src/HOL/simpdata.ML
author paulson
Wed Jun 18 15:31:31 1997 +0200 (1997-06-18)
changeset 3446 a14e5451f613
parent 3282 c31e6239d4c9
child 3448 8a79e27ac53b
permissions -rw-r--r--
Addition of not_imp (which pushes negation into implication) as a default
simprule
clasohm@1465
     1
(*  Title:      HOL/simpdata.ML
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
clasohm@923
     6
Instantiation of the generic simplifier
clasohm@923
     7
*)
clasohm@923
     8
paulson@1984
     9
section "Simplifier";
paulson@1984
    10
clasohm@923
    11
open Simplifier;
clasohm@923
    12
paulson@1984
    13
(*** Addition of rules to simpsets and clasets simultaneously ***)
paulson@1984
    14
paulson@1984
    15
(*Takes UNCONDITIONAL theorems of the form A<->B to 
paulson@2031
    16
        the Safe Intr     rule B==>A and 
paulson@2031
    17
        the Safe Destruct rule A==>B.
paulson@1984
    18
  Also ~A goes to the Safe Elim rule A ==> ?R
paulson@1984
    19
  Failing other cases, A is added as a Safe Intr rule*)
paulson@1984
    20
local
paulson@1984
    21
  val iff_const = HOLogic.eq_const HOLogic.boolT;
paulson@1984
    22
paulson@1984
    23
  fun addIff th = 
paulson@1984
    24
      (case HOLogic.dest_Trueprop (#prop(rep_thm th)) of
paulson@2718
    25
                (Const("Not",_) $ A) =>
paulson@2031
    26
                    AddSEs [zero_var_indexes (th RS notE)]
paulson@2031
    27
              | (con $ _ $ _) =>
paulson@2031
    28
                    if con=iff_const
paulson@2031
    29
                    then (AddSIs [zero_var_indexes (th RS iffD2)];  
paulson@2031
    30
                          AddSDs [zero_var_indexes (th RS iffD1)])
paulson@2031
    31
                    else  AddSIs [th]
paulson@2031
    32
              | _ => AddSIs [th];
paulson@1984
    33
       Addsimps [th])
paulson@1984
    34
      handle _ => error ("AddIffs: theorem must be unconditional\n" ^ 
paulson@2031
    35
                         string_of_thm th)
paulson@1984
    36
paulson@1984
    37
  fun delIff th = 
paulson@1984
    38
      (case HOLogic.dest_Trueprop (#prop(rep_thm th)) of
paulson@2718
    39
                (Const("Not",_) $ A) =>
paulson@2031
    40
                    Delrules [zero_var_indexes (th RS notE)]
paulson@2031
    41
              | (con $ _ $ _) =>
paulson@2031
    42
                    if con=iff_const
paulson@2031
    43
                    then Delrules [zero_var_indexes (th RS iffD2),
paulson@2031
    44
                                   zero_var_indexes (th RS iffD1)]
paulson@2031
    45
                    else Delrules [th]
paulson@2031
    46
              | _ => Delrules [th];
paulson@1984
    47
       Delsimps [th])
paulson@1984
    48
      handle _ => warning("DelIffs: ignoring conditional theorem\n" ^ 
paulson@2031
    49
                          string_of_thm th)
paulson@1984
    50
in
paulson@1984
    51
val AddIffs = seq addIff
paulson@1984
    52
val DelIffs = seq delIff
paulson@1984
    53
end;
paulson@1984
    54
paulson@1984
    55
clasohm@923
    56
local
clasohm@923
    57
paulson@2935
    58
