author  hoelzl 
Thu, 02 Sep 2010 10:45:51 +0200  
changeset 39075  a18e5946d63c 
parent 36903  489c1fbbb028 
child 39078  39f8f6d1eb74 
permissions  rwrr 
11054  1 
(* Title: HOL/Library/Permutation.thy 
15005  2 
Author: Lawrence C Paulson and Thomas M Rasmussen and Norbert Voelker 
11054  3 
*) 
4 

14706  5 
header {* Permutations *} 
11054  6 

15131  7 
theory Permutation 
30738  8 
imports Main Multiset 
15131  9 
begin 
11054  10 

23755  11 
inductive 
12 
perm :: "'a list => 'a list => bool" ("_ <~~> _" [50, 50] 50) 

13 
where 

11153  14 
Nil [intro!]: "[] <~~> []" 
23755  15 
 swap [intro!]: "y # x # l <~~> x # y # l" 
16 
 Cons [intro!]: "xs <~~> ys ==> z # xs <~~> z # ys" 

17 
 trans [intro]: "xs <~~> ys ==> ys <~~> zs ==> xs <~~> zs" 

11054  18 

19 
lemma perm_refl [iff]: "l <~~> l" 

17200  20 
by (induct l) auto 
11054  21 

22 

23 
subsection {* Some examples of rule induction on permutations *} 

24 

25 
lemma xperm_empty_imp: "[] <~~> ys ==> ys = []" 

25379  26 
by (induct xs == "[]::'a list" ys pred: perm) simp_all 
11054  27 

28 

29 
text {* 

30 
\medskip This more general theorem is easier to understand! 

31 
*} 

32 

33 
lemma perm_length: "xs <~~> ys ==> length xs = length ys" 

25379  34 
by (induct pred: perm) simp_all 
11054  35 

36 
lemma perm_empty_imp: "[] <~~> xs ==> xs = []" 

17200  37 
by (drule perm_length) auto 
11054  38 

39 
lemma perm_sym: "xs <~~> ys ==> ys <~~> xs" 

25379  40 
by (induct pred: perm) auto 
11054  41 

42 

43 
subsection {* Ways of making new permutations *} 

44 

45 
text {* 

46 
We can insert the head anywhere in the list. 

47 
*} 

48 

49 
lemma perm_append_Cons: "a # xs @ ys <~~> xs @ a # ys" 

17200  50 
by (induct xs) auto 
11054  51 

52 
lemma perm_append_swap: "xs @ ys <~~> ys @ xs" 

17200  53 
apply (induct xs) 
54 
apply simp_all 

11054  55 
apply (blast intro: perm_append_Cons) 
56 
done 

57 

58 
lemma perm_append_single: "a # xs <~~> xs @ [a]" 

17200  59 
by (rule perm.trans [OF _ perm_append_swap]) simp 
11054  60 

61 
lemma perm_rev: "rev xs <~~> xs" 

17200  62 
apply (induct xs) 
63 
apply simp_all 

11153  64 
apply (blast intro!: perm_append_single intro: perm_sym) 
11054  65 
done 
66 

67 
lemma perm_append1: "xs <~~> ys ==> l @ xs <~~> l @ ys" 

17200  68 
by (induct l) auto 
11054  69 

70 
lemma perm_append2: "xs <~~> ys ==> xs @ l <~~> ys @ l" 

17200  71 
by (blast intro!: perm_append_swap perm_append1) 
11054  72 

73 

74 
subsection {* Further results *} 

75 

76 
lemma perm_empty [iff]: "([] <~~> xs) = (xs = [])" 

17200  77 
by (blast intro: perm_empty_imp) 
11054  78 

79 
lemma perm_empty2 [iff]: "(xs <~~> []) = (xs = [])" 

80 
apply auto 

81 
apply (erule perm_sym [THEN perm_empty_imp]) 

82 
done 

83 

25379  84 
lemma perm_sing_imp: "ys <~~> xs ==> xs = [y] ==> ys = [y]" 
85 
by (induct pred: perm) auto 

11054  86 

87 
lemma perm_sing_eq [iff]: "(ys <~~> [y]) = (ys = [y])" 

17200  88 
by (blast intro: perm_sing_imp) 
11054  89 

90 
lemma perm_sing_eq2 [iff]: "([y] <~~> ys) = (ys = [y])" 

