src/HOL/Nat_Transfer.thy
author haftmann
Thu Oct 29 22:13:09 2009 +0100 (2009-10-29)
changeset 33340 a165b97f3658
parent 33318 ddd97d9dfbfb
child 35551 85aada96578b
permissions -rw-r--r--
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
huffman@31708
     1
haftmann@32554
     2
(* Authors: Jeremy Avigad and Amine Chaieb *)
huffman@31708
     3
haftmann@33318
     4
header {* Generic transfer machinery;  specific transfer from nats to ints and back. *}
huffman@31708
     5
haftmann@32558
     6
theory Nat_Transfer
haftmann@33318
     7
imports Nat_Numeral
haftmann@33318
     8
uses ("Tools/transfer.ML")
huffman@31708
     9
begin
huffman@31708
    10
haftmann@33318
    11
subsection {* Generic transfer machinery *}
haftmann@33318
    12
haftmann@33318
    13
definition TransferMorphism:: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> bool"
haftmann@33318
    14
  where "TransferMorphism a B \<longleftrightarrow> True"
haftmann@33318
    15
haftmann@33318
    16
use "Tools/transfer.ML"
haftmann@33318
    17
haftmann@33318
    18
setup Transfer.setup
haftmann@33318
    19
haftmann@33318
    20
huffman@31708
    21
subsection {* Set up transfer from nat to int *}
huffman@31708
    22
haftmann@33318
    23
text {* set up transfer direction *}
huffman@31708
    24
huffman@31708
    25
lemma TransferMorphism_nat_int: "TransferMorphism nat (op <= (0::int))"
huffman@31708
    26
  by (simp add: TransferMorphism_def)
huffman@31708
    27
huffman@31708
    28
declare TransferMorphism_nat_int[transfer
huffman@31708
    29
  add mode: manual
huffman@31708
    30
  return: nat_0_le
huffman@31708
    31
  labels: natint
huffman@31708
    32
]
huffman@31708
    33
haftmann@33318
    34
text {* basic functions and relations *}
huffman@31708
    35
huffman@31708
    36
lemma transfer_nat_int_numerals:
huffman@31708
    37
    "(0::nat) = nat 0"
huffman@31708
    38
    "(1::nat) = nat 1"
huffman@31708
    39
    "(2::nat) = nat 2"
huffman@31708
    40
    "(3::nat) = nat 3"
huffman@31708
    41
  by auto
huffman@31708
    42
huffman@31708
    43
definition
huffman@31708
    44
  tsub :: "int \<Rightarrow> int \<Rightarrow> int"
huffman@31708
    45
where
huffman@31708
    46
  "tsub x y = (if x >= y then x - y else 0)"
huffman@31708
    47
huffman@31708
    48
lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y"
huffman@31708
    49
  by (simp add: tsub_def)
huffman@31708
    50
huffman@31708
    51
huffman@31708
    52
lemma transfer_nat_int_functions:
huffman@31708
    53
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)"
huffman@31708
    54
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)"
huffman@31708
    55
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)"
huffman@31708
    56
    "(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)"
huffman@31708
    57
  by (auto simp add: eq_nat_nat_iff nat_mult_distrib
haftmann@33318
    58
      nat_power_eq tsub_def)
huffman@31708
    59
huffman@31708
    60
lemma transfer_nat_int_function_closures:
huffman@31708
    61
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0"
huffman@31708
    62
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0"
huffman@31708
    63
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0"
huffman@31708
    64
    "(x::int) >= 0 \<Longrightarrow> x^n >= 0"
huffman@31708
    65
    "(0::int) >= 0"
huffman@31708
    66
    "(1::int) >= 0"
huffman@31708
    67
    "(2::int) >= 0"
huffman@31708
    68
    "(3::int) >= 0"
huffman@31708
    69
    "int z >= 0"
haftmann@33340
    70
  by (auto simp add: zero_le_mult_iff tsub_def)
huffman@31708
    71
huffman@31708
    72
lemma transfer_nat_int_relations:
huffman@31708
    73
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    74
      (nat (x::int) = nat y) = (x = y)"
huffman@31708
    75
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    76
      (nat (x::int) < nat y) = (x < y)"
huffman@31708
    77
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    78
