src/HOL/Bali/Evaln.thy
author wenzelm
Mon Jan 28 18:50:23 2002 +0100 (2002-01-28)
changeset 12857 a4386cc9b1c3
parent 12854 00d4a435777f
child 12859 f63315dfffd4
permissions -rw-r--r--
tuned header;
wenzelm@12857
     1
(*  Title:      HOL/Bali/Evaln.thy
schirmer@12854
     2
    ID:         $Id$
schirmer@12854
     3
    Author:     David von Oheimb
schirmer@12854
     4
    Copyright   1999 Technische Universitaet Muenchen
schirmer@12854
     5
*)
schirmer@12854
     6
header {* Operational evaluation (big-step) semantics of Java expressions and 
schirmer@12854
     7
          statements
schirmer@12854
     8
*}
schirmer@12854
     9
schirmer@12854
    10
theory Evaln = Eval:
schirmer@12854
    11
schirmer@12854
    12
text {*
schirmer@12854
    13
Variant of eval relation with counter for bounded recursive depth
schirmer@12854
    14
Evaln could completely replace Eval.
schirmer@12854
    15
*}
schirmer@12854
    16
schirmer@12854
    17
consts
schirmer@12854
    18
schirmer@12854
    19
  evaln	:: "prog \<Rightarrow> (state \<times> term \<times> nat \<times> vals \<times> state) set"
schirmer@12854
    20
schirmer@12854
    21
syntax
schirmer@12854
    22
schirmer@12854
    23
  evaln	:: "[prog, state, term,        nat, vals * state] => bool"
schirmer@12854
    24
				("_|-_ -_>-_-> _"   [61,61,80,   61,61] 60)
schirmer@12854
    25
  evarn	:: "[prog, state, var  , vvar        , nat, state] => bool"
schirmer@12854
    26
				("_|-_ -_=>_-_-> _" [61,61,90,61,61,61] 60)
schirmer@12854
    27
  eval_n:: "[prog, state, expr , val         , nat, state] => bool"
schirmer@12854
    28
				("_|-_ -_->_-_-> _" [61,61,80,61,61,61] 60)
schirmer@12854
    29
  evalsn:: "[prog, state, expr list, val list, nat, state] => bool"
schirmer@12854
    30
				("_|-_ -_#>_-_-> _" [61,61,61,61,61,61] 60)
schirmer@12854
    31
  execn	:: "[prog, state, stmt ,               nat, state] => bool"
schirmer@12854
    32
				("_|-_ -_-_-> _"    [61,61,65,   61,61] 60)
schirmer@12854
    33
schirmer@12854
    34
syntax (xsymbols)
schirmer@12854
    35
schirmer@12854
    36
  evaln	:: "[prog, state, term,         nat, vals \<times> state] \<Rightarrow> bool"
schirmer@12854
    37
				("_\<turnstile>_ \<midarrow>_\<succ>\<midarrow>_\<rightarrow> _"   [61,61,80,   61,61] 60)
schirmer@12854
    38
  evarn	:: "[prog, state, var  , vvar         , nat, state] \<Rightarrow> bool"
schirmer@12854
    39
				("_\<turnstile>_ \<midarrow>_=\<succ>_\<midarrow>_\<rightarrow> _" [61,61,90,61,61,61] 60)
schirmer@12854
    40
  eval_n:: "[prog, state, expr , val ,          nat, state] \<Rightarrow> bool"
schirmer@12854
    41
				("_\<turnstile>_ \<midarrow>_-\<succ>_\<midarrow>_\<rightarrow> _" [61,61,80,61,61,61] 60)
schirmer@12854
    42
  evalsn:: "[prog, state, expr list, val  list, nat, state] \<Rightarrow> bool"
schirmer@12854
    43
				("_\<turnstile>_ \<midarrow>_\<doteq>\<succ>_\<midarrow>_\<rightarrow> _" [61,61,61,61,61,61] 60)
schirmer@12854
    44
