src/HOL/Induct/Com.thy
author urbanc
Tue Jun 05 09:56:19 2007 +0200 (2007-06-05)
changeset 23243 a37d3e6e8323
parent 19736 d8d0f8f51d69
child 23746 a455e69c31cc
permissions -rw-r--r--
included Class.thy in the compiling process for Nominal/Examples
paulson@3120
     1
(*  Title:      HOL/Induct/Com
paulson@3120
     2
    ID:         $Id$
paulson@3120
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@3120
     4
    Copyright   1997  University of Cambridge
paulson@3120
     5
paulson@3120
     6
Example of Mutual Induction via Iteratived Inductive Definitions: Commands
paulson@3120
     7
*)
paulson@3120
     8
paulson@14527
     9
header{*Mutual Induction via Iteratived Inductive Definitions*}
paulson@14527
    10
haftmann@16417
    11
theory Com imports Main begin
paulson@3120
    12
paulson@13075
    13
typedecl loc
paulson@13075
    14
paulson@13075
    15
types  state = "loc => nat"
paulson@13075
    16
       n2n2n = "nat => nat => nat"
paulson@3120
    17
wenzelm@12338
    18
arities loc :: type
paulson@3120
    19
paulson@3120
    20
datatype
paulson@3120
    21
  exp = N nat
paulson@3120
    22
      | X loc
paulson@3120
    23
      | Op n2n2n exp exp
nipkow@10759
    24
      | valOf com exp          ("VALOF _ RESULTIS _"  60)
nipkow@10759
    25
and
nipkow@10759
    26
  com = SKIP
paulson@3120
    27
      | ":="  loc exp          (infixl  60)
nipkow@10759
    28
      | Semi  com com          ("_;;_"  [60, 60] 60)
nipkow@10759
    29
      | Cond  exp com com      ("IF _ THEN _ ELSE _"  60)
nipkow@10759
    30
      | While exp com          ("WHILE _ DO _"  60)
paulson@3120
    31
paulson@14527
    32
paulson@14527
    33
subsection {* Commands *}
paulson@14527
    34
paulson@13075
    35
text{* Execution of commands *}
nipkow@10759
    36
consts  exec    :: "((exp*state) * (nat*state)) set => ((com*state)*state)set"
paulson@3120
    37
wenzelm@19736
    38
abbreviation
wenzelm@19736
    39
  exec_rel  ("_/ -[_]-> _" [50,0,50] 50)
wenzelm@19736
    40
  "csig -[eval]-> s == (csig,s) \<in> exec eval"
oheimb@4264
    41
wenzelm@19736
    42
abbreviation (input)
wenzelm@19736
    43
  generic_rel  ("_/ -|[_]-> _" [50,0,50] 50)
wenzelm@19736
    44
  "esig -|[eval]-> ns == (esig,ns) \<in> eval"
paulson@3120
    45
paulson@13075
    46
text{*Command execution.  Natural numbers represent Booleans: 0=True, 1=False*}
paulson@13075
    47
inductive "exec eval"
paulson@13075
    48
  intros
paulson@13075
    49
    Skip:    "(SKIP,s) -[eval]-> s"
paulson@3120
    50
paulson@13075
    51
    Assign:  "(e,s) -|[eval]-> (v,s') ==> (x := e, s) -[eval]-> s'(x:=v)"
paulson@3120
    52
wenzelm@18260
    53
    Semi:    "[| (c0,s) -[eval]-> s2; (c1,s2) -[eval]-> s1 |]
paulson@13075
    54
             ==> (c0 ;; c1, s) -[eval]-> s1"
paulson@13075
    55
wenzelm@18260
    56
    IfTrue: "[| (e,s) -|[eval]-> (0,s');  (c0,s') -[eval]-> s1 |]
paulson@3120
    57
             ==> (IF e THEN c0 ELSE c1, s) -[eval]-> s1"
paulson@3120
    58