      (nat (x::int) <= nat y) = (x <= y)"
huffman@31708
    79
    "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>
huffman@31708
    80
      (nat (x::int) dvd nat y) = (x dvd y)"
haftmann@32558
    81
  by (auto simp add: zdvd_int)
huffman@31708
    82
huffman@31708
    83
declare TransferMorphism_nat_int[transfer add return:
huffman@31708
    84
  transfer_nat_int_numerals
huffman@31708
    85
  transfer_nat_int_functions
huffman@31708
    86
  transfer_nat_int_function_closures
huffman@31708
    87
  transfer_nat_int_relations
huffman@31708
    88
]
huffman@31708
    89
huffman@31708
    90
haftmann@33318
    91
text {* first-order quantifiers *}
haftmann@33318
    92
haftmann@33318
    93
lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"
haftmann@33318
    94
  by (simp split add: split_nat)
haftmann@33318
    95
haftmann@33318
    96
lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"
haftmann@33318
    97
proof
haftmann@33318
    98
  assume "\<exists>x. P x"
haftmann@33318
    99
  then obtain x where "P x" ..
haftmann@33318
   100
  then have "int x \<ge> 0 \<and> P (nat (int x))" by simp
haftmann@33318
   101
  then show "\<exists>x\<ge>0. P (nat x)" ..
haftmann@33318
   102
next
haftmann@33318
   103
  assume "\<exists>x\<ge>0. P (nat x)"
haftmann@33318
   104
  then show "\<exists>x. P x" by auto
haftmann@33318
   105
qed
huffman@31708
   106
huffman@31708
   107
lemma transfer_nat_int_quantifiers:
huffman@31708
   108
    "(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))"
huffman@31708
   109
    "(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))"
huffman@31708
   110
  by (rule all_nat, rule ex_nat)
huffman@31708
   111
huffman@31708
   112
(* should we restrict these? *)
huffman@31708
   113
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>
huffman@31708
   114
    (ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)"
huffman@31708
   115
  by auto
huffman@31708
   116
huffman@31708
   117
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>
huffman@31708
   118
    (EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)"
huffman@31708
   119
  by auto
huffman@31708
   120
huffman@31708
   121
declare TransferMorphism_nat_int[transfer add
huffman@31708
   122
  return: transfer_nat_int_quantifiers
huffman@31708
   123
  cong: all_cong ex_cong]
huffman@31708
   124
huffman@31708
   125
haftmann@33318
   126
text {* if *}
huffman@31708
   127
huffman@31708
   128
lemma nat_if_cong: "(if P then (nat x) else (nat y)) =
huffman@31708
   129
    nat (if P then x else y)"
huffman@31708
   130
  by auto
huffman@31708
   131
huffman@31708
   132
declare TransferMorphism_nat_int [transfer add return: nat_if_cong]
huffman@31708
   133
huffman@31708
   134
haftmann@33318
   135
text {* operations with sets *}
huffman@31708
   136
huffman@31708
   137
definition
huffman@31708
   138
  nat_set :: "int set \<Rightarrow> bool"
huffman@31708
   139
where
huffman@31708
   140
  "nat_set S = (ALL x:S. x >= 0)"
huffman@31708
   141
huffman@31708
   142
lemma transfer_nat_int_set_functions:
huffman@31708
   143
    "card A = card (int ` A)"
huffman@31708
   144
    "{} = nat ` ({}::int set)"
huffman@31708
   145
    "A Un B = nat ` (int ` A Un int ` B)"
huffman@31708
   146
    "A Int B = nat ` (int ` A Int int ` B)"
huffman@31708
   147
    "{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
huffman@31708
   148
  apply (rule card_image [symmetric])
huffman@31708
   149
  apply (auto simp add: inj_on_def image_def)
huffman@31708
   150
  apply (rule_tac x = "int x" in bexI)
huffman@31708
   151
  apply auto
huffman@31708
   152
  apply (rule_tac x = "int x" in bexI)
huffman@31708
   153
  apply auto
huffman@31708
   154
  apply (rule_tac x = "int x" in bexI)
huffman@31708
   155
  apply auto
huffman@31708
   156
  apply (rule_tac x = "int x" in exI)
huffman@31708
   157
  apply auto
huffman@31708
   158
done
huffman@31708
   159
huffman@31708
   160
