src/HOL/Tools/inductive_realizer.ML
author wenzelm
Sat Mar 22 18:19:57 2014 +0100 (2014-03-22)
changeset 56254 a2dd9200854d
parent 56245 84fc7dfa3cd4
child 58111 82db9ad610b9
permissions -rw-r--r--
more antiquotations;
berghofe@13710
     1
(*  Title:      HOL/Tools/inductive_realizer.ML
berghofe@13710
     2
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13710
     3
krauss@36043
     4
Program extraction from proofs involving inductive predicates:
wenzelm@29265
     5
Realizers for induction and elimination rules.
berghofe@13710
     6
*)
berghofe@13710
     7
berghofe@13710
     8
signature INDUCTIVE_REALIZER =
berghofe@13710
     9
sig
berghofe@13710
    10
  val add_ind_realizers: string -> string list -> theory -> theory
wenzelm@18708
    11
  val setup: theory -> theory
berghofe@13710
    12
end;
berghofe@13710
    13
berghofe@13710
    14
structure InductiveRealizer : INDUCTIVE_REALIZER =
berghofe@13710
    15
struct
berghofe@13710
    16
berghofe@22606
    17
fun name_of_thm thm =
wenzelm@28800
    18
  (case Proofterm.fold_proof_atoms false (fn PThm (_, ((name, _, _), _)) => cons name | _ => I)
wenzelm@28814
    19
      [Thm.proof_of thm] [] of
wenzelm@28800
    20
    [name] => name
wenzelm@55235
    21
  | _ => raise THM ("name_of_thm: bad proof of theorem", 0, [thm]));
berghofe@22271
    22
berghofe@13710
    23
fun prf_of thm =
wenzelm@44060
    24
  Reconstruct.proof_of thm
wenzelm@44060
    25
  |> Reconstruct.expand_proof (Thm.theory_of_thm thm) [("", NONE)];  (* FIXME *)
berghofe@13710
    26
berghofe@13710
    27
fun subsets [] = [[]]
berghofe@13710
    28
  | subsets (x::xs) =
berghofe@13710
    29
      let val ys = subsets xs
berghofe@13710
    30
      in ys @ map (cons x) ys end;
berghofe@13710
    31
berghofe@22271
    32
val pred_of = fst o dest_Const o head_of;
berghofe@13710
    33
wenzelm@56245
    34
fun strip_all' used names (Const (@{const_name Pure.all}, _) $ Abs (s, T, t)) =
berghofe@22271
    35
      let val (s', names') = (case names of
wenzelm@43324
    36
          [] => (singleton (Name.variant_list used) s, [])
berghofe@22271
    37
        | name :: names' => (name, names'))
berghofe@22271
    38
      in strip_all' (s'::used) names' (subst_bound (Free (s', T), t)) end
wenzelm@56245
    39
  | strip_all' used names ((t as Const (@{const_name Pure.imp}, _) $ P) $ Q) =
berghofe@22271
    40
      t $ strip_all' used names Q
berghofe@22271
    41
  | strip_all' _ _ t = t;
berghofe@22271
    42
wenzelm@29281
    43
fun strip_all t = strip_all' (Term.add_free_names t []) [] t;
berghofe@22271
    44
wenzelm@56245
    45
fun strip_one name
wenzelm@56245
    46
    (Const (@{const_name Pure.all}, _) $ Abs (s, T, Const (@{const_name Pure.imp}, _) $ P $ Q)) =
berghofe@22271
    47
      (subst_bound (Free (name, T), P), subst_bound (Free (name, T), Q))
wenzelm@56245
    48
  | strip_one _ (Const (@{const_name Pure.imp}, _) $ P $ Q) = (P, Q);
berghofe@13710
    49
berghofe@37233
    50
fun relevant_vars prop = fold (fn ((a, i), T) => fn vs =>
berghofe@37233
    51
     (case strip_type T of
haftmann@36692
    52
        (_, Type (s, _)) => if s = @{type_name bool} then (a, T) :: vs else vs
berghofe@37233
    53
      | _ => vs)) (Term.add_vars prop []) [];
berghofe@37233
    54
berghofe@37233
    55
val attach_typeS = map_types (map_atyps
wenzelm@56254
    56
  (fn TFree (s, []) => TFree (s, @{sort type})
wenzelm@56254
    57
    | TVar (ixn, []) => TVar (ixn, @{sort type})
berghofe@37233
    58
    | T => T));
berghofe@13710
    59
berghofe@22271
    60
fun dt_of_intrs thy vs nparms intrs =
berghofe@13710
    61
  let
berghofe@37233
    62
    val iTs = rev (Term.add_tvars (prop_of (hd intrs)) []);
berghofe@22271
    63
    val (Const (s, _), ts) = strip_comb (HOLogic.dest_Trueprop
berghofe@22271
    64
      (Logic.strip_imp_concl (prop_of (hd intrs))));
haftmann@33957
    65
    val params = map dest_Var (take nparms ts);
wenzelm@30364
    66
    val tname = Binding.name (space_implode "_" (Long_Name.base_name s ^ "T" :: vs));
wenzelm@30364
    67
    fun constr_of_intr intr = (Binding.name (Long_Name.base_name (name_of_thm intr)),
wenzelm@35845
    68
      map (Logic.unvarifyT_global o snd) (subtract (op =) params (rev (Term.add_vars (prop_of intr) []))) @
berghofe@13710
    69
        filter_out (equal Extraction.nullT) (map