  fun prover s = prove_goal HOL.thy s (fn _ => [blast_tac HOL_cs 1]);
clasohm@923
    59
paulson@1922
    60
  val P_imp_P_iff_True = prover "P --> (P = True)" RS mp;
paulson@1922
    61
  val P_imp_P_eq_True = P_imp_P_iff_True RS eq_reflection;
clasohm@923
    62
paulson@1922
    63
  val not_P_imp_P_iff_F = prover "~P --> (P = False)" RS mp;
paulson@1922
    64
  val not_P_imp_P_eq_False = not_P_imp_P_iff_F RS eq_reflection;
clasohm@923
    65
paulson@1922
    66
  fun atomize pairs =
paulson@1922
    67
    let fun atoms th =
paulson@2031
    68
          (case concl_of th of
paulson@2031
    69
             Const("Trueprop",_) $ p =>
paulson@2031
    70
               (case head_of p of
paulson@2031
    71
                  Const(a,_) =>
paulson@2031
    72
                    (case assoc(pairs,a) of
paulson@2031
    73
                       Some(rls) => flat (map atoms ([th] RL rls))
paulson@2031
    74
                     | None => [th])
paulson@2031
    75
                | _ => [th])
paulson@2031
    76
           | _ => [th])
paulson@1922
    77
    in atoms end;
clasohm@923
    78
nipkow@2134
    79
  fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
nipkow@2134
    80
nipkow@2134
    81
in
nipkow@2134
    82
paulson@1922
    83
  fun mk_meta_eq r = case concl_of r of
paulson@2031
    84
          Const("==",_)$_$_ => r
paulson@1922
    85
      |   _$(Const("op =",_)$_$_) => r RS eq_reflection
paulson@2718
    86
      |   _$(Const("Not",_)$_) => r RS not_P_imp_P_eq_False
paulson@1922
    87
      |   _ => r RS P_imp_P_eq_True;
paulson@1922
    88
  (* last 2 lines requires all formulae to be of the from Trueprop(.) *)
clasohm@923
    89
paulson@2082
    90
val simp_thms = map prover
paulson@2082
    91
 [ "(x=x) = True",
paulson@2082
    92
   "(~True) = False", "(~False) = True", "(~ ~ P) = P",
paulson@2082
    93
   "(~P) ~= P", "P ~= (~P)", "(P ~= Q) = (P = (~Q))",
paulson@2082
    94
   "(True=P) = P", "(P=True) = P",
paulson@2082
    95
   "(True --> P) = P", "(False --> P) = True", 
paulson@2082
    96
   "(P --> True) = True", "(P --> P) = True",
paulson@2082
    97
   "(P --> False) = (~P)", "(P --> ~P) = (~P)",
paulson@2082
    98
   "(P & True) = P", "(True & P) = P", 
nipkow@2800
    99
   "(P & False) = False", "(False & P) = False",
nipkow@2800
   100
   "(P & P) = P", "(P & (P & Q)) = (P & Q)",
paulson@2082
   101
   "(P | True) = True", "(True | P) = True", 
nipkow@2800
   102
   "(P | False) = P", "(False | P) = P",
nipkow@2800
   103
   "(P | P) = P", "(P | (P | Q)) = (P | Q)",
paulson@2082
   104
   "((~P) = (~Q)) = (P=Q)",
nipkow@2129
   105
   "(!x.P) = P", "(? x.P) = P", "? x. x=t", "? x. t=x", 
paulson@2082
   106
   "(? x. x=t & P(x)) = P(t)", "(? x. t=x & P(x)) = P(t)", 
paulson@2082
   107
   "(! x. x=t --> P(x)) = P(t)", "(! x. t=x --> P(x)) = P(t)" ];
clasohm@923
   108
lcp@988
   109
(*Add congruence rules for = (instead of ==) *)
oheimb@2636
   110
infix 4 addcongs delcongs;
clasohm@923
   111
fun ss addcongs congs = ss addeqcongs (congs RL [eq_reflection]);
oheimb@2636
   112
fun ss delcongs congs = ss deleqcongs (congs RL [eq_reflection]);
clasohm@923
   113
clasohm@1264