wenzelm@18260
    59
    IfFalse: "[| (e,s) -|[eval]->  (Suc 0, s');  (c1,s') -[eval]-> s1 |]
paulson@13075
    60
              ==> (IF e THEN c0 ELSE c1, s) -[eval]-> s1"
paulson@13075
    61
wenzelm@18260
    62
    WhileFalse: "(e,s) -|[eval]-> (Suc 0, s1)
paulson@13075
    63
                 ==> (WHILE e DO c, s) -[eval]-> s1"
paulson@13075
    64
paulson@13075
    65
    WhileTrue:  "[| (e,s) -|[eval]-> (0,s1);
wenzelm@18260
    66
                    (c,s1) -[eval]-> s2;  (WHILE e DO c, s2) -[eval]-> s3 |]
paulson@13075
    67
                 ==> (WHILE e DO c, s) -[eval]-> s3"
paulson@13075
    68
paulson@13075
    69
declare exec.intros [intro]
paulson@13075
    70
paulson@13075
    71
paulson@13075
    72
inductive_cases
wenzelm@18260
    73
        [elim!]: "(SKIP,s) -[eval]-> t"
paulson@13075
    74
    and [elim!]: "(x:=a,s) -[eval]-> t"
wenzelm@18260
    75
    and [elim!]: "(c1;;c2, s) -[eval]-> t"
wenzelm@18260
    76
    and [elim!]: "(IF e THEN c1 ELSE c2, s) -[eval]-> t"
wenzelm@18260
    77
    and exec_WHILE_case: "(WHILE b DO c,s) -[eval]-> t"
paulson@13075
    78
paulson@13075
    79
paulson@13075
    80
text{*Justifies using "exec" in the inductive definition of "eval"*}
paulson@13075
    81
lemma exec_mono: "A<=B ==> exec(A) <= exec(B)"
paulson@13075
    82
apply (unfold exec.defs )
paulson@13075
    83
apply (rule lfp_mono)
paulson@13075
    84
apply (assumption | rule basic_monos)+
paulson@13075
    85
done
paulson@13075
    86
paulson@13075
    87
ML {*
paulson@13075
    88
Unify.trace_bound := 30;
paulson@13075
    89
Unify.search_bound := 60;
paulson@13075
    90
*}
paulson@13075
    91
paulson@13075
    92
text{*Command execution is functional (deterministic) provided evaluation is*}
paulson@13075
    93
theorem single_valued_exec: "single_valued ev ==> single_valued(exec ev)"
paulson@13075
    94
apply (simp add: single_valued_def)
wenzelm@18260
    95
apply (intro allI)
paulson@13075
    96
apply (rule impI)
paulson@13075
    97
apply (erule exec.induct)
paulson@13075
    98
apply (blast elim: exec_WHILE_case)+
paulson@13075
    99
done
paulson@13075
   100
paulson@13075
   101
paulson@14527
   102
subsection {* Expressions *}
paulson@13075
   103
paulson@13075
   104
text{* Evaluation of arithmetic expressions *}
wenzelm@19736
   105
consts
wenzelm@19736
   106
  eval    :: "((exp*state) * (nat*state)) set"
paulson@13075
   107
wenzelm@19736
   108
abbreviation
wenzelm@19736
   109
  eval_rel :: "[exp*state,nat*state] => bool"         (infixl "-|->" 50)
wenzelm@19736
   110
  "esig -|-> ns == (esig, ns) \<in> eval"
wenzelm@18260
   111
paulson@13075
   112
inductive eval
wenzelm@18260
   113
  intros
paulson@13075
   114
    N [intro!]: "(N(n),s) -|-> (n,s)"
paulson@13075
   115
paulson@13075
   116
    X [intro!]: "(X(x),s) -|-> (s(x),s)"
paulson@13075
   117
wenzelm@18260
   118
    Op [intro]: "[| (e0,s) -|-> (n0,s0);  (e1,s0)  -|-> (n1,s1) |]
paulson@13075
   119
                 ==> (Op f e0 e1, s) -|-> (f n0 n1, s1)"
