenzelm@19736
    18
  "extensional A = {f. \<forall>x. x~:A --> f x = arbitrary}"
paulson@13586
    19
wenzelm@21404
    20
definition
wenzelm@21404
    21
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
wenzelm@19736
    22
  "restrict f A = (%x. if x \<in> A then f x else arbitrary)"
paulson@13586
    23
wenzelm@19536
    24
abbreviation
wenzelm@21404
    25
  funcset :: "['a set, 'b set] => ('a => 'b) set"
wenzelm@21404
    26
    (infixr "->" 60) where
wenzelm@19536
    27
  "A -> B == Pi A (%_. B)"
wenzelm@19536
    28
wenzelm@21210
    29
notation (xsymbols)
wenzelm@19656
    30
  funcset  (infixr "\<rightarrow>" 60)
wenzelm@19536
    31
paulson@13586
    32
syntax
wenzelm@19736
    33
  "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
wenzelm@19736
    34
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
paulson@13586
    35
paulson@13586
    36
syntax (xsymbols)
wenzelm@19736
    37
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@19736
    38
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
paulson@13586
    39
kleing@14565
    40
syntax (HTML output)
wenzelm@19736
    41
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
wenzelm@19736
    42
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
kleing@14565
    43
paulson@13586
    44
translations
wenzelm@20770
    45
  "PI x:A. B" == "CONST Pi A (%x. B)"
wenzelm@20770
    46
  "%x:A. f" == "CONST restrict (%x. f) A"
paulson@13586
    47
wenzelm@19736
    48
definition
wenzelm@21404
    49
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
wenzelm@19736
    50
  "compose A g f = (\<lambda>x\<in>A. g (f x))"
paulson@13586
    51
paulson@13586
    52
paulson@13586
    53
subsection{*Basic Properties of @{term Pi}*}
paulson@13586
    54
paulson@13586
    55
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"
wenzelm@14706
    56
  by (simp add: Pi_def)
paulson@13586
    57
paulson@13586
    58
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"
wenzelm@14706
    59
  by (simp add: Pi_def)
paulson@13586
    60
paulson@13586
    61
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"
wenzelm@14706
    62
  by (simp add: Pi_def)
paulson@13586
    63
paulson@13586
    64
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"
wenzelm@14706
    65
  by (simp add: Pi_def)
paulson@13586
    66
paulson@14762
    67
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"
wenzelm@19736
    68
  by (auto simp add: Pi_def)
paulson@14762
    69
paulson@13586
    70
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
paulson@13593
    71
apply (simp add: Pi_def, auto)
paulson@13586
    72
txt{*Converse direction requires Axiom of Choice to exhibit a function
paulson@13586
    73
picking an element from each non-empty @{term "B x"}*}
paulson@13593
    74
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)
wenzelm@14706
    75
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)
paulson@13586
    76
done
paulson@13586
    77
paulson@13593
    78
lemma Pi_empty [simp]: "Pi {} B = UNIV"
wenzelm@14706
    79
  by (simp add: Pi_def)
paulson@13593
    80
paulson@13593
    81
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"
wenzelm@14706
    82
  by (simp add: Pi_def)
paulson@13586
    83
paulson@13586
    84
text{*Covariance of Pi-sets in their second argument*}
paulson@13586
    85
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"
wenzelm@14706
    86
  by (simp add: Pi_def, blast)
paulson@13586
    87
paulson@13586
    88
text{*Contravariance of Pi-sets in their first argument*}
paulson@13586
    89
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"
wenzelm@14706
    90
  by (simp add: Pi_def, blast)
paulson@13586
    91
paulson@13586
    92
paulson@13586
    93
subsection{*Composition With a Restricted Domain: @{term compose}*}
paulson@13586
    94
wenzelm@14706
    95
lemma funcset_compose:
wenzelm@14706
    96
    "[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"
wenzelm@14706
    97
  by (simp add: Pi_def compose_def restrict_def)
paulson@13586
    98
paulson@13586
    99
lemma compose_assoc:
wenzelm@14706
   100
    "[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]
paulson@13586
   101
      ==> compose A h (compose A g f) = compose A (compose B h g) f"
wenzelm@14706
   102
  by (simp add: expand_fun_eq Pi_def compose_def restrict_def)
paulson@13586
   103
paulson@13586
   104
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"
wenzelm@14706
   105
  by (simp add: compose_def restrict_def)
paulson@13586
   106
paulson@13586
   107
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"
wenzelm@14706
   108
  by (auto simp add: image_def compose_eq)
paulson@13586
   109
paulson@13586
   110
paulson@13586
   111
subsection{*Bounded Abstraction: @{term restrict}*}
paulson@13586
   112
paulson@13586
   113
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"
wenzelm@14706
   114
  by (simp add: Pi_def restrict_def)