   114
fun Addcongs congs = (simpset := !simpset addcongs congs);
oheimb@2636
   115
fun Delcongs congs = (simpset := !simpset delcongs congs);
clasohm@1264
   116
clasohm@923
   117
fun mksimps pairs = map mk_meta_eq o atomize pairs o gen_all;
clasohm@923
   118
paulson@1922
   119
val imp_cong = impI RSN
paulson@1922
   120
    (2, prove_goal HOL.thy "(P=P')--> (P'--> (Q=Q'))--> ((P-->Q) = (P'-->Q'))"
paulson@2935
   121
        (fn _=> [blast_tac HOL_cs 1]) RS mp RS mp);
paulson@1922
   122
paulson@1948
   123
(*Miniscoping: pushing in existential quantifiers*)
paulson@1948
   124
val ex_simps = map prover 
paulson@2031
   125
                ["(EX x. P x & Q)   = ((EX x.P x) & Q)",
paulson@2031
   126
                 "(EX x. P & Q x)   = (P & (EX x.Q x))",
paulson@2031
   127
                 "(EX x. P x | Q)   = ((EX x.P x) | Q)",
paulson@2031
   128
                 "(EX x. P | Q x)   = (P | (EX x.Q x))",
paulson@2031
   129
                 "(EX x. P x --> Q) = ((ALL x.P x) --> Q)",
paulson@2031
   130
                 "(EX x. P --> Q x) = (P --> (EX x.Q x))"];
paulson@1948
   131
paulson@1948
   132
(*Miniscoping: pushing in universal quantifiers*)
paulson@1948
   133
val all_simps = map prover
paulson@2031
   134
                ["(ALL x. P x & Q)   = ((ALL x.P x) & Q)",
paulson@2031
   135
                 "(ALL x. P & Q x)   = (P & (ALL x.Q x))",
paulson@2031
   136
                 "(ALL x. P x | Q)   = ((ALL x.P x) | Q)",
paulson@2031
   137
                 "(ALL x. P | Q x)   = (P | (ALL x.Q x))",
paulson@2031
   138
                 "(ALL x. P x --> Q) = ((EX x.P x) --> Q)",
paulson@2031
   139
                 "(ALL x. P --> Q x) = (P --> (ALL x.Q x))"];
paulson@1948
   140
berghofe@1722
   141
clasohm@923
   142
paulson@2022
   143
(* elimination of existential quantifiers in assumptions *)
clasohm@923
   144
clasohm@923
   145
val ex_all_equiv =
clasohm@923
   146
  let val lemma1 = prove_goal HOL.thy
clasohm@923
   147
        "(? x. P(x) ==> PROP Q) ==> (!!x. P(x) ==> PROP Q)"
clasohm@923
   148
        (fn prems => [resolve_tac prems 1, etac exI 1]);
clasohm@923
   149
      val lemma2 = prove_goalw HOL.thy [Ex_def]
clasohm@923
   150
        "(!!x. P(x) ==> PROP Q) ==> (? x. P(x) ==> PROP Q)"
clasohm@923
   151
        (fn prems => [REPEAT(resolve_tac prems 1)])
clasohm@923
   152
  in equal_intr lemma1 lemma2 end;
clasohm@923
   153
clasohm@923
   154
end;
clasohm@923
   155
paulson@2935
   156
fun prove nm thm  = qed_goal nm HOL.thy thm (fn _ => [blast_tac HOL_cs 1]);
clasohm@923
   157
clasohm@923
   158
prove "conj_commute" "(P&Q) = (Q&P)";
clasohm@923
   159
prove "conj_left_commute" "(P&(Q&R)) = (Q&(P&R))";
clasohm@923
   160
val conj_comms = [conj_commute, conj_left_commute];
nipkow@2134
   161
prove "conj_assoc" "((P&Q)&R) = (P&(Q&R))";
clasohm@923
   162
paulson@1922
   163
prove "disj_commute" "(P|Q) = (Q|P)";
paulson@1922
   164
prove "disj_left_commute" "(P|(Q|R)) = (Q|(P|R))";
paulson@1922
   165
val disj_comms = [disj_commute, disj_left_commute];
nipkow@2134
   166
prove "disj_assoc" "((P|Q)|R) = (P|(Q|R))";
paulson@1922
   167
clasohm@923