paulson@13075
   120
wenzelm@18260
   121
    valOf [intro]: "[| (c,s) -[eval]-> s0;  (e,s0)  -|-> (n,s1) |]
paulson@13075
   122
                    ==> (VALOF c RESULTIS e, s) -|-> (n, s1)"
paulson@13075
   123
paulson@13075
   124
  monos exec_mono
paulson@13075
   125
paulson@13075
   126
paulson@13075
   127
inductive_cases
wenzelm@18260
   128
        [elim!]: "(N(n),sigma) -|-> (n',s')"
paulson@13075
   129
    and [elim!]: "(X(x),sigma) -|-> (n,s')"
wenzelm@18260
   130
    and [elim!]: "(Op f a1 a2,sigma)  -|-> (n,s')"
wenzelm@18260
   131
    and [elim!]: "(VALOF c RESULTIS e, s) -|-> (n, s1)"
paulson@13075
   132
paulson@13075
   133
paulson@13075
   134
lemma var_assign_eval [intro!]: "(X x, s(x:=n)) -|-> (n, s(x:=n))"
paulson@13075
   135
by (rule fun_upd_same [THEN subst], fast)
paulson@13075
   136
paulson@13075
   137
paulson@13075
   138
text{* Make the induction rule look nicer -- though eta_contract makes the new
paulson@13075
   139
    version look worse than it is...*}
paulson@13075
   140
paulson@13075
   141
lemma split_lemma:
paulson@13075
   142
     "{((e,s),(n,s')). P e s n s'} = Collect (split (%v. split (split P v)))"
paulson@13075
   143
by auto
paulson@13075
   144
paulson@13075
   145
text{*New induction rule.  Note the form of the VALOF induction hypothesis*}
wenzelm@18260
   146
lemma eval_induct
wenzelm@18260
   147
  [case_names N X Op valOf, consumes 1, induct set: eval]:
wenzelm@18260
   148
  "[| (e,s) -|-> (n,s');
wenzelm@18260
   149
      !!n s. P (N n) s n s;
wenzelm@18260
   150
      !!s x. P (X x) s (s x) s;
wenzelm@18260
   151
      !!e0 e1 f n0 n1 s s0 s1.
wenzelm@18260
   152
         [| (e0,s) -|-> (n0,s0); P e0 s n0 s0;
wenzelm@18260
   153
            (e1,s0) -|-> (n1,s1); P e1 s0 n1 s1
wenzelm@18260
   154
         |] ==> P (Op f e0 e1) s (f n0 n1) s1;
wenzelm@18260
   155
      !!c e n s s0 s1.
wenzelm@18260
   156
         [| (c,s) -[eval Int {((e,s),(n,s')). P e s n s'}]-> s0;
wenzelm@18260
   157
            (c,s) -[eval]-> s0;
wenzelm@18260
   158
            (e,s0) -|-> (n,s1); P e s0 n s1 |]
wenzelm@18260
   159
         ==> P (VALOF c RESULTIS e) s n s1
paulson@13075
   160
   |] ==> P e s n s'"
wenzelm@18260
   161
apply (induct set: eval)
wenzelm@18260
   162
apply blast
wenzelm@18260
   163
apply blast
wenzelm@18260
   164
apply blast
paulson@13075
   165
apply (frule Int_lower1 [THEN exec_mono, THEN subsetD])
paulson@13075
   166
apply (auto simp add: split_lemma)
paulson@13075
   167
done
paulson@13075
   168
paulson@3120
   169
paulson@13075
   170
text{*Lemma for Function_eval.  The major premise is that (c,s) executes to s1
paulson@13075
   171
  using eval restricted to its functional part.  Note that the execution
wenzelm@18260
   172
  (c,s) -[eval]-> s2 can use unrestricted eval!  The reason is that
paulson@13075
   173
  the execution (c,s) -[eval Int {...}]-> s1 assures us that execution is
paulson@13075
   174
  functional on the argument (c,s).
