src/Pure/tactic.ML
author paulson
Wed Mar 19 10:24:39 1997 +0100 (1997-03-19)
changeset 2814 a318f7f3a65c
parent 2688 889a1cbd1aca
child 3409 c0466958df5d
permissions -rw-r--r--
delete_tagged_brl just ignores non-elimination rules instead of complaining
clasohm@1460
     1
(*  Title: 	tactic
clasohm@0
     2
    ID:         $Id$
clasohm@1460
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Tactics 
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
signature TACTIC =
paulson@1501
    10
  sig
clasohm@0
    11
  val ares_tac: thm list -> int -> tactic
clasohm@0
    12
  val asm_rewrite_goal_tac:
nipkow@214
    13
        bool*bool -> (meta_simpset -> tactic) -> meta_simpset -> int -> tactic
clasohm@0
    14
  val assume_tac: int -> tactic
clasohm@0
    15
  val atac: int ->tactic
lcp@670
    16
  val bimatch_from_nets_tac: 
paulson@1501
    17
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
clasohm@0
    18
  val bimatch_tac: (bool*thm)list -> int -> tactic
lcp@670
    19
  val biresolve_from_nets_tac: 
paulson@1501
    20
      (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net -> int -> tactic
clasohm@0
    21
  val biresolve_tac: (bool*thm)list -> int -> tactic
paulson@1501
    22
  val build_net: thm list -> (int*thm) Net.net
paulson@1501
    23
  val build_netpair:    (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net ->
paulson@1501
    24
      (bool*thm)list -> (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net
clasohm@0
    25
  val compose_inst_tac: (string*string)list -> (bool*thm*int) -> int -> tactic
clasohm@0
    26
  val compose_tac: (bool * thm * int) -> int -> tactic 
clasohm@0
    27
  val cut_facts_tac: thm list -> int -> tactic
lcp@270
    28
  val cut_inst_tac: (string*string)list -> thm -> int -> tactic   
paulson@2029
    29
  val defer_tac : int -> tactic
clasohm@0
    30
  val dmatch_tac: thm list -> int -> tactic
clasohm@0
    31
  val dresolve_tac: thm list -> int -> tactic
clasohm@0
    32
  val dres_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    33
  val dtac: thm -> int ->tactic
clasohm@0
    34
  val etac: thm -> int ->tactic
clasohm@0
    35
  val eq_assume_tac: int -> tactic   
clasohm@0
    36
  val ematch_tac: thm list -> int -> tactic
clasohm@0
    37
  val eresolve_tac: thm list -> int -> tactic
clasohm@0
    38
  val eres_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    39
  val filter_thms: (term*term->bool) -> int*term*thm list -> thm list
clasohm@0
    40
  val filt_resolve_tac: thm list -> int -> int -> tactic
clasohm@0
    41
  val flexflex_tac: tactic
clasohm@0
    42
  val fold_goals_tac: thm list -> tactic
clasohm@0
    43
  val fold_tac: thm list -> tactic
clasohm@0
    44
  val forward_tac: thm list -> int -> tactic   
clasohm@0
    45
  val forw_inst_tac: (string*string)list -> thm -> int -> tactic
paulson@2029
    46
  val freeze_thaw: thm -> thm * (thm -> thm)
lcp@1077
    47
  val insert_tagged_brl:  ('a*(bool*thm)) * 
paulson@1501
    48
                    (('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net) ->
paulson@1501
    49
                    ('a*(bool*thm))Net.net * ('a*(bool*thm))Net.net
paulson@1801
    50
  val delete_tagged_brl:  (bool*thm) * 
paulson@1801
    51
                    ((int*(bool*thm))Net.net * (int*(bool*thm))Net.net) ->
paulson@1801
    52
                    (int*(bool*thm))Net.net * (int*(bool*thm))Net.net
clasohm@0
    53
  val is_fact: thm -> bool
clasohm@0
    54
  val lessb: (bool * thm) * (bool * thm) -> bool
clasohm@0
    55
  val lift_inst_rule: thm * int * (string*string)list * thm -> thm
clasohm@0
    56
  val make_elim: thm -> thm
paulson@1501
    57
  val match_from_net_tac: (int*thm) Net.net -> int -> tactic