lemma transfer_nat_int_set_function_closures:
huffman@31708
   161
    "nat_set {}"
huffman@31708
   162
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
huffman@31708
   163
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
huffman@31708
   164
    "nat_set {x. x >= 0 & P x}"
huffman@31708
   165
    "nat_set (int ` C)"
huffman@31708
   166
    "nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *)
huffman@31708
   167
  unfolding nat_set_def apply auto
huffman@31708
   168
done
huffman@31708
   169
huffman@31708
   170
lemma transfer_nat_int_set_relations:
huffman@31708
   171
    "(finite A) = (finite (int ` A))"
huffman@31708
   172
    "(x : A) = (int x : int ` A)"
huffman@31708
   173
    "(A = B) = (int ` A = int ` B)"
huffman@31708
   174
    "(A < B) = (int ` A < int ` B)"
huffman@31708
   175
    "(A <= B) = (int ` A <= int ` B)"
huffman@31708
   176
  apply (rule iffI)
huffman@31708
   177
  apply (erule finite_imageI)
huffman@31708
   178
  apply (erule finite_imageD)
huffman@31708
   179
  apply (auto simp add: image_def expand_set_eq inj_on_def)
huffman@31708
   180
  apply (drule_tac x = "int x" in spec, auto)
huffman@31708
   181
  apply (drule_tac x = "int x" in spec, auto)
huffman@31708
   182
  apply (drule_tac x = "int x" in spec, auto)
huffman@31708
   183
done
huffman@31708
   184
huffman@31708
   185
lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow>
huffman@31708
   186
    (int ` nat ` A = A)"
huffman@31708
   187
  by (auto simp add: nat_set_def image_def)
huffman@31708
   188
huffman@31708
   189
lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow>
huffman@31708
   190
    {(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}"
huffman@31708
   191
  by auto
huffman@31708
   192
huffman@31708
   193
declare TransferMorphism_nat_int[transfer add
huffman@31708
   194
  return: transfer_nat_int_set_functions
huffman@31708
   195
    transfer_nat_int_set_function_closures
huffman@31708
   196
    transfer_nat_int_set_relations
huffman@31708
   197
    transfer_nat_int_set_return_embed
huffman@31708
   198
  cong: transfer_nat_int_set_cong
huffman@31708
   199
]
huffman@31708
   200
huffman@31708
   201
haftmann@33318
   202
text {* setsum and setprod *}
huffman@31708
   203
huffman@31708
   204
(* this handles the case where the *domain* of f is nat *)
huffman@31708
   205
lemma transfer_nat_int_sum_prod:
huffman@31708
   206
    "setsum f A = setsum (%x. f (nat x)) (int ` A)"
huffman@31708
   207
    "setprod f A = setprod (%x. f (nat x)) (int ` A)"
huffman@31708
   208
  apply (subst setsum_reindex)
huffman@31708
   209
  apply (unfold inj_on_def, auto)
huffman@31708
   210
  apply (subst setprod_reindex)
huffman@31708
   211
  apply (unfold inj_on_def o_def, auto)
huffman@31708
   212
done
huffman@31708
   213
huffman@31708
   214
(* this handles the case where the *range* of f is nat *)
huffman@31708
   215
lemma transfer_nat_int_sum_prod2:
huffman@31708
   216
    "setsum f A = nat(setsum (%x. int (f x)) A)"
huffman@31708
   217
    "setprod f A = nat(setprod (%x. int (f x)) A)"
huffman@31708
   218
  apply (subst int_setsum [symmetric])
huffman@31708
   219
  apply auto
huffman@31708
   220
  apply (subst int_setprod [symmetric])
huffman@31708
   221
  apply auto
huffman@31708
   222
done
huffman@31708
   223
huffman@31708
   224
lemma transfer_nat_int_sum_prod_closure:
huffman@31708
   225
    "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"
huffman@31708
   226
    "nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"
huffman@31708
   227
  unfolding nat_set_def
huffman@31708
   228
  apply (rule setsum_nonneg)
huffman@31708
   229
  apply auto
huffman@31708
   230
  apply (rule setprod_nonneg)
huffman@31708
   231
  apply auto
huffman@31708
   232
done
huffman@31708
   233
huffman@31708
   234
(* this version doesn't work, even with nat_set A \<Longrightarrow>
huffman@31708
   235
      x : A \<Longrightarrow> x >= 0 turned on. Why not?