wenzelm@35845
    70
          (Logic.unvarifyT_global o Extraction.etype_of thy vs []) (prems_of intr)),
berghofe@13710
    71
            NoSyn);
wenzelm@45839
    72
  in
wenzelm@45839
    73
    ((tname, map (rpair dummyS) (map (fn a => "'" ^ a) vs @ map (fst o fst) iTs), NoSyn),
wenzelm@45839
    74
      map constr_of_intr intrs)
berghofe@13710
    75
  end;
berghofe@13710
    76
berghofe@13710
    77
fun mk_rlz T = Const ("realizes", [T, HOLogic.boolT] ---> HOLogic.boolT);
berghofe@13710
    78
berghofe@22271
    79
(** turn "P" into "%r x. realizes r (P x)" **)
berghofe@13710
    80
berghofe@13710
    81
fun gen_rvar vs (t as Var ((a, 0), T)) =
berghofe@22271
    82
      if body_type T <> HOLogic.boolT then t else
berghofe@22271
    83
        let
berghofe@37233
    84
          val U = TVar (("'" ^ a, 0), [])
berghofe@22271
    85
          val Ts = binder_types T;
berghofe@22271
    86
          val i = length Ts;
berghofe@22271
    87
          val xs = map (pair "x") Ts;
berghofe@22271
    88
          val u = list_comb (t, map Bound (i - 1 downto 0))
berghofe@22271
    89
        in 
haftmann@36692
    90
          if member (op =) vs a then
wenzelm@46219
    91
            fold_rev Term.abs (("r", U) :: xs) (mk_rlz U $ Bound i $ u)
wenzelm@46219
    92
          else
wenzelm@46219
    93
            fold_rev Term.abs xs (mk_rlz Extraction.nullT $ Extraction.nullt $ u)
berghofe@22271
    94
        end
berghofe@13710
    95
  | gen_rvar _ t = t;
berghofe@13710
    96
berghofe@22271
    97
fun mk_realizes_eqn n vs nparms intrs =
berghofe@13710
    98
  let
berghofe@37233
    99
    val intr = map_types Type.strip_sorts (prop_of (hd intrs));
berghofe@37233
   100
    val concl = HOLogic.dest_Trueprop (Logic.strip_imp_concl intr);
berghofe@37233
   101
    val iTs = rev (Term.add_tvars intr []);
berghofe@13710
   102
    val Tvs = map TVar iTs;
berghofe@22271
   103
    val (h as Const (s, T), us) = strip_comb concl;
berghofe@22271
   104
    val params = List.take (us, nparms);
berghofe@22271
   105
    val elTs = List.drop (binder_types T, nparms);
berghofe@22271
   106
    val predT = elTs ---> HOLogic.boolT;
berghofe@22271
   107
    val used = map (fst o fst o dest_Var) params;
berghofe@22271
   108
    val xs = map (Var o apfst (rpair 0))
berghofe@22271
   109
      (Name.variant_list used (replicate (length elTs) "x") ~~ elTs);
berghofe@13710
   110
    val rT = if n then Extraction.nullT
berghofe@13710
   111
      else Type (space_implode "_" (s ^ "T" :: vs),
berghofe@37233
   112
        map (fn a => TVar (("'" ^ a, 0), [])) vs @ Tvs);
wenzelm@30364
   113
    val r = if n then Extraction.nullt else Var ((Long_Name.base_name s, 0), rT);
berghofe@22271
   114
    val S = list_comb (h, params @ xs);
berghofe@13710
   115
    val rvs = relevant_vars S;
haftmann@33040
   116
    val vs' = subtract (op =) vs (map fst rvs);
berghofe@13710
   117
    val rname = space_implode "_" (s ^ "R" :: vs);
berghofe@13710
   118
berghofe@13710
   119
    fun mk_Tprem n v =
haftmann@17485
   120
      let val T = (the o AList.lookup (op =) rvs) v
berghofe@13710
   121
      in (Const ("typeof", T --> Type ("Type", [])) $ Var ((v, 0), T),
berghofe@13710
   122
        Extraction.mk_typ (if n then Extraction.nullT
berghofe@37233
   123
          else TVar (("'" ^ v, 0), [])))
berghofe@13710
   124
      end;
berghofe@13710
   125
berghofe@13710
   126
    val prems = map (mk_Tprem true) vs' @ map (mk_Tprem false) vs;
berghofe@22271
   127
    val ts = map (gen_rvar vs) params;
berghofe@13710
   128
    val argTs = map fastype_of ts;
berghofe@13710
   129
berghofe@22271
   130
  in ((prems, (Const ("typeof", HOLogic.boolT --> Type ("Type", [])) $ S,
berghofe@13710
   131
       Extraction.mk_typ rT)),
berghofe@22271
   132
    (prems, (mk_rlz rT $ r $ S,
berghofe@22271
   133
       if n then list_comb (Const (rname, argTs ---> predT), ts @ xs)
berghofe@22271
   134
       else list_comb (Const (rname, argTs @ [rT] ---> predT), ts @ [r] @ xs))))
berghofe@13710
   135
  end;
berghofe@13710
   136
berghofe@22271
   137
fun fun_of_prem thy rsets vs params rule ivs intr =
berghofe@13710
   138
  let
wenzelm@42361
   139
    val ctxt = Proof_Context.init_global thy
berghofe@22271
   140
    val args = map (Free o apfst fst o dest_Var) ivs;