clasohm@0
    58
  val match_tac: thm list -> int -> tactic
clasohm@0
    59
  val metacut_tac: thm -> int -> tactic   
clasohm@0
    60
  val net_bimatch_tac: (bool*thm) list -> int -> tactic
clasohm@0
    61
  val net_biresolve_tac: (bool*thm) list -> int -> tactic
clasohm@0
    62
  val net_match_tac: thm list -> int -> tactic
clasohm@0
    63
  val net_resolve_tac: thm list -> int -> tactic
paulson@2672
    64
  val orderlist: (int * 'a) list -> 'a list
clasohm@0
    65
  val PRIMITIVE: (thm -> thm) -> tactic  
clasohm@0
    66
  val PRIMSEQ: (thm -> thm Sequence.seq) -> tactic  
clasohm@0
    67
  val prune_params_tac: tactic
clasohm@0
    68
  val rename_tac: string -> int -> tactic
clasohm@0
    69
  val rename_last_tac: string -> string list -> int -> tactic
paulson@1501
    70
  val resolve_from_net_tac: (int*thm) Net.net -> int -> tactic
clasohm@0
    71
  val resolve_tac: thm list -> int -> tactic
clasohm@0
    72
  val res_inst_tac: (string*string)list -> thm -> int -> tactic   
clasohm@0
    73
  val rewrite_goals_tac: thm list -> tactic
clasohm@0
    74
  val rewrite_tac: thm list -> tactic
clasohm@0
    75
  val rewtac: thm -> tactic
nipkow@1209
    76
  val rotate_tac: int -> int -> tactic
clasohm@0
    77
  val rtac: thm -> int -> tactic
clasohm@0
    78
  val rule_by_tactic: tactic -> thm -> thm
lcp@439
    79
  val subgoal_tac: string -> int -> tactic
lcp@439
    80
  val subgoals_tac: string list -> int -> tactic
clasohm@0
    81
  val subgoals_of_brl: bool * thm -> int
nipkow@1975
    82
  val term_lift_inst_rule:
nipkow@1975
    83
      thm * int * (indexname*typ)list * ((indexname*typ)*term)list  * thm
nipkow@1975
    84
      -> thm
paulson@1955
    85
  val thin_tac: string -> int -> tactic
clasohm@0
    86
  val trace_goalno_tac: (int -> tactic) -> int -> tactic
paulson@1501
    87
  end;
clasohm@0
    88
clasohm@0
    89
paulson@1501
    90
structure Tactic : TACTIC = 
clasohm@0
    91
struct
clasohm@0
    92
paulson@1501
    93
(*Discover which goal is chosen:  SOMEGOAL(trace_goalno_tac tac) *)
paulson@1501
    94
fun trace_goalno_tac tac i st =  
paulson@1501
    95
    case Sequence.pull(tac i st) of
clasohm@1460
    96
	None    => Sequence.null
clasohm@0
    97
      | seqcell => (prs("Subgoal " ^ string_of_int i ^ " selected\n"); 
paulson@1501
    98
    			 Sequence.seqof(fn()=> seqcell));
clasohm@0
    99
clasohm@0
   100
paulson@2029
   101
(*Convert all Vars in a theorem to Frees.  Also return a function for 
paulson@2029
   102
  reversing that operation.  DOES NOT WORK FOR TYPE VARIABLES.*)
paulson@2029
   103
local
paulson@2029
   104
    fun string_of (a,0) = a
paulson@2029
   105
      | string_of (a,i) = a ^ "_" ^ string_of_int i;
paulson@2029
   106
in
paulson@2029
   107
  fun freeze_thaw th =
paulson@2029
   108
    let val fth = freezeT th
paulson@2688
   109
	val vary = variant (add_term_names (#prop(rep_thm fth), []))
paulson@2029
   110
	val {prop,sign,...} = rep_thm fth
paulson@2029
   111
	fun mk_inst (Var(v,T)) = 
paulson@2029
   112
	    (cterm_of sign (Var(v,T)),
paulson@2688
   113
	     cterm_of sign (Free(vary (string_of v), T)))
paulson@2029
   114
	val insts = map mk_inst (term_vars prop)
paulson@2029
   115
	fun thaw th' = 
paulson@2029
   116
	    th' |> forall_intr_list (map #2 insts)
paulson@2029
   117
		|> forall_elim_list (map #1 insts)
paulson@2029
   118
    in  (instantiate ([],insts) fth, thaw)  end;
paulson@2029
   119
end;
paulson@2029
   120
paulson@2029
   121
paulson@2029
   122
(*Rotates the given subgoal to be the last.  Useful when re-playing
paulson@2029
   123
  an old proof script, when the proof of an early subgoal fails.