paulson@13586
   115
paulson@13586
   116
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"
wenzelm@14706
   117
  by (simp add: Pi_def restrict_def)
paulson@13586
   118
paulson@13586
   119
lemma restrict_apply [simp]:
wenzelm@14706
   120
    "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"
wenzelm@14706
   121
  by (simp add: restrict_def)
paulson@13586
   122
wenzelm@14706
   123
lemma restrict_ext:
paulson@13586
   124
    "(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"
wenzelm@14706
   125
  by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)
paulson@13586
   126
paulson@14853
   127
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"
wenzelm@14706
   128
  by (simp add: inj_on_def restrict_def)
paulson@13586
   129
paulson@13586
   130
lemma Id_compose:
wenzelm@14706
   131
    "[|f \<in> A -> B;  f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"
wenzelm@14706
   132
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   133
paulson@13586
   134
lemma compose_Id:
wenzelm@14706
   135
    "[|g \<in> A -> B;  g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"
wenzelm@14706
   136
  by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)
paulson@13586
   137
paulson@14853
   138
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"
wenzelm@19736
   139
  by (auto simp add: restrict_def)
paulson@13586
   140
paulson@14745
   141
paulson@14762
   142
subsection{*Bijections Between Sets*}
paulson@14762
   143
nipkow@26106
   144
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
paulson@14762
   145
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
paulson@14762
   146
paulson@14762
   147
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"
wenzelm@19736
   148
  by (auto simp add: bij_betw_def inj_on_Inv Pi_def)
paulson@14762
   149
paulson@14853
   150
lemma inj_on_compose:
paulson@14853
   151
    "[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"
paulson@14853
   152
  by (auto simp add: bij_betw_def inj_on_def compose_eq)
paulson@14853
   153
paulson@14762
   154
lemma bij_betw_compose:
paulson@14762
   155
    "[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"
wenzelm@19736
   156
  apply (simp add: bij_betw_def compose_eq inj_on_compose)
wenzelm@19736
   157
  apply (auto simp add: compose_def image_def)
wenzelm@19736
   158
  done
paulson@14762
   159
paulson@14853
   160
lemma bij_betw_restrict_eq [simp]:
paulson@14853
   161
     "bij_betw (restrict f A) A B = bij_betw f A B"
paulson@14853
   162
  by (simp add: bij_betw_def)
paulson@14853
   163
paulson@14853
   164
paulson@14853
   165
subsection{*Extensionality*}
paulson@14853
   166
paulson@14853
   167
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary"
paulson@14853
   168
  by (simp add: extensional_def)
paulson@14853
   169
paulson@14853
   170
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"
paulson@14853
   171
  by (simp add: restrict_def extensional_def)
paulson@14853
   172
paulson@14853
   173
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"
paulson@14853
   174
  by (simp add: compose_def)
paulson@14853
   175
paulson@14853
   176
lemma extensionalityI:
paulson@14853
   177
    "[| f \<in> extensional A; g \<in> extensional A;
paulson@14853
   178
      !!x. x\<in>A ==> f x = g x |] ==> f = g"
paulson@14853
   179
  by (force simp add: expand_fun_eq extensional_def)
paulson@14853
   180
paulson@14853
   181
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A"
paulson@14853
   182
  by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)
paulson@14853
   183
paulson@14853
   184
lemma compose_Inv_id:
paulson@14853
   185
    "bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"
paulson@14853
   186
  apply (simp add: bij_betw_def compose_def)
paulson@14853
   187
  apply (rule restrict_ext, auto)
paulson@14853
   188
  apply (erule subst)
paulson@14853
   189
  apply (simp add: Inv_f_f)
paulson@14853
   190
  done
paulson@14853
   191
paulson@14853
   192
lemma compose_id_Inv:
paulson@14853
   193
    "f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"
paulson@14853
   194
  apply (simp add: compose_def)
paulson@14853
   195
  apply (rule restrict_ext)
paulson@14853
   196
  apply (simp add: f_Inv_f)
paulson@14853
   197
  done
paulson@14853
   198
paulson@14762
   199
paulson@14745
   200
subsection{*Cardinality*}
paulson@14745
   201
paulson@14745
   202
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"
wenzelm@19736
   203
  apply (rule card_inj_on_le)
wenzelm@19736
   204
    apply (auto simp add: Pi_def)
wenzelm@19736
   205
  done
paulson@14745
   206
paulson@14745
   207
lemma card_bij:
paulson@14745
   208
     "[|f \<in> A\<rightarrow>B; inj_on f A;
paulson@14745
   209
        g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"
wenzelm@19736
   210
  by (blast intro: card_inj order_antisym)
paulson@14745
   211
paulson@13586
   212
end