berghofe@13710
   141
    val args' = map (Free o apfst fst)
haftmann@33040
   142
      (subtract (op =) params (Term.add_vars (prop_of intr) []));
berghofe@13710
   143
    val rule' = strip_all rule;
berghofe@13710
   144
    val conclT = Extraction.etype_of thy vs [] (Logic.strip_imp_concl rule');
berghofe@13710
   145
    val used = map (fst o dest_Free) args;
berghofe@13710
   146
wenzelm@29271
   147
    val is_rec = exists_Const (fn (c, _) => member (op =) rsets c);
berghofe@13710
   148
wenzelm@56245
   149
    fun is_meta (Const (@{const_name Pure.all}, _) $ Abs (s, _, P)) = is_meta P
wenzelm@56245
   150
      | is_meta (Const (@{const_name Pure.imp}, _) $ _ $ Q) = is_meta Q
wenzelm@35364
   151
      | is_meta (Const (@{const_name Trueprop}, _) $ t) =
wenzelm@35364
   152
          (case head_of t of
wenzelm@35364
   153
            Const (s, _) => can (Inductive.the_inductive ctxt) s
wenzelm@35364
   154
          | _ => true)
berghofe@13710
   155
      | is_meta _ = false;
berghofe@13710
   156
berghofe@13710
   157
    fun fun_of ts rts args used (prem :: prems) =
berghofe@13710
   158
          let
berghofe@13710
   159
            val T = Extraction.etype_of thy vs [] prem;
wenzelm@20071
   160
            val [x, r] = Name.variant_list used ["x", "r"]
berghofe@13710
   161
          in if T = Extraction.nullT
berghofe@13710
   162
            then fun_of ts rts args used prems
berghofe@13710
   163
            else if is_rec prem then
berghofe@13710
   164
              if is_meta prem then
berghofe@13710
   165
                let
berghofe@13710
   166
                  val prem' :: prems' = prems;
berghofe@13710
   167
                  val U = Extraction.etype_of thy vs [] prem';
wenzelm@46219
   168
                in
wenzelm@46219
   169
                  if U = Extraction.nullT
berghofe@13710
   170
                  then fun_of (Free (x, T) :: ts)
berghofe@13710
   171
                    (Free (r, binder_types T ---> HOLogic.unitT) :: rts)
berghofe@13710
   172
                    (Free (x, T) :: args) (x :: r :: used) prems'
berghofe@13710
   173
                  else fun_of (Free (x, T) :: ts) (Free (r, U) :: rts)
berghofe@13710
   174
                    (Free (r, U) :: Free (x, T) :: args) (x :: r :: used) prems'
berghofe@13710
   175
                end
wenzelm@46219
   176
              else
wenzelm@46219
   177
                (case strip_type T of
haftmann@37678
   178
                  (Ts, Type (@{type_name Product_Type.prod}, [T1, T2])) =>
berghofe@13710
   179
                    let
berghofe@13710
   180
                      val fx = Free (x, Ts ---> T1);
berghofe@13710
   181
                      val fr = Free (r, Ts ---> T2);
berghofe@13710
   182
                      val bs = map Bound (length Ts - 1 downto 0);
wenzelm@46219
   183
                      val t =
wenzelm@46219
   184
                        fold_rev (Term.abs o pair "z") Ts
wenzelm@46219
   185
                          (HOLogic.mk_prod (list_comb (fx, bs), list_comb (fr, bs)));
wenzelm@46219
   186
                    in fun_of (fx :: ts) (fr :: rts) (t::args) (x :: r :: used) prems end
berghofe@13710
   187
                | (Ts, U) => fun_of (Free (x, T) :: ts)
berghofe@13710
   188
                    (Free (r, binder_types T ---> HOLogic.unitT) :: rts)
berghofe@13710
   189
                    (Free (x, T) :: args) (x :: r :: used) prems)
berghofe@13710
   190
            else fun_of (Free (x, T) :: ts) rts (Free (x, T) :: args)
berghofe@13710
   191
              (x :: used) prems
berghofe@13710
   192
          end
berghofe@13710
   193
      | fun_of ts rts args used [] =
berghofe@13710
   194
          let val xs = rev (rts @ ts)
berghofe@13710
   195
          in if conclT = Extraction.nullT
wenzelm@44241
   196
            then fold_rev (absfree o dest_Free) xs HOLogic.unit
wenzelm@44241
   197
            else fold_rev (absfree o dest_Free) xs
wenzelm@44241
   198
              (list_comb
wenzelm@44241
   199
                (Free ("r" ^ Long_Name.base_name (name_of_thm intr),
wenzelm@44241
   200
                  map fastype_of (rev args) ---> conclT), rev args))
berghofe@13710
   201
          end
berghofe@13710
   202
berghofe@13921
   203
  in fun_of args' [] (rev args) used (Logic.strip_imp_prems rule') end;