paulson@2029
   124
  DOES NOT WORK FOR TYPE VARIABLES.*)
paulson@2029
   125
fun defer_tac i state = 
paulson@2029
   126
    let val (state',thaw) = freeze_thaw state
paulson@2029
   127
	val hyps = Drule.strip_imp_prems (adjust_maxidx (cprop_of state'))
paulson@2580
   128
	val hyp::hyps' = List.drop(hyps, i-1)
paulson@2029
   129
    in  implies_intr hyp (implies_elim_list state' (map assume hyps)) 
paulson@2580
   130
        |> implies_intr_list (List.take(hyps, i-1) @ hyps')
paulson@2029
   131
        |> thaw
paulson@2029
   132
        |> Sequence.single
paulson@2029
   133
    end
paulson@2029
   134
    handle _ => Sequence.null;
paulson@2029
   135
clasohm@0
   136
clasohm@0
   137
(*Makes a rule by applying a tactic to an existing rule*)
paulson@1501
   138
fun rule_by_tactic tac rl =
paulson@2688
   139
  let val (st, thaw) = freeze_thaw (zero_var_indexes rl)
paulson@2688
   140
  in case Sequence.pull (tac st)  of
clasohm@1460
   141
	None        => raise THM("rule_by_tactic", 0, [rl])
paulson@2688
   142
      | Some(st',_) => Thm.varifyT (thaw st')
paulson@2688
   143
  end;
clasohm@0
   144
 
clasohm@0
   145
(*** Basic tactics ***)
clasohm@0
   146
clasohm@0
   147
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm seq.*)
paulson@1501
   148
fun PRIMSEQ thmfun st =  thmfun st handle THM _ => Sequence.null;
clasohm@0
   149
clasohm@0
   150
(*Makes a tactic whose effect on a state is given by thmfun: thm->thm.*)
clasohm@0
   151
fun PRIMITIVE thmfun = PRIMSEQ (Sequence.single o thmfun);
clasohm@0
   152
clasohm@0
   153
(*** The following fail if the goal number is out of range:
clasohm@0
   154
     thus (REPEAT (resolve_tac rules i)) stops once subgoal i disappears. *)
clasohm@0
   155
clasohm@0
   156
(*Solve subgoal i by assumption*)
clasohm@0
   157
fun assume_tac i = PRIMSEQ (assumption i);
clasohm@0
   158
clasohm@0
   159
(*Solve subgoal i by assumption, using no unification*)
clasohm@0
   160
fun eq_assume_tac i = PRIMITIVE (eq_assumption i);
clasohm@0
   161
clasohm@0
   162
(** Resolution/matching tactics **)
clasohm@0
   163
clasohm@0
   164
(*The composition rule/state: no lifting or var renaming.
clasohm@0
   165
  The arg = (bires_flg, orule, m) ;  see bicompose for explanation.*)
clasohm@0
   166
fun compose_tac arg i = PRIMSEQ (bicompose false arg i);
clasohm@0
   167
clasohm@0
   168
(*Converts a "destruct" rule like P&Q==>P to an "elimination" rule
clasohm@0
   169
  like [| P&Q; P==>R |] ==> R *)
clasohm@0
   170
fun make_elim rl = zero_var_indexes (rl RS revcut_rl);
clasohm@0
   171
clasohm@0
   172
(*Attack subgoal i by resolution, using flags to indicate elimination rules*)
clasohm@0
   173
fun biresolve_tac brules i = PRIMSEQ (biresolution false brules i);
clasohm@0
   174
clasohm@0
   175
(*Resolution: the simple case, works for introduction rules*)
clasohm@0
   176
fun resolve_tac rules = biresolve_tac (map (pair false) rules);
clasohm@0
   177
clasohm@0
   178
(*Resolution with elimination rules only*)
clasohm@0
   179
fun eresolve_tac rules = biresolve_tac (map (pair true) rules);
clasohm@0
   180
clasohm@0
   181
(*Forward reasoning using destruction rules.*)
clasohm@0
   182
fun forward_tac rls = resolve_tac (map make_elim rls) THEN' assume_tac;
clasohm@0
   183
clasohm@0
   184
(*Like forward_tac, but deletes the assumption after use.*)
clasohm@0
   185
fun dresolve_tac rls = eresolve_tac (map make_elim rls);
clasohm@0
   186
clasohm@0
   187
(*Shorthand versions: for resolution with a single theorem*)
clasohm@1460
   188
fun rtac rl = resolve_tac [rl];
clasohm@1460
   189
fun etac rl = eresolve_tac [rl];
clasohm@1460
   190
fun dtac rl = dresolve_tac [rl];
clasohm@0
   191
val atac = assume_tac;
clasohm@0
   192
clasohm@0
   193
(*Use an assumption or some rules ... A popular combination!*)
clasohm@0
   194
fun ares_tac rules = assume_tac  ORELSE'  resolve_tac rules;
clasohm@0
   195
clasohm@0
   196
(*Matching tactics -- as above, but forbid updating of state*)
clasohm@0
   197
fun bimatch_tac brules i = PRIMSEQ (biresolution true brules i);
clasohm@0
   198
fun match_tac rules  = bimatch_tac (map (pair false) rules);
clasohm@0
   199