17200  91 
by (blast dest: perm_sym) 
11054  92 

93 

94 
subsection {* Removing elements *} 

95 

36903  96 
lemma perm_remove: "x \<in> set ys ==> ys <~~> x # remove1 x ys" 
17200  97 
by (induct ys) auto 
11054  98 

99 

100 
text {* \medskip Congruence rule *} 

101 

36903  102 
lemma perm_remove_perm: "xs <~~> ys ==> remove1 z xs <~~> remove1 z ys" 
25379  103 
by (induct pred: perm) auto 
11054  104 

36903  105 
lemma remove_hd [simp]: "remove1 z (z # xs) = xs" 
15072  106 
by auto 
11054  107 

108 
lemma cons_perm_imp_perm: "z # xs <~~> z # ys ==> xs <~~> ys" 

17200  109 
by (drule_tac z = z in perm_remove_perm) auto 
11054  110 

111 
lemma cons_perm_eq [iff]: "(z#xs <~~> z#ys) = (xs <~~> ys)" 

17200  112 
by (blast intro: cons_perm_imp_perm) 
11054  113 

25379  114 
lemma append_perm_imp_perm: "zs @ xs <~~> zs @ ys ==> xs <~~> ys" 
115 
apply (induct zs arbitrary: xs ys rule: rev_induct) 

11054  116 
apply (simp_all (no_asm_use)) 
117 
apply blast 

118 
done 

119 

120 
lemma perm_append1_eq [iff]: "(zs @ xs <~~> zs @ ys) = (xs <~~> ys)" 

17200  121 
by (blast intro: append_perm_imp_perm perm_append1) 
11054  122 

123 
lemma perm_append2_eq [iff]: "(xs @ zs <~~> ys @ zs) = (xs <~~> ys)" 

124 
apply (safe intro!: perm_append2) 

125 
apply (rule append_perm_imp_perm) 

126 
apply (rule perm_append_swap [THEN perm.trans]) 

127 
 {* the previous step helps this @{text blast} call succeed quickly *} 

128 
apply (blast intro: perm_append_swap) 

129 
done 

130 

15072  131 
lemma multiset_of_eq_perm: "(multiset_of xs = multiset_of ys) = (xs <~~> ys) " 
17200  132 
apply (rule iffI) 
133 
apply (erule_tac [2] perm.induct, simp_all add: union_ac) 

134 
apply (erule rev_mp, rule_tac x=ys in spec) 

135 
apply (induct_tac xs, auto) 

36903  136 
apply (erule_tac x = "remove1 a x" in allE, drule sym, simp) 
17200  137 
apply (subgoal_tac "a \<in> set x") 
138 
apply (drule_tac z=a in perm.Cons) 

139 
apply (erule perm.trans, rule perm_sym, erule perm_remove) 

15005  140 
apply (drule_tac f=set_of in arg_cong, simp) 
141 
done 

142 

17200  143 
lemma multiset_of_le_perm_append: 
35272
c283ae736bea
switched notations for pointwise and multiset order
haftmann
parents:
33498
diff
changeset

144 
"multiset_of xs \<le> multiset_of ys \<longleftrightarrow> (\<exists>zs. xs @ zs <~~> ys)" 
17200  145 
apply (auto simp: multiset_of_eq_perm[THEN sym] mset_le_exists_conv) 
15072  146 
apply (insert surj_multiset_of, drule surjD) 
147 
apply (blast intro: sym)+ 

148 
done 

15005  149 

25277  150 
lemma perm_set_eq: "xs <~~> ys ==> set xs = set ys" 
25379  151 
by (metis multiset_of_eq_perm multiset_of_eq_setD) 
25277  152 

153 
lemma perm_distinct_iff: "xs <~~> ys ==> distinct xs = distinct ys" 

25379  154 
apply (induct pred: perm) 
155 
apply simp_all 

156 
apply fastsimp 

157 
apply (metis perm_set_eq) 

158 
done 

25277  159 

25287  160 
lemma eq_set_perm_remdups: "set xs = set ys ==> remdups xs <~~> remdups ys" 
25379  161 
apply (induct xs arbitrary: ys rule: length_induct) 
162 
apply (case_tac "remdups xs", simp, simp) 

163 
apply (subgoal_tac "a : set (remdups ys)") 

164 
prefer 2 apply (metis set.simps(2) insert_iff set_remdups) 

165 
apply (drule split_list) apply(elim exE conjE) 