huffman@31708
   236
huffman@31708
   237
  also: what does =simp=> do?
huffman@31708
   238
huffman@31708
   239
lemma transfer_nat_int_sum_prod_closure:
huffman@31708
   240
    "(!!x. x : A  ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"
huffman@31708
   241
    "(!!x. x : A  ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"
huffman@31708
   242
  unfolding nat_set_def simp_implies_def
huffman@31708
   243
  apply (rule setsum_nonneg)
huffman@31708
   244
  apply auto
huffman@31708
   245
  apply (rule setprod_nonneg)
huffman@31708
   246
  apply auto
huffman@31708
   247
done
huffman@31708
   248
*)
huffman@31708
   249
huffman@31708
   250
(* Making A = B in this lemma doesn't work. Why not?
huffman@31708
   251
   Also, why aren't setsum_cong and setprod_cong enough,
huffman@31708
   252
   with the previously mentioned rule turned on? *)
huffman@31708
   253
huffman@31708
   254
lemma transfer_nat_int_sum_prod_cong:
huffman@31708
   255
    "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>
huffman@31708
   256
      setsum f A = setsum g B"
huffman@31708
   257
    "A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>
huffman@31708
   258
      setprod f A = setprod g B"
huffman@31708
   259
  unfolding nat_set_def
huffman@31708
   260
  apply (subst setsum_cong, assumption)
huffman@31708
   261
  apply auto [2]
huffman@31708
   262
  apply (subst setprod_cong, assumption, auto)
huffman@31708
   263
done
huffman@31708
   264
huffman@31708
   265
declare TransferMorphism_nat_int[transfer add
huffman@31708
   266
  return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2
huffman@31708
   267
    transfer_nat_int_sum_prod_closure
huffman@31708
   268
  cong: transfer_nat_int_sum_prod_cong]
huffman@31708
   269
huffman@31708
   270
huffman@31708
   271
subsection {* Set up transfer from int to nat *}
huffman@31708
   272
haftmann@33318
   273
text {* set up transfer direction *}
huffman@31708
   274
huffman@31708
   275
lemma TransferMorphism_int_nat: "TransferMorphism int (UNIV :: nat set)"
huffman@31708
   276
  by (simp add: TransferMorphism_def)
huffman@31708
   277
huffman@31708
   278
declare TransferMorphism_int_nat[transfer add
huffman@31708
   279
  mode: manual
huffman@31708
   280
(*  labels: int-nat *)
huffman@31708
   281
  return: nat_int
huffman@31708
   282
]
huffman@31708
   283
huffman@31708
   284
haftmann@33318
   285
text {* basic functions and relations *}
haftmann@33318
   286
haftmann@33318
   287
lemma UNIV_apply:
haftmann@33318
   288
  "UNIV x = True"
haftmann@33318
   289
  by (simp add: top_fun_eq top_bool_eq)
huffman@31708
   290
huffman@31708
   291
definition
huffman@31708
   292
  is_nat :: "int \<Rightarrow> bool"
huffman@31708
   293
where
huffman@31708
   294
  "is_nat x = (x >= 0)"
huffman@31708
   295
huffman@31708
   296
lemma transfer_int_nat_numerals:
huffman@31708
   297
    "0 = int 0"
huffman@31708
   298
    "1 = int 1"
huffman@31708
   299
    "2 = int 2"
huffman@31708
   300
    "3 = int 3"
huffman@31708
   301
  by auto
huffman@31708
   302
huffman@31708
   303
lemma transfer_int_nat_functions:
huffman@31708
   304
    "(int x) + (int y) = int (x + y)"
huffman@31708
   305
    "(int x) * (int y) = int (x * y)"
huffman@31708
   306
    "tsub (int x) (int y) = int (x - y)"
huffman@31708
   307
    "(int x)^n = int (x^n)"
haftmann@33318
   308
  by (auto simp add: int_mult tsub_def int_power)
huffman@31708
   309
huffman@31708
   310