fun ematch_tac rules = bimatch_tac (map (pair true) rules);
clasohm@0
   200
fun dmatch_tac rls   = ematch_tac (map make_elim rls);
clasohm@0
   201
clasohm@0
   202
(*Smash all flex-flex disagreement pairs in the proof state.*)
clasohm@0
   203
val flexflex_tac = PRIMSEQ flexflex_rule;
clasohm@0
   204
clasohm@0
   205
(*Lift and instantiate a rule wrt the given state and subgoal number *)
paulson@1501
   206
fun lift_inst_rule (st, i, sinsts, rule) =
paulson@1501
   207
let val {maxidx,sign,...} = rep_thm st
paulson@1501
   208
    val (_, _, Bi, _) = dest_state(st,i)
clasohm@1460
   209
    val params = Logic.strip_params Bi	        (*params of subgoal i*)
clasohm@0
   210
    val params = rev(rename_wrt_term Bi params) (*as they are printed*)
clasohm@0
   211
    val paramTs = map #2 params
clasohm@0
   212
    and inc = maxidx+1
clasohm@0
   213
    fun liftvar (Var ((a,j), T)) = Var((a, j+inc), paramTs---> incr_tvar inc T)
clasohm@0
   214
      | liftvar t = raise TERM("Variable expected", [t]);
clasohm@0
   215
    fun liftterm t = list_abs_free (params, 
clasohm@1460
   216
				    Logic.incr_indexes(paramTs,inc) t)
clasohm@0
   217
    (*Lifts instantiation pair over params*)
lcp@230
   218
    fun liftpair (cv,ct) = (cterm_fun liftvar cv, cterm_fun liftterm ct)
clasohm@0
   219
    fun lifttvar((a,i),ctyp) =
clasohm@1460
   220
	let val {T,sign} = rep_ctyp ctyp
clasohm@1460
   221
	in  ((a,i+inc), ctyp_of sign (incr_tvar inc T)) end
paulson@1501
   222
    val rts = types_sorts rule and (types,sorts) = types_sorts st
clasohm@0
   223
    fun types'(a,~1) = (case assoc(params,a) of None => types(a,~1) | sm => sm)
clasohm@0
   224
      | types'(ixn) = types ixn;
nipkow@949
   225
    val used = add_term_tvarnames
paulson@1501
   226
                  (#prop(rep_thm st) $ #prop(rep_thm rule),[])
nipkow@949
   227
    val (Tinsts,insts) = read_insts sign rts (types',sorts) used sinsts
clasohm@0
   228
in instantiate (map lifttvar Tinsts, map liftpair insts)
paulson@1501
   229
               (lift_rule (st,i) rule)
clasohm@0
   230
end;
clasohm@0
   231
nipkow@1966
   232
(*Like lift_inst_rule but takes cterms, not strings.
nipkow@1966
   233
  The cterms must be functions of the parameters of the subgoal,
nipkow@1966
   234
  i.e. they are assumed to be lifted already!
nipkow@1966
   235
  Also: types of Vars must be fully instantiated already *)
nipkow@1975
   236
fun term_lift_inst_rule (st, i, Tinsts, insts, rule) =
nipkow@1966
   237
let val {maxidx,sign,...} = rep_thm st
nipkow@1966
   238
    val (_, _, Bi, _) = dest_state(st,i)
nipkow@1966
   239
    val params = Logic.strip_params Bi          (*params of subgoal i*)
nipkow@1966
   240
    val paramTs = map #2 params
nipkow@1966
   241
    and inc = maxidx+1
nipkow@1975
   242
    fun liftvar ((a,j), T) = Var((a, j+inc), paramTs---> incr_tvar inc T)
nipkow@1975
   243
    (*lift only Var, not term, which must be lifted already*)
nipkow@1975
   244
    fun liftpair (v,t) = (cterm_of sign (liftvar v), cterm_of sign t)
nipkow@1975
   245
    fun liftTpair((a,i),T) = ((a,i+inc), ctyp_of sign (incr_tvar inc T))
nipkow@1975
   246
in instantiate (map liftTpair Tinsts, map liftpair insts)
nipkow@1966
   247
               (lift_rule (st,i) rule)
nipkow@1966
   248
end;
clasohm@0
   249
clasohm@0
   250
(*** Resolve after lifting and instantation; may refer to parameters of the
clasohm@0
   251
     subgoal.  Fails if "i" is out of range.  ***)
clasohm@0
   252
clasohm@0
   253
(*compose version: arguments are as for bicompose.*)
clasohm@0
   254
fun compose_inst_tac sinsts (bires_flg, rule, nsubgoal) i =
paulson@1501
   255
  STATE ( fn st => 
paulson@1501
   256
	   compose_tac (bires_flg, lift_inst_rule (st, i, sinsts, rule),
clasohm@1460
   257
			nsubgoal) i
clasohm@1460
   258
	   handle TERM (msg,_) => (writeln msg;  no_tac)
clasohm@1460
   259
		| THM  (msg,_,_) => (writeln msg;  no_tac) );
clasohm@0
   260
lcp@761
   261
(*"Resolve" version.  Note: res_inst_tac cannot behave sensibly if the
lcp@761
   262
  terms that are substituted contain (term or type) unknowns from the
lcp@761
   263
  goal, because it is unable to instantiate goal unknowns at the same time.