paulson@13075
   175
*}
paulson@13075
   176
lemma com_Unique:
wenzelm@18260
   177
 "(c,s) -[eval Int {((e,s),(n,t)). \<forall>nt'. (e,s) -|-> nt' --> (n,t)=nt'}]-> s1
paulson@13075
   178
  ==> \<forall>s2. (c,s) -[eval]-> s2 --> s2=s1"
wenzelm@18260
   179
apply (induct set: exec)
wenzelm@18260
   180
      apply simp_all
paulson@13075
   181
      apply blast
paulson@13075
   182
     apply force
paulson@13075
   183
    apply blast
paulson@13075
   184
   apply blast
paulson@13075
   185
  apply blast
paulson@13075
   186
 apply (blast elim: exec_WHILE_case)
paulson@13075
   187
apply (erule_tac V = "(?c,s2) -[?ev]-> s3" in thin_rl)
paulson@13075
   188
apply clarify
wenzelm@18260
   189
apply (erule exec_WHILE_case, blast+)
paulson@13075
   190
done
paulson@13075
   191
paulson@13075
   192
paulson@13075
   193
text{*Expression evaluation is functional, or deterministic*}
paulson@13075
   194
theorem single_valued_eval: "single_valued eval"
paulson@13075
   195
apply (unfold single_valued_def)
wenzelm@18260
   196
apply (intro allI, rule impI)
paulson@13075
   197
apply (simp (no_asm_simp) only: split_tupled_all)
paulson@13075
   198
apply (erule eval_induct)
paulson@13075
   199
apply (drule_tac [4] com_Unique)
paulson@13075
   200
apply (simp_all (no_asm_use))
paulson@13075
   201
apply blast+
paulson@13075
   202
done
paulson@13075
   203
wenzelm@18260
   204
lemma eval_N_E [dest!]: "(N n, s) -|-> (v, s') ==> (v = n & s' = s)"
wenzelm@18260
   205
  by (induct e == "N n" s v s' set: eval) simp_all
paulson@13075
   206
paulson@13075
   207
text{*This theorem says that "WHILE TRUE DO c" cannot terminate*}
wenzelm@18260
   208
lemma while_true_E:
wenzelm@18260
   209
    "(c', s) -[eval]-> t ==> c' = WHILE (N 0) DO c ==> False"
wenzelm@18260
   210
  by (induct set: exec) auto
paulson@13075
   211
paulson@13075
   212
wenzelm@18260
   213
subsection{* Equivalence of IF e THEN c;;(WHILE e DO c) ELSE SKIP  and
paulson@13075
   214
       WHILE e DO c *}
paulson@13075
   215
wenzelm@18260
   216
lemma while_if1:
wenzelm@18260
   217
     "(c',s) -[eval]-> t
wenzelm@18260
   218
      ==> c' = WHILE e DO c ==>
paulson@13075
   219
          (IF e THEN c;;c' ELSE SKIP, s) -[eval]-> t"
wenzelm@18260
   220
  by (induct set: exec) auto
paulson@13075
   221
wenzelm@18260
   222
lemma while_if2:
paulson@13075
   223
     "(c',s) -[eval]-> t
wenzelm@18260
   224
      ==> c' = IF e THEN c;;(WHILE e DO c) ELSE SKIP ==>
paulson@13075
   225
          (WHILE e DO c, s) -[eval]-> t"
wenzelm@18260
   226
  by (induct set: exec) auto
paulson@13075
   227
paulson@13075
   228
paulson@13075
   229
theorem while_if:
wenzelm@18260
   230
     "((IF e THEN c;;(WHILE e DO c) ELSE SKIP, s) -[eval]-> t)  =
paulson@13075
   231
      ((WHILE e DO c, s) -[eval]-> t)"
paulson@13075
   232
by (blast intro: while_if1 while_if2)
paulson@13075
   233
paulson@13075
   234
paulson@13075
   235
paulson@13075
   236
subsection{* Equivalence of  (IF e THEN c1 ELSE c2);;c
paulson@13075
   237
                         and  IF e THEN (c1;;c) ELSE (c2;;c)   *}
paulson@13075
   238
wenzelm@18260
   239
lemma if_semi1:
paulson@13075
   240
     "(c',s) -[eval]-> t
wenzelm@18260
   241
      ==> c' = (IF e THEN c1 ELSE c2);;c ==>
paulson@13075
   242