   168
prove "conj_disj_distribL" "(P&(Q|R)) = (P&Q | P&R)";
clasohm@923
   169
prove "conj_disj_distribR" "((P|Q)&R) = (P&R | Q&R)";
nipkow@1485
   170
paulson@1892
   171
prove "disj_conj_distribL" "(P|(Q&R)) = ((P|Q) & (P|R))";
paulson@1892
   172
prove "disj_conj_distribR" "((P&Q)|R) = ((P|R) & (Q|R))";
paulson@1892
   173
nipkow@2134
   174
prove "imp_conjR" "(P --> (Q&R)) = ((P-->Q) & (P-->R))";
nipkow@2134
   175
prove "imp_conjL" "((P&Q) -->R)  = (P --> (Q --> R))";
nipkow@2134
   176
prove "imp_disjL" "((P|Q) --> R) = ((P-->R)&(Q-->R))";
paulson@1892
   177
nipkow@1485
   178
prove "de_Morgan_disj" "(~(P | Q)) = (~P & ~Q)";
nipkow@1485
   179
prove "de_Morgan_conj" "(~(P & Q)) = (~P | ~Q)";
paulson@3446
   180
prove "not_imp" "(~(P --> Q)) = (P & ~Q)";
paulson@1922
   181
prove "not_iff" "(P~=Q) = (P = (~Q))";
nipkow@1485
   182
nipkow@2134
   183
(*Avoids duplication of subgoals after expand_if, when the true and false 
nipkow@2134
   184
  cases boil down to the same thing.*) 
nipkow@2134
   185
prove "cases_simp" "((P --> Q) & (~P --> Q)) = Q";
nipkow@2134
   186
oheimb@1660
   187
prove "not_all" "(~ (! x.P(x))) = (? x.~P(x))";
paulson@1922
   188
prove "imp_all" "((! x. P x) --> Q) = (? x. P x --> Q)";
oheimb@1660
   189
prove "not_ex"  "(~ (? x.P(x))) = (! x.~P(x))";
paulson@1922
   190
prove "imp_ex" "((? x. P x) --> Q) = (! x. P x --> Q)";
oheimb@1660
   191
nipkow@1655
   192
prove "ex_disj_distrib" "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))";
nipkow@1655
   193
prove "all_conj_distrib" "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))";
nipkow@1655
   194
nipkow@2134
   195
(* '&' congruence rule: not included by default!
nipkow@2134
   196
   May slow rewrite proofs down by as much as 50% *)
nipkow@2134
   197
nipkow@2134
   198
let val th = prove_goal HOL.thy 
nipkow@2134
   199
                "(P=P')--> (P'--> (Q=Q'))--> ((P&Q) = (P'&Q'))"
paulson@2935
   200
                (fn _=> [blast_tac HOL_cs 1])
nipkow@2134
   201
in  bind_thm("conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   202
nipkow@2134
   203
let val th = prove_goal HOL.thy 
nipkow@2134
   204
                "(Q=Q')--> (Q'--> (P=P'))--> ((P&Q) = (P'&Q'))"
paulson@2935
   205
                (fn _=> [blast_tac HOL_cs 1])
nipkow@2134
   206
in  bind_thm("rev_conj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   207
nipkow@2134
   208
(* '|' congruence rule: not included by default! *)
nipkow@2134
   209
nipkow@2134
   210
let val th = prove_goal HOL.thy 
nipkow@2134
   211
                "(P=P')--> (~P'--> (Q=Q'))--> ((P|Q) = (P'|Q'))"
paulson@2935
   212
                (fn _=> [blast_tac HOL_cs 1])
nipkow@2134
   213
in  bind_thm("disj_cong",standard (impI RSN (2, th RS mp RS mp)))  end;
nipkow@2134
   214
nipkow@2134
   215
prove "eq_sym_conv" "(x=y) = (y=x)";
nipkow@2134
   216
nipkow@2134
   217
qed_goalw "o_apply" HOL.thy [o_def] "(f o g) x = f (g x)"
nipkow@2134
   218
 (fn _ => [rtac refl 1]);
nipkow@2134
   219
nipkow@2134
   220
qed_goal "meta_eq_to_obj_eq" HOL.thy "x==y ==> x=y"
nipkow@2134
   221
  (fn [prem] => [rewtac prem, rtac refl 1]);
nipkow@2134