lcp@761
   264
paulson@2029
   265
  The type checker is instructed not to freeze flexible type vars that
nipkow@952
   266
  were introduced during type inference and still remain in the term at the
nipkow@952
   267
  end.  This increases flexibility but can introduce schematic type vars in
nipkow@952
   268
  goals.
lcp@761
   269
*)
clasohm@0
   270
fun res_inst_tac sinsts rule i =
clasohm@0
   271
    compose_inst_tac sinsts (false, rule, nprems_of rule) i;
clasohm@0
   272
paulson@1501
   273
(*eresolve elimination version*)
clasohm@0
   274
fun eres_inst_tac sinsts rule i =
clasohm@0
   275
    compose_inst_tac sinsts (true, rule, nprems_of rule) i;
clasohm@0
   276
lcp@270
   277
(*For forw_inst_tac and dres_inst_tac.  Preserve Var indexes of rl;
lcp@270
   278
  increment revcut_rl instead.*)
clasohm@0
   279
fun make_elim_preserve rl = 
lcp@270
   280
  let val {maxidx,...} = rep_thm rl
clasohm@922
   281
      fun cvar ixn = cterm_of Sign.proto_pure (Var(ixn,propT));
lcp@270
   282
      val revcut_rl' = 
clasohm@1460
   283
	  instantiate ([],  [(cvar("V",0), cvar("V",maxidx+1)),
clasohm@1460
   284
			     (cvar("W",0), cvar("W",maxidx+1))]) revcut_rl
clasohm@0
   285
      val arg = (false, rl, nprems_of rl)
clasohm@0
   286
      val [th] = Sequence.list_of_s (bicompose false arg 1 revcut_rl')
clasohm@0
   287
  in  th  end
clasohm@0
   288
  handle Bind => raise THM("make_elim_preserve", 1, [rl]);
clasohm@0
   289
lcp@270
   290
(*instantiate and cut -- for a FACT, anyway...*)
lcp@270
   291
fun cut_inst_tac sinsts rule = res_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   292
lcp@270
   293
(*forward tactic applies a RULE to an assumption without deleting it*)
lcp@270
   294
fun forw_inst_tac sinsts rule = cut_inst_tac sinsts rule THEN' assume_tac;
lcp@270
   295
lcp@270
   296
(*dresolve tactic applies a RULE to replace an assumption*)
clasohm@0
   297
fun dres_inst_tac sinsts rule = eres_inst_tac sinsts (make_elim_preserve rule);
clasohm@0
   298
paulson@1951
   299
(*Deletion of an assumption*)
paulson@1951
   300
fun thin_tac s = eres_inst_tac [("V",s)] thin_rl;
paulson@1951
   301
lcp@270
   302
(*** Applications of cut_rl ***)
clasohm@0
   303
clasohm@0
   304
(*Used by metacut_tac*)
clasohm@0
   305
fun bires_cut_tac arg i =
clasohm@1460
   306
    resolve_tac [cut_rl] i  THEN  biresolve_tac arg (i+1) ;
clasohm@0
   307
clasohm@0
   308
(*The conclusion of the rule gets assumed in subgoal i,
clasohm@0
   309
  while subgoal i+1,... are the premises of the rule.*)
clasohm@0
   310
fun metacut_tac rule = bires_cut_tac [(false,rule)];
clasohm@0
   311
clasohm@0
   312
(*Recognizes theorems that are not rules, but simple propositions*)
clasohm@0
   313
fun is_fact rl =
clasohm@0
   314
    case prems_of rl of
clasohm@1460
   315
	[] => true  |  _::_ => false;
clasohm@0
   316
clasohm@0
   317
(*"Cut" all facts from theorem list into the goal as assumptions. *)
clasohm@0
   318
fun cut_facts_tac ths i =
clasohm@0
   319
    EVERY (map (fn th => metacut_tac th i) (filter is_fact ths));
clasohm@0
   320
clasohm@0
   321
(*Introduce the given proposition as a lemma and subgoal*)
clasohm@0
   322
fun subgoal_tac sprop = res_inst_tac [("psi", sprop)] cut_rl;
clasohm@0
   323
lcp@439
   324
(*Introduce a list of lemmas and subgoals*)
lcp@439
   325
fun subgoals_tac sprops = EVERY' (map subgoal_tac sprops);
lcp@439
   326
clasohm@0
   327
clasohm@0
   328
(**** Indexing and filtering of theorems ****)
clasohm@0
   329
clasohm@0
   330
(*Returns the list of potentially resolvable theorems for the goal "prem",
clasohm@1460
   331
	using the predicate  could(subgoal,concl).