berghofe@13710
   204
berghofe@13710
   205
fun indrule_realizer thy induct raw_induct rsets params vs rec_names rss intrs dummies =
berghofe@13710
   206
  let
berghofe@13710
   207
    val concls = HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of raw_induct));
haftmann@31986
   208
    val premss = map_filter (fn (s, rs) => if member (op =) rsets s then
haftmann@31986
   209
      SOME (rs, map (fn (_, r) => nth (prems_of raw_induct)
haftmann@31986
   210
        (find_index (fn prp => prp = prop_of r) (map prop_of intrs))) rs) else NONE) rss;
berghofe@22271
   211
    val fs = maps (fn ((intrs, prems), dummy) =>
berghofe@13710
   212
      let
berghofe@22271
   213
        val fs = map (fn (rule, (ivs, intr)) =>
berghofe@22271
   214
          fun_of_prem thy rsets vs params rule ivs intr) (prems ~~ intrs)
wenzelm@35364
   215
      in
wenzelm@35364
   216
        if dummy then Const (@{const_name default},
wenzelm@35364
   217
            HOLogic.unitT --> body_type (fastype_of (hd fs))) :: fs
berghofe@22271
   218
        else fs
berghofe@22271
   219
      end) (premss ~~ dummies);
wenzelm@16861
   220
    val frees = fold Term.add_frees fs [];
berghofe@13710
   221
    val Ts = map fastype_of fs;
wenzelm@30364
   222
    fun name_of_fn intr = "r" ^ Long_Name.base_name (name_of_thm intr)
berghofe@22271
   223
  in
berghofe@22271
   224
    fst (fold_map (fn concl => fn names =>
berghofe@13710
   225
      let val T = Extraction.etype_of thy vs [] concl
berghofe@22271
   226
      in if T = Extraction.nullT then (Extraction.nullt, names) else
berghofe@22271
   227
        let
berghofe@22271
   228
          val Type ("fun", [U, _]) = T;
berghofe@22271
   229
          val a :: names' = names
wenzelm@44241
   230
        in
wenzelm@44241
   231
          (fold_rev absfree (("x", U) :: map_filter (fn intr =>
wenzelm@44241
   232
            Option.map (pair (name_of_fn intr))
wenzelm@44241
   233
              (AList.lookup (op =) frees (name_of_fn intr))) intrs)
wenzelm@44241
   234
            (list_comb (Const (a, Ts ---> T), fs) $ Free ("x", U)), names')
berghofe@22271
   235
        end
berghofe@22271
   236
      end) concls rec_names)
berghofe@13710
   237
  end;
berghofe@13710
   238
wenzelm@45839
   239
fun add_dummy name dname (x as (_, ((s, vs, mx), cs))) =
wenzelm@45839
   240
  if Binding.eq_name (name, s)
wenzelm@45839
   241
  then (true, ((s, vs, mx), (dname, [HOLogic.unitT], NoSyn) :: cs))
berghofe@13710
   242
  else x;
berghofe@13710
   243
haftmann@18314
   244
fun add_dummies f [] _ thy =
haftmann@18314
   245
      (([], NONE), thy)
haftmann@18314
   246
  | add_dummies f dts used thy =
haftmann@18314
   247
      thy
haftmann@18314
   248
      |> f (map snd dts)
wenzelm@30345
   249
      |-> (fn dtinfo => pair (map fst dts, SOME dtinfo))
haftmann@33968
   250
    handle Datatype_Aux.Datatype_Empty name' =>
berghofe@13710
   251
      let
wenzelm@30364
   252
        val name = Long_Name.base_name name';
wenzelm@43324
   253
        val dname = singleton (Name.variant_list used) "Dummy";
haftmann@18314
   254
      in
haftmann@18314
   255
        thy
wenzelm@30345
   256
        |> add_dummies f (map (add_dummy (Binding.name name) (Binding.name dname)) dts) (dname :: used)
berghofe@14888
   257
      end;
berghofe@13710
   258
berghofe@22271
   259
fun mk_realizer thy vs (name, rule, rrule, rlz, rt) =
berghofe@13710
   260
  let
berghofe@13725
   261
    val rvs = map fst (relevant_vars (prop_of rule));
wenzelm@16861
   262
    val xs = rev (Term.add_vars (prop_of rule) []);
haftmann@36692
   263
    val vs1 = map Var (filter_out (fn ((a, _), _) => member (op =) rvs a) xs);
wenzelm@16861
   264
    val rlzvs = rev (Term.add_vars (prop_of rrule) []);
haftmann@17485
   265
    val vs2 = map (fn (ixn, _) => Var (ixn, (the o AList.lookup (op =) rlzvs) ixn)) xs;
berghofe@22271
   266
    val rs = map Var (subtract (op = o pairself fst) xs rlzvs);
berghofe@37233
   267
    val rlz' = fold_rev Logic.all rs (prop_of rrule)
berghofe@22271
   268
  in (name, (vs,
wenzelm@33338
   269
    if rt = Extraction.nullt then rt else fold_rev lambda vs1 rt,
berghofe@37233
   270
    Extraction.abs_corr_shyps thy rule vs vs2
berghofe@37233
   271
      (ProofRewriteRules.un_hhf_proof rlz' (attach_typeS rlz)
berghofe@37233
   272