   222
nipkow@2134
   223
qed_goalw "if_True" HOL.thy [if_def] "(if True then x else y) = x"
paulson@2935
   224
 (fn _=>[blast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   225
nipkow@2134
   226
qed_goalw "if_False" HOL.thy [if_def] "(if False then x else y) = y"
paulson@2935
   227
 (fn _=>[blast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   228
nipkow@2134
   229
qed_goal "if_P" HOL.thy "P ==> (if P then x else y) = x"
nipkow@2134
   230
 (fn [prem] => [ stac (prem RS eqTrueI) 1, rtac if_True 1 ]);
nipkow@2134
   231
(*
nipkow@2134
   232
qed_goal "if_not_P" HOL.thy "~P ==> (if P then x else y) = y"
nipkow@2134
   233
 (fn [prem] => [ stac (prem RS not_P_imp_P_iff_F) 1, rtac if_False 1 ]);
nipkow@2134
   234
*)
nipkow@2134
   235
qed_goalw "if_not_P" HOL.thy [if_def] "!!P. ~P ==> (if P then x else y) = y"
paulson@2935
   236
 (fn _ => [blast_tac (HOL_cs addIs [select_equality]) 1]);
nipkow@2134
   237
nipkow@2134
   238
qed_goal "expand_if" HOL.thy
nipkow@2134
   239
    "P(if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))"
nipkow@2134
   240
 (fn _=> [ (res_inst_tac [("Q","Q")] (excluded_middle RS disjE) 1),
nipkow@2134
   241
         stac if_P 2,
nipkow@2134
   242
         stac if_not_P 1,
paulson@2935
   243
         REPEAT(blast_tac HOL_cs 1) ]);
nipkow@2134
   244
nipkow@2134
   245
qed_goal "if_bool_eq" HOL.thy
nipkow@2134
   246
                   "(if P then Q else R) = ((P-->Q) & (~P-->R))"
nipkow@2134
   247
                   (fn _ => [rtac expand_if 1]);
nipkow@2134
   248
oheimb@2263
   249
local val mktac = mk_case_split_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   250
in
oheimb@2263
   251
fun split_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   252
end;
oheimb@2263
   253
oheimb@2263
   254
local val mktac = mk_case_split_inside_tac (meta_eq_to_obj_eq RS iffD2)
oheimb@2263
   255
in
oheimb@2263
   256
fun split_inside_tac splits = mktac (map mk_meta_eq splits)
oheimb@2263
   257
end;
oheimb@2263
   258
oheimb@2263
   259
oheimb@2251
   260
qed_goal "if_cancel" HOL.thy "(if c then x else x) = x"
paulson@2935
   261
  (fn _ => [split_tac [expand_if] 1, blast_tac HOL_cs 1]);
oheimb@2251
   262
nipkow@2134
   263
(** 'if' congruence rules: neither included by default! *)
nipkow@2134
   264
nipkow@2134
   265
(*Simplifies x assuming c and y assuming ~c*)
nipkow@2134
   266
qed_goal "if_cong" HOL.thy
nipkow@2134
   267
  "[| b=c; c ==> x=u; ~c ==> y=v |] ==>\
nipkow@2134
   268
\  (if b then x else y) = (if c then u else v)"
nipkow@2134
   269
  (fn rew::prems =>
nipkow@2134
   270
   [stac rew 1, stac expand_if 1, stac expand_if 1,
paulson@2935
   271
    blast_tac (HOL_cs addDs prems) 1]);
nipkow@2134
   272
nipkow@2134
   273
(*Prevents simplification of x and y: much faster*)
nipkow@2134
   274
qed_goal "if_weak_cong" HOL.thy
nipkow@2134
   275
  "b=c ==> (if b then x else y) = (if c then x else y)"
nipkow@2134
   276
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   277
nipkow@2134
   278
(*Prevents simplification of t: much faster*)
nipkow@2134
   279
qed_goal "let_weak_cong" HOL.thy
nipkow@2134
   280