clasohm@0
   332
  Resulting list is no longer than "limit"*)
clasohm@0
   333
fun filter_thms could (limit, prem, ths) =
clasohm@0
   334
  let val pb = Logic.strip_assums_concl prem;   (*delete assumptions*)
clasohm@0
   335
      fun filtr (limit, []) = []
clasohm@1460
   336
	| filtr (limit, th::ths) =
clasohm@1460
   337
	    if limit=0 then  []
clasohm@1460
   338
	    else if could(pb, concl_of th)  then th :: filtr(limit-1, ths)
clasohm@1460
   339
	    else filtr(limit,ths)
clasohm@0
   340
  in  filtr(limit,ths)  end;
clasohm@0
   341
clasohm@0
   342
clasohm@0
   343
(*** biresolution and resolution using nets ***)
clasohm@0
   344
clasohm@0
   345
(** To preserve the order of the rules, tag them with increasing integers **)
clasohm@0
   346
clasohm@0
   347
(*insert tags*)
clasohm@0
   348
fun taglist k [] = []
clasohm@0
   349
  | taglist k (x::xs) = (k,x) :: taglist (k+1) xs;
clasohm@0
   350
clasohm@0
   351
(*remove tags and suppress duplicates -- list is assumed sorted!*)
clasohm@0
   352
fun untaglist [] = []
clasohm@0
   353
  | untaglist [(k:int,x)] = [x]
clasohm@0
   354
  | untaglist ((k,x) :: (rest as (k',x')::_)) =
clasohm@0
   355
      if k=k' then untaglist rest
clasohm@0
   356
      else    x :: untaglist rest;
clasohm@0
   357
clasohm@0
   358
(*return list elements in original order*)
paulson@2228
   359
fun orderlist kbrls = untaglist (sort (fn(x,y)=> #1 x < #1 y) kbrls); 
clasohm@0
   360
clasohm@0
   361
(*insert one tagged brl into the pair of nets*)
lcp@1077
   362
fun insert_tagged_brl (kbrl as (k,(eres,th)), (inet,enet)) =
clasohm@0
   363
    if eres then 
clasohm@1460
   364
	case prems_of th of
clasohm@1460
   365
	    prem::_ => (inet, Net.insert_term ((prem,kbrl), enet, K false))
clasohm@1460
   366
	  | [] => error"insert_tagged_brl: elimination rule with no premises"
clasohm@0
   367
    else (Net.insert_term ((concl_of th, kbrl), inet, K false), enet);
clasohm@0
   368
clasohm@0
   369
(*build a pair of nets for biresolution*)
lcp@670
   370
fun build_netpair netpair brls = 
lcp@1077
   371
    foldr insert_tagged_brl (taglist 1 brls, netpair);
clasohm@0
   372
paulson@1801
   373
(*delete one kbrl from the pair of nets;
paulson@1801
   374
  we don't know the value of k, so we use 0 and ignore it in the comparison*)
paulson@1801
   375
local
paulson@1801
   376
  fun eq_kbrl ((k,(eres,th)), (k',(eres',th'))) = eq_thm (th,th')
paulson@1801
   377
in
paulson@1801
   378
fun delete_tagged_brl (brl as (eres,th), (inet,enet)) =
paulson@1801
   379
    if eres then 
paulson@1801
   380
	case prems_of th of
paulson@1801
   381
	    prem::_ => (inet, Net.delete_term ((prem, (0,brl)), enet, eq_kbrl))
paulson@2814
   382
	  | []      => (inet,enet)     (*no major premise: ignore*)
paulson@1801
   383
    else (Net.delete_term ((concl_of th, (0,brl)), inet, eq_kbrl), enet);
paulson@1801
   384
end;
paulson@1801
   385
paulson@1801
   386
clasohm@0
   387
(*biresolution using a pair of nets rather than rules*)
clasohm@0
   388
fun biresolution_from_nets_tac match (inet,enet) =
clasohm@0
   389
  SUBGOAL
clasohm@0
   390
    (fn (prem,i) =>
clasohm@0
   391
      let val hyps = Logic.strip_assums_hyp prem
clasohm@0
   392
          and concl = Logic.strip_assums_concl prem 
clasohm@0
   393
          val kbrls = Net.unify_term inet concl @
paulson@2672
   394
                      List.concat (map (Net.unify_term enet) hyps)
clasohm@0
   395
      in PRIMSEQ (biresolution match (orderlist kbrls) i) end);
clasohm@0
   396
clasohm@0
   397
(*versions taking pre-built nets*)
clasohm@0
   398