         (fold_rev Proofterm.forall_intr_proof' rs (prf_of rrule)))))
berghofe@13710
   273
  end;
berghofe@13710
   274
berghofe@24157
   275
fun rename tab = map (fn x => the_default x (AList.lookup op = tab x));
berghofe@24157
   276
wenzelm@33244
   277
fun add_ind_realizer rsets intrs induct raw_induct elims vs thy =
berghofe@13710
   278
  let
wenzelm@30364
   279
    val qualifier = Long_Name.qualifier (name_of_thm induct);
wenzelm@39557
   280
    val inducts = Global_Theory.get_thms thy (Long_Name.qualify qualifier "inducts");
berghofe@37233
   281
    val iTs = rev (Term.add_tvars (prop_of (hd intrs)) []);
berghofe@13710
   282
    val ar = length vs + length iTs;
haftmann@31723
   283
    val params = Inductive.params_of raw_induct;
haftmann@31723
   284
    val arities = Inductive.arities_of raw_induct;
berghofe@22271
   285
    val nparms = length params;
berghofe@13710
   286
    val params' = map dest_Var params;
haftmann@31723
   287
    val rss = Inductive.partition_rules raw_induct intrs;
berghofe@22271
   288
    val rss' = map (fn (((s, rs), (_, arity)), elim) =>
haftmann@31723
   289
      (s, (Inductive.infer_intro_vars elim arity rs ~~ rs)))
berghofe@22790
   290
        (rss ~~ arities ~~ elims);
wenzelm@30364
   291
    val (prfx, _) = split_last (Long_Name.explode (fst (hd rss)));
berghofe@13710
   292
    val tnames = map (fn s => space_implode "_" (s ^ "T" :: vs)) rsets;
wenzelm@16123
   293
berghofe@13710
   294
    val thy1 = thy |>
wenzelm@24712
   295
      Sign.root_path |>
wenzelm@30364
   296
      Sign.add_path (Long_Name.implode prfx);
berghofe@13710
   297
    val (ty_eqs, rlz_eqs) = split_list
haftmann@36692
   298
      (map (fn (s, rs) => mk_realizes_eqn (not (member (op =) rsets s)) vs nparms rs) rss);
berghofe@13710
   299
berghofe@13710
   300
    val thy1' = thy1 |>
wenzelm@42375
   301
      Sign.add_types_global
wenzelm@42375
   302
        (map (fn s => (Binding.name (Long_Name.base_name s), ar, NoSyn)) tnames) |>
wenzelm@42375
   303
      Extraction.add_typeof_eqns_i ty_eqs;
haftmann@36692
   304
    val dts = map_filter (fn (s, rs) => if member (op =) rsets s then
berghofe@22271
   305
      SOME (dt_of_intrs thy1' vs nparms rs) else NONE) rss;
berghofe@13710
   306
berghofe@13710
   307
    (** datatype representing computational content of inductive set **)
berghofe@13710
   308
haftmann@31783
   309
    val ((dummies, some_dt_names), thy2) =
haftmann@18008
   310
      thy1
wenzelm@45701
   311
      |> add_dummies (Datatype.add_datatype {strict = false, quiet = false})
wenzelm@45701
   312
        (map (pair false) dts) []
haftmann@18314
   313
      ||> Extraction.add_typeof_eqns_i ty_eqs
haftmann@18314
   314
      ||> Extraction.add_realizes_eqns_i rlz_eqs;
haftmann@31783
   315
    val dt_names = these some_dt_names;
haftmann@31784
   316
    val case_thms = map (#case_rewrites o Datatype.the_info thy2) dt_names;
wenzelm@45701
   317
    val rec_thms =
wenzelm@45701
   318
      if null dt_names then []
wenzelm@45701
   319
      else #rec_rewrites (Datatype.the_info thy2 (hd dt_names));
wenzelm@19046
   320
    val rec_names = distinct (op =) (map (fst o dest_Const o head_of o fst o
haftmann@31781
   321
      HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) rec_thms);
haftmann@31458
   322
    val (constrss, _) = fold_map (fn (s, rs) => fn (recs, dummies) =>
haftmann@31458
   323
      if member (op =) rsets s then
berghofe@13710
   324
        let
berghofe@13710
   325
          val (d :: dummies') = dummies;
wenzelm@19473
   326
          val (recs1, recs2) = chop (length rs) (if d then tl recs else recs)
haftmann@31458
   327
        in (map (head_of o hd o rev o snd o strip_comb o fst o
haftmann@31458
   328
          HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) recs1, (recs2, dummies'))
berghofe@13710
   329
        end
haftmann@31458
   330
      else (replicate (length rs) Extraction.nullt, (recs, dummies)))
haftmann@31781
   331
        rss (rec_thms, dummies);
berghofe@37233
   332
    val rintrs = map (fn (intr, c) => attach_typeS (Envir.eta_contract
berghofe@13710
   333
      (Extraction.realizes_of thy2 vs
berghofe@22271
   334
        (if c = Extraction.nullt then c else list_comb (c, map Var (rev
berghofe@37233
   335