  "a = b ==> (let x=a in t(x)) = (let x=b in t(x))"
nipkow@2134
   281
  (fn [prem] => [rtac (prem RS arg_cong) 1]);
nipkow@2134
   282
nipkow@2134
   283
(*In general it seems wrong to add distributive laws by default: they
nipkow@2134
   284
  might cause exponential blow-up.  But imp_disjL has been in for a while
nipkow@2134
   285
  and cannot be removed without affecting existing proofs.  Moreover, 
nipkow@2134
   286
  rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the
nipkow@2134
   287
  grounds that it allows simplification of R in the two cases.*)
nipkow@2134
   288
nipkow@2134
   289
val mksimps_pairs =
nipkow@2134
   290
  [("op -->", [mp]), ("op &", [conjunct1,conjunct2]),
nipkow@2134
   291
   ("All", [spec]), ("True", []), ("False", []),
nipkow@2134
   292
   ("If", [if_bool_eq RS iffD1])];
nipkow@1758
   293
oheimb@2636
   294
fun unsafe_solver prems = FIRST'[resolve_tac (TrueI::refl::prems),
oheimb@2636
   295
				 atac, etac FalseE];
oheimb@2636
   296
(*No premature instantiation of variables during simplification*)
oheimb@2636
   297
fun   safe_solver prems = FIRST'[match_tac (TrueI::refl::prems),
oheimb@2636
   298
				 eq_assume_tac, ematch_tac [FalseE]];
oheimb@2443
   299
oheimb@2636
   300
val HOL_basic_ss = empty_ss setsubgoaler asm_simp_tac
oheimb@2636
   301
			    setSSolver   safe_solver
oheimb@2636
   302
			    setSolver  unsafe_solver
oheimb@2636
   303
			    setmksimps (mksimps mksimps_pairs);
oheimb@2443
   304
paulson@3446
   305
val HOL_ss = 
paulson@3446
   306
    HOL_basic_ss addsimps 
paulson@3446
   307
     ([triv_forall_equality, (* prunes params *)
paulson@3446
   308
       if_True, if_False, if_cancel,
paulson@3446
   309
       o_apply, imp_disjL, conj_assoc, disj_assoc,
paulson@3446
   310
       de_Morgan_conj, de_Morgan_disj, not_imp,
paulson@3446
   311
       not_all, not_ex, cases_simp]
paulson@3446
   312
     @ ex_simps @ all_simps @ simp_thms)
paulson@3446
   313
     addcongs [imp_cong];
paulson@2082
   314
nipkow@1655
   315
qed_goal "if_distrib" HOL.thy
nipkow@1655
   316
  "f(if c then x else y) = (if c then f x else f y)" 
nipkow@1655
   317
  (fn _ => [simp_tac (HOL_ss setloop (split_tac [expand_if])) 1]);
nipkow@1655
   318
oheimb@2097
   319
qed_goalw "o_assoc" HOL.thy [o_def] "f o (g o h) = f o g o h"
oheimb@2098
   320
  (fn _ => [rtac ext 1, rtac refl 1]);
paulson@1984
   321
paulson@1984
   322
paulson@2948
   323
val prems = goal HOL.thy "[| P ==> Q(True); ~P ==> Q(False) |] ==> Q(P)";
paulson@2948
   324
by (case_tac "P" 1);
paulson@2948
   325
by (ALLGOALS (asm_simp_tac (HOL_ss addsimps prems)));
paulson@2948
   326
val expand_case = result();
paulson@2948
   327
paulson@2948
   328
fun expand_case_tac P i =
paulson@2948
   329
    res_inst_tac [("P",P)] expand_case i THEN
paulson@2948
   330
    Simp_tac (i+1) THEN 
paulson@2948
   331
    Simp_tac i;
paulson@2948
   332
paulson@2948
   333
paulson@1984
   334
paulson@1984
   335
paulson@1984
   336
(*** Install simpsets and datatypes in theory structure ***)
paulson@1984
   337
oheimb@2251
   338
simpset := HOL_ss;
paulson@1984
   339
paulson@1984
   340