val biresolve_from_nets_tac = biresolution_from_nets_tac false;
clasohm@0
   399
val bimatch_from_nets_tac = biresolution_from_nets_tac true;
clasohm@0
   400
clasohm@0
   401
(*fast versions using nets internally*)
lcp@670
   402
val net_biresolve_tac =
lcp@670
   403
    biresolve_from_nets_tac o build_netpair(Net.empty,Net.empty);
lcp@670
   404
lcp@670
   405
val net_bimatch_tac =
lcp@670
   406
    bimatch_from_nets_tac o build_netpair(Net.empty,Net.empty);
clasohm@0
   407
clasohm@0
   408
(*** Simpler version for resolve_tac -- only one net, and no hyps ***)
clasohm@0
   409
clasohm@0
   410
(*insert one tagged rl into the net*)
clasohm@0
   411
fun insert_krl (krl as (k,th), net) =
clasohm@0
   412
    Net.insert_term ((concl_of th, krl), net, K false);
clasohm@0
   413
clasohm@0
   414
(*build a net of rules for resolution*)
clasohm@0
   415
fun build_net rls = 
clasohm@0
   416
    foldr insert_krl (taglist 1 rls, Net.empty);
clasohm@0
   417
clasohm@0
   418
(*resolution using a net rather than rules; pred supports filt_resolve_tac*)
clasohm@0
   419
fun filt_resolution_from_net_tac match pred net =
clasohm@0
   420
  SUBGOAL
clasohm@0
   421
    (fn (prem,i) =>
clasohm@0
   422
      let val krls = Net.unify_term net (Logic.strip_assums_concl prem)
clasohm@0
   423
      in 
clasohm@1460
   424
	 if pred krls  
clasohm@0
   425
         then PRIMSEQ
clasohm@1460
   426
		(biresolution match (map (pair false) (orderlist krls)) i)
clasohm@0
   427
         else no_tac
clasohm@0
   428
      end);
clasohm@0
   429
clasohm@0
   430
(*Resolve the subgoal using the rules (making a net) unless too flexible,
clasohm@0
   431
   which means more than maxr rules are unifiable.      *)
clasohm@0
   432
fun filt_resolve_tac rules maxr = 
clasohm@0
   433
    let fun pred krls = length krls <= maxr
clasohm@0
   434
    in  filt_resolution_from_net_tac false pred (build_net rules)  end;
clasohm@0
   435
clasohm@0
   436
(*versions taking pre-built nets*)
clasohm@0
   437
val resolve_from_net_tac = filt_resolution_from_net_tac false (K true);
clasohm@0
   438
val match_from_net_tac = filt_resolution_from_net_tac true (K true);
clasohm@0
   439
clasohm@0
   440
(*fast versions using nets internally*)
clasohm@0
   441
val net_resolve_tac = resolve_from_net_tac o build_net;
clasohm@0
   442
val net_match_tac = match_from_net_tac o build_net;
clasohm@0
   443
clasohm@0
   444
clasohm@0
   445
(*** For Natural Deduction using (bires_flg, rule) pairs ***)
clasohm@0
   446
clasohm@0
   447
(*The number of new subgoals produced by the brule*)
lcp@1077
   448
fun subgoals_of_brl (true,rule)  = nprems_of rule - 1
lcp@1077
   449
  | subgoals_of_brl (false,rule) = nprems_of rule;
clasohm@0
   450
clasohm@0
   451
(*Less-than test: for sorting to minimize number of new subgoals*)
clasohm@0
   452
fun lessb (brl1,brl2) = subgoals_of_brl brl1 < subgoals_of_brl brl2;
clasohm@0
   453
clasohm@0
   454
clasohm@0
   455
(*** Meta-Rewriting Tactics ***)
clasohm@0
   456
clasohm@0
   457
fun result1 tacf mss thm =
paulson@1501
   458
  case Sequence.pull(tacf mss thm) of
clasohm@0
   459
    None => None
clasohm@0
   460
  | Some(thm,_) => Some(thm);
clasohm@0
   461
paulson@2145
   462
(*Rewrite subgoal i only.  SELECT_GOAL avoids inefficiencies in goals_conv.*)
paulson@2145
   463
fun asm_rewrite_goal_tac mode prover_tac mss =
paulson@2145
   464
      SELECT_GOAL 
paulson@2145
   465
        (PRIMITIVE
paulson@2145
   466
	   (rewrite_goal_rule mode (result1 prover_tac) mss 1));
clasohm@0
   467
lcp@69
   468
(*Rewrite throughout proof state. *)
lcp@69
   469
fun rewrite_tac defs = PRIMITIVE(rewrite_rule defs);