          (subtract (op =) params' (Term.add_vars (prop_of intr) []))))) (prop_of intr))))
wenzelm@32952
   336
            (maps snd rss ~~ flat constrss);
wenzelm@30345
   337
    val (rlzpreds, rlzpreds') =
wenzelm@30345
   338
      rintrs |> map (fn rintr =>
berghofe@22271
   339
        let
wenzelm@30345
   340
          val Const (s, T) = head_of (HOLogic.dest_Trueprop (Logic.strip_assums_concl rintr));
wenzelm@30364
   341
          val s' = Long_Name.base_name s;
wenzelm@35845
   342
          val T' = Logic.unvarifyT_global T;
wenzelm@30345
   343
        in (((s', T'), NoSyn), (Const (s, T'), Free (s', T'))) end)
wenzelm@30345
   344
      |> distinct (op = o pairself (#1 o #1))
wenzelm@30345
   345
      |> map (apfst (apfst (apfst Binding.name)))
wenzelm@30345
   346
      |> split_list;
wenzelm@30345
   347
wenzelm@35845
   348
    val rlzparams = map (fn Var ((s, _), T) => (s, Logic.unvarifyT_global T))
berghofe@22271
   349
      (List.take (snd (strip_comb
berghofe@22271
   350
        (HOLogic.dest_Trueprop (Logic.strip_assums_concl (hd rintrs)))), nparms));
berghofe@13710
   351
berghofe@13710
   352
    (** realizability predicate **)
berghofe@13710
   353
berghofe@22271
   354
    val (ind_info, thy3') = thy2 |>
wenzelm@33726
   355
      Inductive.add_inductive_global
wenzelm@33669
   356
        {quiet_mode = false, verbose = false, alt_name = Binding.empty, coind = false,
wenzelm@49170
   357
          no_elim = false, no_ind = false, skip_mono = false}
berghofe@22271
   358
        rlzpreds rlzparams (map (fn (rintr, intr) =>
wenzelm@30364
   359
          ((Binding.name (Long_Name.base_name (name_of_thm intr)), []),
wenzelm@35845
   360
           subst_atomic rlzpreds' (Logic.unvarify_global rintr)))
berghofe@22271
   361
             (rintrs ~~ maps snd rss)) [] ||>
wenzelm@30435
   362
      Sign.root_path;
wenzelm@39557
   363
    val thy3 = fold (Global_Theory.hide_fact false o name_of_thm) (#intrs ind_info) thy3';
berghofe@13710
   364
berghofe@13710
   365
    (** realizer for induction rule **)
berghofe@13710
   366
haftmann@36692
   367
    val Ps = map_filter (fn _ $ M $ P => if member (op =) rsets (pred_of M) then
skalberg@15531
   368
      SOME (fst (fst (dest_Var (head_of P)))) else NONE)
berghofe@13710
   369
        (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of raw_induct)));
berghofe@13710
   370
wenzelm@33244
   371
    fun add_ind_realizer Ps thy =
berghofe@13710
   372
      let
berghofe@24157
   373
        val vs' = rename (map (pairself (fst o fst o dest_Var))
berghofe@24157
   374
          (params ~~ List.take (snd (strip_comb (HOLogic.dest_Trueprop
berghofe@24157
   375
            (hd (prems_of (hd inducts))))), nparms))) vs;
berghofe@22271
   376
        val rs = indrule_realizer thy induct raw_induct rsets params'
berghofe@24157
   377
          (vs' @ Ps) rec_names rss' intrs dummies;
berghofe@24157
   378
        val rlzs = map (fn (r, ind) => Extraction.realizes_of thy (vs' @ Ps) r
berghofe@22271
   379
          (prop_of ind)) (rs ~~ inducts);
wenzelm@29281
   380
        val used = fold Term.add_free_names rlzs [];
berghofe@22271
   381
        val rnames = Name.variant_list used (replicate (length inducts) "r");
berghofe@22271
   382
        val rnames' = Name.variant_list
berghofe@22271
   383
          (used @ rnames) (replicate (length intrs) "s");
berghofe@22271
   384
        val rlzs' as (prems, _, _) :: _ = map (fn (rlz, name) =>
berghofe@22271
   385
          let
wenzelm@35845
   386
            val (P, Q) = strip_one name (Logic.unvarify_global rlz);
berghofe@22271
   387
            val Q' = strip_all' [] rnames' Q
berghofe@22271
   388
          in
berghofe@22271
   389
            (Logic.strip_imp_prems Q', P, Logic.strip_imp_concl Q')
berghofe@22271
   390
          end) (rlzs ~~ rnames);
berghofe@22271
   391
        val concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map
berghofe@22271
   392
          (fn (_, _ $ P, _ $ Q) => HOLogic.mk_imp (P, Q)) rlzs'));
haftmann@37136
   393
        val rews = map mk_meta_eq (@{thm fst_conv} :: @{thm snd_conv} :: rec_thms);
berghofe@37233
   394
        val thm = Goal.prove_global thy []
berghofe@37233
   395
          (map attach_typeS prems) (attach_typeS concl)
wenzelm@54742
   396
          (fn {context = ctxt, prems} => EVERY
berghofe@22271