exception SS_DATA of simpset;
paulson@1984
   341
paulson@1984
   342
let fun merge [] = SS_DATA empty_ss
paulson@1984
   343
      | merge ss = let val ss = map (fn SS_DATA x => x) ss;
paulson@1984
   344
                   in SS_DATA (foldl merge_ss (hd ss, tl ss)) end;
paulson@1984
   345
paulson@1984
   346
    fun put (SS_DATA ss) = simpset := ss;
paulson@1984
   347
paulson@1984
   348
    fun get () = SS_DATA (!simpset);
paulson@1984
   349
in add_thydata "HOL"
paulson@1984
   350
     ("simpset", ThyMethods {merge = merge, put = put, get = get})
paulson@1984
   351
end;
paulson@1984
   352
nipkow@3040
   353
type dtype_info = {case_const:term,
nipkow@3040
   354
                   case_rewrites:thm list,
nipkow@3040
   355
                   constructors:term list,
nipkow@3040
   356
                   induct_tac: string -> int -> tactic,
nipkow@3282
   357
                   nchotomy: thm,
nipkow@3282
   358
                   exhaustion: thm,
nipkow@3282
   359
                   exhaust_tac: string -> int -> tactic,
nipkow@3040
   360
                   case_cong:thm};
paulson@1984
   361
paulson@1984
   362
exception DT_DATA of (string * dtype_info) list;
paulson@1984
   363
val datatypes = ref [] : (string * dtype_info) list ref;
paulson@1984
   364
paulson@1984
   365
let fun merge [] = DT_DATA []
paulson@1984
   366
      | merge ds =
paulson@1984
   367
          let val ds = map (fn DT_DATA x => x) ds;
paulson@1984
   368
          in DT_DATA (foldl (gen_union eq_fst) (hd ds, tl ds)) end;
paulson@1984
   369
paulson@1984
   370
    fun put (DT_DATA ds) = datatypes := ds;
paulson@1984
   371
paulson@1984
   372
    fun get () = DT_DATA (!datatypes);
paulson@1984
   373
in add_thydata "HOL"
paulson@1984
   374
     ("datatypes", ThyMethods {merge = merge, put = put, get = get})
paulson@1984
   375
end;
paulson@1984
   376
paulson@1984
   377
paulson@1984
   378
add_thy_reader_file "thy_data.ML";
oheimb@2636
   379
oheimb@2636
   380
oheimb@2636
   381
oheimb@2636
   382
oheimb@2636
   383
(*** Integration of simplifier with classical reasoner ***)
oheimb@2636
   384
oheimb@2636
   385
(* rot_eq_tac rotates the first equality premise of subgoal i to the front,
oheimb@2636
   386
   fails if there is no equaliy or if an equality is already at the front *)
paulson@2805
   387
fun rot_eq_tac i = 
paulson@2805
   388
  let fun is_eq (Const ("Trueprop", _) $ (Const("op =",_) $ _ $ _)) = true
paulson@2805
   389
	| is_eq _ = false;
paulson@2805
   390
      fun find_eq n [] = None
paulson@2805
   391
	| find_eq n (t :: ts) = if (is_eq t) then Some n 
paulson@2805
   392
				else find_eq (n + 1) ts;
paulson@2805
   393
      fun rot_eq state = 
paulson@2805
   394
	  let val (_, _, Bi, _) = dest_state (state, i) 
paulson@2805
   395
	  in  case find_eq 0 (Logic.strip_assums_hyp Bi) of
paulson@2805
   396
		  None   => no_tac
paulson@2805
   397
		| Some 0 => no_tac
paulson@2805
   398
		| Some n => rotate_tac n i
paulson@2805
   399
	  end;
paulson@2805
   400
  in STATE rot_eq end;
oheimb@2636
   401
oheimb@2636
   402
(*an unsatisfactory fix for the incomplete asm_full_simp_tac!