clasohm@0
   470
clasohm@0
   471
(*Rewrite subgoals only, not main goal. *)
lcp@69
   472
fun rewrite_goals_tac defs = PRIMITIVE (rewrite_goals_rule defs);
clasohm@0
   473
clasohm@1460
   474
fun rewtac def = rewrite_goals_tac [def];
clasohm@0
   475
clasohm@0
   476
paulson@1501
   477
(*** for folding definitions, handling critical pairs ***)
lcp@69
   478
lcp@69
   479
(*The depth of nesting in a term*)
lcp@69
   480
fun term_depth (Abs(a,T,t)) = 1 + term_depth t
paulson@2145
   481
  | term_depth (f$t) = 1 + Int.max(term_depth f, term_depth t)
lcp@69
   482
  | term_depth _ = 0;
lcp@69
   483
lcp@69
   484
val lhs_of_thm = #1 o Logic.dest_equals o #prop o rep_thm;
lcp@69
   485
lcp@69
   486
(*folding should handle critical pairs!  E.g. K == Inl(0),  S == Inr(Inl(0))
lcp@69
   487
  Returns longest lhs first to avoid folding its subexpressions.*)
lcp@69
   488
fun sort_lhs_depths defs =
lcp@69
   489
  let val keylist = make_keylist (term_depth o lhs_of_thm) defs
lcp@69
   490
      val keys = distinct (sort op> (map #2 keylist))
lcp@69
   491
  in  map (keyfilter keylist) keys  end;
lcp@69
   492
lcp@69
   493
fun fold_tac defs = EVERY 
lcp@69
   494
    (map rewrite_tac (sort_lhs_depths (map symmetric defs)));
lcp@69
   495
lcp@69
   496
fun fold_goals_tac defs = EVERY 
lcp@69
   497
    (map rewrite_goals_tac (sort_lhs_depths (map symmetric defs)));
lcp@69
   498
lcp@69
   499
lcp@69
   500
(*** Renaming of parameters in a subgoal
lcp@69
   501
     Names may contain letters, digits or primes and must be
lcp@69
   502
     separated by blanks ***)
clasohm@0
   503
clasohm@0
   504
(*Calling this will generate the warning "Same as previous level" since
clasohm@0
   505
  it affects nothing but the names of bound variables!*)
clasohm@0
   506
fun rename_tac str i = 
clasohm@0
   507
  let val cs = explode str 
clasohm@0
   508
  in  
clasohm@0
   509
  if !Logic.auto_rename 
clasohm@0
   510
  then (writeln"Note: setting Logic.auto_rename := false"; 
clasohm@1460
   511
	Logic.auto_rename := false)
clasohm@0
   512
  else ();
clasohm@0
   513
  case #2 (take_prefix (is_letdig orf is_blank) cs) of
clasohm@0
   514
      [] => PRIMITIVE (rename_params_rule (scanwords is_letdig cs, i))
clasohm@0
   515
    | c::_ => error ("Illegal character: " ^ c)
clasohm@0
   516
  end;
clasohm@0
   517
paulson@1501
   518
(*Rename recent parameters using names generated from a and the suffixes,
paulson@1501
   519
  provided the string a, which represents a term, is an identifier. *)
clasohm@0
   520
fun rename_last_tac a sufs i = 
clasohm@0
   521
  let val names = map (curry op^ a) sufs
clasohm@0
   522
  in  if Syntax.is_identifier a
clasohm@0
   523
      then PRIMITIVE (rename_params_rule (names,i))
clasohm@0
   524
      else all_tac
clasohm@0
   525
  end;
clasohm@0
   526
paulson@2043
   527
(*Prunes all redundant parameters from the proof state by rewriting.
paulson@2043
   528
  DOES NOT rewrite main goal, where quantification over an unused bound
paulson@2043
   529
    variable is sometimes done to avoid the need for cut_facts_tac.*)
paulson@2043
   530
val prune_params_tac = rewrite_goals_tac [triv_forall_equality];
clasohm@0
   531
paulson@1501
   532
(*rotate_tac n i: rotate the assumptions of subgoal i by n positions, from
paulson@1501
   533
  right to left if n is positive, and from left to right if n is negative.*)
paulson@2672
   534
fun rotate_tac 0 i = all_tac
paulson@2672
   535
  | rotate_tac k i = PRIMITIVE (rotate_rule k i);
nipkow@1209
   536
clasohm@0
   537
end;
paulson@1501
   538
paulson@1501
   539
open Tactic;