   397
          [rtac (#raw_induct ind_info) 1,
wenzelm@54742
   398
           rewrite_goals_tac ctxt rews,
berghofe@13710
   399
           REPEAT ((resolve_tac prems THEN_ALL_NEW EVERY'
wenzelm@54742
   400
             [K (rewrite_goals_tac ctxt rews), Object_Logic.atomize_prems_tac ctxt,
berghofe@13710
   401
              DEPTH_SOLVE_1 o FIRST' [atac, etac allE, etac impE]]) 1)]);
wenzelm@39557
   402
        val (thm', thy') = Global_Theory.store_thm (Binding.qualified_name (space_implode "_"
wenzelm@30364
   403
          (Long_Name.qualify qualifier "induct" :: vs' @ Ps @ ["correctness"])), thm) thy;
berghofe@22271
   404
        val thms = map (fn th => zero_var_indexes (rotate_prems ~1 (th RS mp)))
haftmann@33968
   405
          (Datatype_Aux.split_conj_thm thm');
wenzelm@39557
   406
        val ([thms'], thy'') = Global_Theory.add_thmss
wenzelm@30435
   407
          [((Binding.qualified_name (space_implode "_"
wenzelm@30364
   408
             (Long_Name.qualify qualifier "inducts" :: vs' @ Ps @
haftmann@29579
   409
               ["correctness"])), thms), [])] thy';
berghofe@22271
   410
        val realizers = inducts ~~ thms' ~~ rlzs ~~ rs;
berghofe@13710
   411
      in
berghofe@13710
   412
        Extraction.add_realizers_i
berghofe@22271
   413
          (map (fn (((ind, corr), rlz), r) =>
berghofe@37233
   414
              mk_realizer thy'' (vs' @ Ps) (Thm.derivation_name ind, ind, corr, rlz, r))
berghofe@22271
   415
            realizers @ (case realizers of
berghofe@22271
   416
             [(((ind, corr), rlz), r)] =>
berghofe@37233
   417
               [mk_realizer thy'' (vs' @ Ps) (Long_Name.qualify qualifier "induct",
berghofe@22271
   418
                  ind, corr, rlz, r)]
berghofe@22271
   419
           | _ => [])) thy''
berghofe@13710
   420
      end;
berghofe@13710
   421
berghofe@13710
   422
    (** realizer for elimination rules **)
berghofe@13710
   423
berghofe@13710
   424
    val case_names = map (fst o dest_Const o head_of o fst o HOLogic.dest_eq o
haftmann@31781
   425
      HOLogic.dest_Trueprop o prop_of o hd) case_thms;
berghofe@13710
   426
berghofe@13921
   427
    fun add_elim_realizer Ps
berghofe@13921
   428
      (((((elim, elimR), intrs), case_thms), case_name), dummy) thy =
berghofe@13710
   429
      let
berghofe@13710
   430
        val (prem :: prems) = prems_of elim;
berghofe@22271
   431
        fun reorder1 (p, (_, intr)) =
wenzelm@33244
   432
          fold (fn ((s, _), T) => Logic.all (Free (s, T)))
wenzelm@33244
   433
            (subtract (op =) params' (Term.add_vars (prop_of intr) []))
wenzelm@33244
   434
            (strip_all p);
berghofe@22271
   435
        fun reorder2 ((ivs, intr), i) =
haftmann@33040
   436
          let val fs = subtract (op =) params' (Term.add_vars (prop_of intr) [])
wenzelm@33244
   437
          in fold (lambda o Var) fs (list_comb (Bound (i + length ivs), ivs)) end;
berghofe@13921
   438
        val p = Logic.list_implies
berghofe@13921
   439
          (map reorder1 (prems ~~ intrs) @ [prem], concl_of elim);
berghofe@13710
   440
        val T' = Extraction.etype_of thy (vs @ Ps) [] p;
berghofe@13710
   441
        val T = if dummy then (HOLogic.unitT --> body_type T') --> T' else T';
berghofe@13921
   442
        val Ts = map (Extraction.etype_of thy (vs @ Ps) []) (prems_of elim);
wenzelm@46219
   443
        val r =
wenzelm@46219
   444
          if null Ps then Extraction.nullt
wenzelm@46219
   445
          else
wenzelm@46219
   446
            fold_rev (Term.abs o pair "x") Ts
wenzelm@46219
   447
              (list_comb (Const (case_name, T),
wenzelm@46219
   448
                (if dummy then
wenzelm@46219
   449
                   [Abs ("x", HOLogic.unitT, Const (@{const_name default}, body_type T))]
wenzelm@46219
   450
                 else []) @
wenzelm@46219
   451
                map reorder2 (intrs ~~ (length prems - 1 downto 0)) @
wenzelm@46219
   452
                [Bound (length prems)]));
berghofe@22271
   453
        val rlz = Extraction.realizes_of thy (vs @ Ps) r (prop_of elim);
berghofe@37233
   454
        val rlz' = attach_typeS (strip_all (Logic.unvarify_global rlz));
berghofe@13710
   455
        val rews = map mk_meta_eq case_thms;
berghofe@22271
   456
        val thm = Goal.prove_global thy []
wenzelm@51717