oheimb@2636
   403
  better: asm_really_full_simp_tac, a yet to be implemented version of
oheimb@2636
   404
			asm_full_simp_tac that applies all equalities in the
oheimb@2636
   405
			premises to all the premises *)
oheimb@2636
   406
fun safe_asm_more_full_simp_tac ss = TRY o rot_eq_tac THEN' 
oheimb@2636
   407
				     safe_asm_full_simp_tac ss;
oheimb@2636
   408
oheimb@2636
   409
(*Add a simpset to a classical set!*)
oheimb@3206
   410
infix 4 addSss addss;
oheimb@3206
   411
fun cs addSss ss = cs addSaltern (CHANGED o (safe_asm_more_full_simp_tac ss));
oheimb@3206
   412
fun cs addss  ss = cs addbefore                        asm_full_simp_tac ss;
oheimb@2636
   413
oheimb@2636
   414
fun Addss ss = (claset := !claset addss ss);
oheimb@2636
   415
oheimb@2636
   416
(*Designed to be idempotent, except if best_tac instantiates variables
oheimb@2636
   417
  in some of the subgoals*)
oheimb@2636
   418
oheimb@2636
   419
type clasimpset = (claset * simpset);
oheimb@2636
   420
oheimb@2636
   421
val HOL_css = (HOL_cs, HOL_ss);
oheimb@2636
   422
oheimb@2636
   423
fun pair_upd1 f ((a,b),x) = (f(a,x), b);
oheimb@2636
   424
fun pair_upd2 f ((a,b),x) = (a, f(b,x));
oheimb@2636
   425
oheimb@2636
   426
infix 4 addSIs2 addSEs2 addSDs2 addIs2 addEs2 addDs2
oheimb@2636
   427
	addsimps2 delsimps2 addcongs2 delcongs2;
paulson@2748
   428
fun op addSIs2   arg = pair_upd1 (op addSIs) arg;
paulson@2748
   429
fun op addSEs2   arg = pair_upd1 (op addSEs) arg;
paulson@2748
   430
fun op addSDs2   arg = pair_upd1 (op addSDs) arg;
paulson@2748
   431
fun op addIs2    arg = pair_upd1 (op addIs ) arg;
paulson@2748
   432
fun op addEs2    arg = pair_upd1 (op addEs ) arg;
paulson@2748
   433
fun op addDs2    arg = pair_upd1 (op addDs ) arg;
paulson@2748
   434
fun op addsimps2 arg = pair_upd2 (op addsimps) arg;
paulson@2748
   435
fun op delsimps2 arg = pair_upd2 (op delsimps) arg;
paulson@2748
   436
fun op addcongs2 arg = pair_upd2 (op addcongs) arg;
paulson@2748
   437
fun op delcongs2 arg = pair_upd2 (op delcongs) arg;
oheimb@2636
   438
paulson@2805
   439
fun auto_tac (cs,ss) = 
paulson@2805
   440
    let val cs' = cs addss ss 
paulson@2805
   441
    in  EVERY [TRY (safe_tac cs'),
paulson@2805
   442
	       REPEAT (FIRSTGOAL (fast_tac cs')),
oheimb@3206
   443
               TRY (safe_tac (cs addSss ss)),
paulson@2805
   444
	       prune_params_tac] 
paulson@2805
   445
    end;
oheimb@2636
   446
oheimb@2636
   447
fun Auto_tac () = auto_tac (!claset, !simpset);
oheimb@2636
   448
oheimb@2636
   449
fun auto () = by (Auto_tac ());