166 
apply (drule_tac x=list in spec) apply(erule impE) prefer 2 

167 
apply (drule_tac x="ysa@zs" in spec) apply(erule impE) prefer 2 

168 
apply simp 

169 
apply (subgoal_tac "a#list <~~> a#ysa@zs") 

170 
apply (metis Cons_eq_appendI perm_append_Cons trans) 

171 
apply (metis Cons Cons_eq_appendI distinct.simps(2) 

172 
distinct_remdups distinct_remdups_id perm_append_swap perm_distinct_iff) 

173 
apply (subgoal_tac "set (a#list) = set (ysa@a#zs) & distinct (a#list) & distinct (ysa@a#zs)") 

174 
apply (fastsimp simp add: insert_ident) 

175 
apply (metis distinct_remdups set_remdups) 

30742  176 
apply (subgoal_tac "length (remdups xs) < Suc (length xs)") 
177 
apply simp 

178 
apply (subgoal_tac "length (remdups xs) \<le> length xs") 

179 
apply simp 

180 
apply (rule length_remdups_leq) 

25379  181 
done 
25287  182 

183 
lemma perm_remdups_iff_eq_set: "remdups x <~~> remdups y = (set x = set y)" 

25379  184 
by (metis List.set_remdups perm_set_eq eq_set_perm_remdups) 
25287  185 

39075  186 
lemma permutation_Ex_bij: 
187 
assumes "xs <~~> ys" 

188 
shows "\<exists>f. bij_betw f {..<length xs} {..<length ys} \<and> (\<forall>i<length xs. xs ! i = ys ! (f i))" 

189 
using assms proof induct 

190 
case Nil then show ?case unfolding bij_betw_def by simp 

191 
next 

192 
case (swap y x l) 

193 
show ?case 

194 
proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI) 

195 
show "bij_betw (Fun.swap 0 1 id) {..<length (y # x # l)} {..<length (x # y # l)}" 

196 
by (rule bij_betw_swap) (auto simp: bij_betw_def) 

197 
fix i assume "i < length(y#x#l)" 

198 
show "(y # x # l) ! i = (x # y # l) ! (Fun.swap 0 1 id) i" 

199 
by (cases i) (auto simp: Fun.swap_def gr0_conv_Suc) 

200 
qed 

201 
next 

202 
case (Cons xs ys z) 

203 
then obtain f where bij: "bij_betw f {..<length xs} {..<length ys}" and 

204 
perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" by blast 

205 
let "?f i" = "case i of Suc n \<Rightarrow> Suc (f n)  0 \<Rightarrow> 0" 

206 
show ?case 

207 
proof (intro exI[of _ ?f] allI conjI impI) 

208 
have *: "{..<length (z#xs)} = {0} \<union> Suc ` {..<length xs}" 

209 
"{..<length (z#ys)} = {0} \<union> Suc ` {..<length ys}" 

210 
by (simp_all add: lessThan_eq_Suc_image) 

211 
show "bij_betw ?f {..<length (z#xs)} {..<length (z#ys)}" unfolding * 

212 
proof (rule bij_betw_combine) 

213 
show "bij_betw ?f (Suc ` {..<length xs}) (Suc ` {..<length ys})" 

214 
using bij unfolding bij_betw_def 

215 
by (auto intro!: inj_onI imageI dest: inj_onD simp: image_compose[symmetric] comp_def) 

216 
qed (auto simp: bij_betw_def) 

217 
fix i assume "i < length (z#xs)" 

218 
then show "(z # xs) ! i = (z # ys) ! (?f i)" 

219 
using perm by (cases i) auto 

220 
qed 

221 
next 

222 
case (trans xs ys zs) 

223 
then obtain f g where 

224 
bij: "bij_betw f {..<length xs} {..<length ys}" "bij_betw g {..<length ys} {..<length zs}" and 

225 
perm: "\<forall>i<length xs. xs ! i = ys ! (f i)" "\<forall>i<length ys. ys ! i = zs ! (g i)" by blast 

226 
show ?case 

227 
proof (intro exI[of _ "g\<circ>f"] conjI allI impI) 

228 
show "bij_betw (g \<circ> f) {..<length xs} {..<length zs}" 

229 
using bij by (rule bij_betw_trans) 

230 
fix i assume "i < length xs" 

231 
with bij have "f i < length ys" unfolding bij_betw_def by force 

232 
with `i < length xs` show "xs ! i = zs ! (g \<circ> f) i" 

233 
using trans(1,3)[THEN perm_length] perm by force 

234 
qed 

235 
qed 

236 

11054  237 
end 