   457
          (Logic.strip_imp_prems rlz') (Logic.strip_imp_concl rlz')
wenzelm@51717
   458
          (fn {context = ctxt, prems, ...} => EVERY
wenzelm@51717
   459
            [cut_tac (hd prems) 1,
wenzelm@51717
   460
             etac elimR 1,
wenzelm@51717
   461
             ALLGOALS (asm_simp_tac (put_simpset HOL_basic_ss ctxt)),
wenzelm@54742
   462
             rewrite_goals_tac ctxt rews,
wenzelm@54742
   463
             REPEAT ((resolve_tac prems THEN_ALL_NEW (Object_Logic.atomize_prems_tac ctxt THEN'
wenzelm@51717
   464
               DEPTH_SOLVE_1 o FIRST' [atac, etac allE, etac impE])) 1)]);
wenzelm@39557
   465
        val (thm', thy') = Global_Theory.store_thm (Binding.qualified_name (space_implode "_"
haftmann@29579
   466
          (name_of_thm elim :: vs @ Ps @ ["correctness"])), thm) thy
berghofe@13710
   467
      in
berghofe@13710
   468
        Extraction.add_realizers_i
berghofe@22271
   469
          [mk_realizer thy' (vs @ Ps) (name_of_thm elim, elim, thm', rlz, r)] thy'
berghofe@13710
   470
      end;
berghofe@13710
   471
berghofe@13710
   472
    (** add realizers to theory **)
berghofe@13710
   473
wenzelm@33244
   474
    val thy4 = fold add_ind_realizer (subsets Ps) thy3;
berghofe@13710
   475
    val thy5 = Extraction.add_realizers_i
berghofe@22271
   476
      (map (mk_realizer thy4 vs) (map (fn (((rule, rrule), rlz), c) =>
berghofe@22271
   477
         (name_of_thm rule, rule, rrule, rlz,
haftmann@33040
   478
            list_comb (c, map Var (subtract (op =) params' (rev (Term.add_vars (prop_of rule) []))))))
wenzelm@32952
   479
              (maps snd rss ~~ #intrs ind_info ~~ rintrs ~~ flat constrss))) thy4;
wenzelm@32952
   480
    val elimps = map_filter (fn ((s, intrs), p) =>
haftmann@36692
   481
      if member (op =) rsets s then SOME (p, intrs) else NONE)
berghofe@22271
   482
        (rss' ~~ (elims ~~ #elims ind_info));
wenzelm@33244
   483
    val thy6 =
wenzelm@33244
   484
      fold (fn p as (((((elim, _), _), _), _), _) =>
wenzelm@33244
   485
        add_elim_realizer [] p #>
wenzelm@33244
   486
        add_elim_realizer [fst (fst (dest_Var (HOLogic.dest_Trueprop (concl_of elim))))] p)
wenzelm@33244
   487
      (elimps ~~ case_thms ~~ case_names ~~ dummies) thy5;
berghofe@13710
   488
wenzelm@24712
   489
  in Sign.restore_naming thy thy6 end;
berghofe@13710
   490
berghofe@13710
   491
fun add_ind_realizers name rsets thy =
berghofe@13710
   492
  let
berghofe@13710
   493
    val (_, {intrs, induct, raw_induct, elims, ...}) =
wenzelm@42361
   494
      Inductive.the_inductive (Proof_Context.init_global thy) name;
berghofe@13710
   495
    val vss = sort (int_ord o pairself length)
berghofe@22271
   496
      (subsets (map fst (relevant_vars (concl_of (hd intrs)))))
berghofe@13710
   497
  in
berghofe@37233
   498
    fold_rev (add_ind_realizer rsets intrs induct raw_induct elims) vss thy
berghofe@13710
   499
  end
berghofe@13710
   500
wenzelm@20897
   501
fun rlz_attrib arg = Thm.declaration_attribute (fn thm => Context.mapping
berghofe@13710
   502
  let
berghofe@13710
   503
    fun err () = error "ind_realizer: bad rule";
berghofe@13710
   504
    val sets =
berghofe@13710
   505
      (case HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of thm)) of
berghofe@22271
   506
           [_] => [pred_of (HOLogic.dest_Trueprop (hd (prems_of thm)))]
berghofe@22271
   507
         | xs => map (pred_of o fst o HOLogic.dest_imp) xs)
wenzelm@47060
   508
         handle TERM _ => err () | List.Empty => err ();
berghofe@13710
   509
  in 
wenzelm@18728
   510
    add_ind_realizers (hd sets)
wenzelm@18728
   511
      (case arg of
skalberg@15531
   512
        NONE => sets | SOME NONE => []
haftmann@33040
   513
      | SOME (SOME sets') => subtract (op =) sets' sets)
wenzelm@20897
   514
  end I);
berghofe@13710
   515
wenzelm@18708
   516
val setup =
wenzelm@30722
   517
  Attrib.setup @{binding ind_realizer}
wenzelm@30722
   518
    ((Scan.option (Scan.lift (Args.$$$ "irrelevant") |--
wenzelm@55954
   519
      Scan.option (Scan.lift (Args.colon) |--
wenzelm@55958
   520
        Scan.repeat1 (Args.const {proper = true, strict = true})))) >> rlz_attrib)
wenzelm@30722
   521
    "add realizers for inductive set";
berghofe@13710
   522
berghofe@13710
   523
end;
wenzelm@15706
   524