lemma transfer_int_nat_function_closures:
huffman@31708
   311
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)"
huffman@31708
   312
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)"
huffman@31708
   313
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)"
huffman@31708
   314
    "is_nat x \<Longrightarrow> is_nat (x^n)"
huffman@31708
   315
    "is_nat 0"
huffman@31708
   316
    "is_nat 1"
huffman@31708
   317
    "is_nat 2"
huffman@31708
   318
    "is_nat 3"
huffman@31708
   319
    "is_nat (int z)"
huffman@31708
   320
  by (simp_all only: is_nat_def transfer_nat_int_function_closures)
huffman@31708
   321
huffman@31708
   322
lemma transfer_int_nat_relations:
huffman@31708
   323
    "(int x = int y) = (x = y)"
huffman@31708
   324
    "(int x < int y) = (x < y)"
huffman@31708
   325
    "(int x <= int y) = (x <= y)"
huffman@31708
   326
    "(int x dvd int y) = (x dvd y)"
haftmann@33318
   327
  by (auto simp add: zdvd_int)
haftmann@32121
   328
huffman@31708
   329
declare TransferMorphism_int_nat[transfer add return:
huffman@31708
   330
  transfer_int_nat_numerals
huffman@31708
   331
  transfer_int_nat_functions
huffman@31708
   332
  transfer_int_nat_function_closures
huffman@31708
   333
  transfer_int_nat_relations
haftmann@32121
   334
  UNIV_apply
huffman@31708
   335
]
huffman@31708
   336
huffman@31708
   337
haftmann@33318
   338
text {* first-order quantifiers *}
huffman@31708
   339
huffman@31708
   340
lemma transfer_int_nat_quantifiers:
huffman@31708
   341
    "(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))"
huffman@31708
   342
    "(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))"
huffman@31708
   343
  apply (subst all_nat)
huffman@31708
   344
  apply auto [1]
huffman@31708
   345
  apply (subst ex_nat)
huffman@31708
   346
  apply auto
huffman@31708
   347
done
huffman@31708
   348
huffman@31708
   349
declare TransferMorphism_int_nat[transfer add
huffman@31708
   350
  return: transfer_int_nat_quantifiers]
huffman@31708
   351
huffman@31708
   352
haftmann@33318
   353
text {* if *}
huffman@31708
   354
huffman@31708
   355
lemma int_if_cong: "(if P then (int x) else (int y)) =
huffman@31708
   356
    int (if P then x else y)"
huffman@31708
   357
  by auto
huffman@31708
   358
huffman@31708
   359
declare TransferMorphism_int_nat [transfer add return: int_if_cong]
huffman@31708
   360
huffman@31708
   361
huffman@31708
   362
haftmann@33318
   363
text {* operations with sets *}
huffman@31708
   364
huffman@31708
   365
lemma transfer_int_nat_set_functions:
huffman@31708
   366
    "nat_set A \<Longrightarrow> card A = card (nat ` A)"
huffman@31708
   367
    "{} = int ` ({}::nat set)"
huffman@31708
   368
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)"
huffman@31708
   369
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)"
huffman@31708
   370
    "{x. x >= 0 & P x} = int ` {x. P(int x)}"
huffman@31708
   371
       (* need all variants of these! *)
huffman@31708
   372
  by (simp_all only: is_nat_def transfer_nat_int_set_functions
huffman@31708
   373
          transfer_nat_int_set_function_closures
huffman@31708
   374
          transfer_nat_int_set_return_embed nat_0_le
huffman@31708
   375
          cong: transfer_nat_int_set_cong)
huffman@31708
   376
huffman@31708
   377
lemma transfer_int_nat_set_function_closures:
huffman@31708
   378
    "nat_set {}"
huffman@31708
   379
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"
huffman@31708
   380