          (IF e THEN (c1;;c) ELSE (c2;;c), s) -[eval]-> t"
wenzelm@18260
   243
  by (induct set: exec) auto
paulson@13075
   244
wenzelm@18260
   245
lemma if_semi2:
paulson@13075
   246
     "(c',s) -[eval]-> t
wenzelm@18260
   247
      ==> c' = IF e THEN (c1;;c) ELSE (c2;;c) ==>
paulson@13075
   248
          ((IF e THEN c1 ELSE c2);;c, s) -[eval]-> t"
wenzelm@18260
   249
  by (induct set: exec) auto
paulson@13075
   250
wenzelm@18260
   251
theorem if_semi: "(((IF e THEN c1 ELSE c2);;c, s) -[eval]-> t)  =
paulson@13075
   252
                  ((IF e THEN (c1;;c) ELSE (c2;;c), s) -[eval]-> t)"
wenzelm@18260
   253
  by (blast intro: if_semi1 if_semi2)
paulson@13075
   254
paulson@13075
   255
paulson@13075
   256
paulson@13075
   257
subsection{* Equivalence of  VALOF c1 RESULTIS (VALOF c2 RESULTIS e)
paulson@13075
   258
                  and  VALOF c1;;c2 RESULTIS e
paulson@13075
   259
 *}
paulson@13075
   260
wenzelm@18260
   261
lemma valof_valof1:
wenzelm@18260
   262
     "(e',s) -|-> (v,s')
wenzelm@18260
   263
      ==> e' = VALOF c1 RESULTIS (VALOF c2 RESULTIS e) ==>
paulson@13075
   264
          (VALOF c1;;c2 RESULTIS e, s) -|-> (v,s')"
wenzelm@18260
   265
  by (induct set: eval) auto
paulson@13075
   266
wenzelm@18260
   267
lemma valof_valof2:
paulson@13075
   268
     "(e',s) -|-> (v,s')
wenzelm@18260
   269
      ==> e' = VALOF c1;;c2 RESULTIS e ==>
paulson@13075
   270
          (VALOF c1 RESULTIS (VALOF c2 RESULTIS e), s) -|-> (v,s')"
wenzelm@18260
   271
  by (induct set: eval) auto
paulson@13075
   272
paulson@13075
   273
theorem valof_valof:
wenzelm@18260
   274
     "((VALOF c1 RESULTIS (VALOF c2 RESULTIS e), s) -|-> (v,s'))  =
paulson@13075
   275
      ((VALOF c1;;c2 RESULTIS e, s) -|-> (v,s'))"
wenzelm@18260
   276
  by (blast intro: valof_valof1 valof_valof2)
paulson@13075
   277
paulson@13075
   278
paulson@13075
   279
subsection{* Equivalence of  VALOF SKIP RESULTIS e  and  e *}
paulson@13075
   280
wenzelm@18260
   281
lemma valof_skip1:
paulson@13075
   282
     "(e',s) -|-> (v,s')
wenzelm@18260
   283
      ==> e' = VALOF SKIP RESULTIS e ==>
paulson@13075
   284
          (e, s) -|-> (v,s')"
wenzelm@18260
   285
  by (induct set: eval) auto
paulson@13075
   286
paulson@13075
   287
lemma valof_skip2:
wenzelm@18260
   288
    "(e,s) -|-> (v,s') ==> (VALOF SKIP RESULTIS e, s) -|-> (v,s')"
wenzelm@18260
   289
  by blast
paulson@13075
   290
paulson@13075
   291
theorem valof_skip:
wenzelm@18260
   292
    "((VALOF SKIP RESULTIS e, s) -|-> (v,s'))  =  ((e, s) -|-> (v,s'))"
wenzelm@18260
   293
  by (blast intro: valof_skip1 valof_skip2)
paulson@13075
   294
paulson@13075
   295
paulson@13075
   296
subsection{* Equivalence of  VALOF x:=e RESULTIS x  and  e *}
paulson@13075
   297
wenzelm@18260
   298
lemma valof_assign1:
paulson@13075
   299
     "(e',s) -|-> (v,s'')
wenzelm@18260
   300
      ==> e' = VALOF x:=e RESULTIS X x ==>
paulson@13075
   301
          (\<exists>s'. (e, s) -|-> (v,s') & (s'' = s'(x:=v)))"
wenzelm@18260
   302
  by (induct set: eval) (simp_all del: fun_upd_apply, clarify, auto)
paulson@13075
   303
paulson@13075
   304
lemma valof_assign2:
wenzelm@18260
   305
    "(e,s) -|-> (v,s') ==> (VALOF x:=e RESULTIS X x, s) -|-> (v,s'(x:=v))"
wenzelm@18260
   306
  by blast
paulson@13075
   307
paulson@3120
   308
end