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"
huffman@31708
   381
    "nat_set {x. x >= 0 & P x}"
huffman@31708
   382
    "nat_set (int ` C)"
huffman@31708
   383
    "nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x"
huffman@31708
   384
  by (simp_all only: transfer_nat_int_set_function_closures is_nat_def)
huffman@31708
   385
huffman@31708
   386
lemma transfer_int_nat_set_relations:
huffman@31708
   387
    "nat_set A \<Longrightarrow> finite A = finite (nat ` A)"
huffman@31708
   388
    "is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)"
huffman@31708
   389
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)"
huffman@31708
   390
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)"
huffman@31708
   391
    "nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)"
huffman@31708
   392
  by (simp_all only: is_nat_def transfer_nat_int_set_relations
huffman@31708
   393
    transfer_nat_int_set_return_embed nat_0_le)
huffman@31708
   394
huffman@31708
   395
lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A"
huffman@31708
   396
  by (simp only: transfer_nat_int_set_relations
huffman@31708
   397
    transfer_nat_int_set_function_closures
huffman@31708
   398
    transfer_nat_int_set_return_embed nat_0_le)
huffman@31708
   399
huffman@31708
   400
lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow>
huffman@31708
   401
    {(x::nat). P x} = {x. P' x}"
huffman@31708
   402
  by auto
huffman@31708
   403
huffman@31708
   404
declare TransferMorphism_int_nat[transfer add
huffman@31708
   405
  return: transfer_int_nat_set_functions
huffman@31708
   406
    transfer_int_nat_set_function_closures
huffman@31708
   407
    transfer_int_nat_set_relations
huffman@31708
   408
    transfer_int_nat_set_return_embed
huffman@31708
   409
  cong: transfer_int_nat_set_cong
huffman@31708
   410
]
huffman@31708
   411
huffman@31708
   412
haftmann@33318
   413
text {* setsum and setprod *}
huffman@31708
   414
huffman@31708
   415
(* this handles the case where the *domain* of f is int *)
huffman@31708
   416
lemma transfer_int_nat_sum_prod:
huffman@31708
   417
    "nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)"
huffman@31708
   418
    "nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)"
huffman@31708
   419
  apply (subst setsum_reindex)
huffman@31708
   420
  apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff)
huffman@31708
   421
  apply (subst setprod_reindex)
huffman@31708
   422
  apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff
huffman@31708
   423
            cong: setprod_cong)
huffman@31708
   424
done
huffman@31708
   425
huffman@31708
   426
(* this handles the case where the *range* of f is int *)
huffman@31708
   427
lemma transfer_int_nat_sum_prod2:
huffman@31708
   428
    "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)"
huffman@31708
   429
    "(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow>
huffman@31708
   430
      setprod f A = int(setprod (%x. nat (f x)) A)"
huffman@31708
   431
  unfolding is_nat_def
huffman@31708
   432
  apply (subst int_setsum, auto)
huffman@31708
   433
  apply (subst int_setprod, auto simp add: cong: setprod_cong)
huffman@31708
   434
done
huffman@31708
   435
huffman@31708
   436
declare TransferMorphism_int_nat[transfer add
huffman@31708
   437
  return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2
huffman@31708
   438
  cong: setsum_cong setprod_cong]
huffman@31708
   439
huffman@31708
   440
end