  execn	:: "[prog, state, stmt ,                nat, state] \<Rightarrow> bool"
schirmer@12854
    45
				("_\<turnstile>_ \<midarrow>_\<midarrow>_\<rightarrow> _"     [61,61,65,   61,61] 60)
schirmer@12854
    46
schirmer@12854
    47
translations
schirmer@12854
    48
schirmer@12854
    49
  "G\<turnstile>s \<midarrow>t    \<succ>\<midarrow>n\<rightarrow>  w___s' " == "(s,t,n,w___s') \<in> evaln G"
schirmer@12854
    50
  "G\<turnstile>s \<midarrow>t    \<succ>\<midarrow>n\<rightarrow> (w,  s')" <= "(s,t,n,w,  s') \<in> evaln G"
schirmer@12854
    51
  "G\<turnstile>s \<midarrow>t    \<succ>\<midarrow>n\<rightarrow> (w,x,s')" <= "(s,t,n,w,x,s') \<in> evaln G"
schirmer@12854
    52
  "G\<turnstile>s \<midarrow>c     \<midarrow>n\<rightarrow> (x,s')" <= "G\<turnstile>s \<midarrow>In1r  c\<succ>\<midarrow>n\<rightarrow> (\<diamondsuit>    ,x,s')"
schirmer@12854
    53
  "G\<turnstile>s \<midarrow>c     \<midarrow>n\<rightarrow>    s' " == "G\<turnstile>s \<midarrow>In1r  c\<succ>\<midarrow>n\<rightarrow> (\<diamondsuit>    ,  s')"
schirmer@12854
    54
  "G\<turnstile>s \<midarrow>e-\<succ>v  \<midarrow>n\<rightarrow> (x,s')" <= "G\<turnstile>s \<midarrow>In1l e\<succ>\<midarrow>n\<rightarrow> (In1 v ,x,s')"
schirmer@12854
    55
  "G\<turnstile>s \<midarrow>e-\<succ>v  \<midarrow>n\<rightarrow>    s' " == "G\<turnstile>s \<midarrow>In1l e\<succ>\<midarrow>n\<rightarrow> (In1 v ,  s')"
schirmer@12854
    56
  "G\<turnstile>s \<midarrow>e=\<succ>vf \<midarrow>n\<rightarrow> (x,s')" <= "G\<turnstile>s \<midarrow>In2  e\<succ>\<midarrow>n\<rightarrow> (In2 vf,x,s')"
schirmer@12854
    57
  "G\<turnstile>s \<midarrow>e=\<succ>vf \<midarrow>n\<rightarrow>    s' " == "G\<turnstile>s \<midarrow>In2  e\<succ>\<midarrow>n\<rightarrow> (In2 vf,  s')"
schirmer@12854
    58
  "G\<turnstile>s \<midarrow>e\<doteq>\<succ>v  \<midarrow>n\<rightarrow> (x,s')" <= "G\<turnstile>s \<midarrow>In3  e\<succ>\<midarrow>n\<rightarrow> (In3 v ,x,s')"
schirmer@12854
    59
  "G\<turnstile>s \<midarrow>e\<doteq>\<succ>v  \<midarrow>n\<rightarrow>    s' " == "G\<turnstile>s \<midarrow>In3  e\<succ>\<midarrow>n\<rightarrow> (In3 v ,  s')"
schirmer@12854
    60
schirmer@12854
    61
schirmer@12854
    62
inductive "evaln G" intros
schirmer@12854
    63
schirmer@12854
    64
(* propagation of abrupt completion *)
schirmer@12854
    65
schirmer@12854
    66
  Abrupt:   "G\<turnstile>(Some xc,s) \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (arbitrary3 t,(Some xc,s))"
schirmer@12854
    67
schirmer@12854
    68
schirmer@12854
    69
(* evaluation of variables *)
schirmer@12854
    70
schirmer@12854
    71
  LVar:	"G\<turnstile>Norm s \<midarrow>LVar vn=\<succ>lvar vn s\<midarrow>n\<rightarrow> Norm s"
schirmer@12854
    72
schirmer@12854
    73
  FVar:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>Init C\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>e-\<succ>a'\<midarrow>n\<rightarrow> s2;
schirmer@12854
    74
	  (v,s2') = fvar C stat fn a' s2\<rbrakk> \<Longrightarrow>
schirmer@12854
    75
	  G\<turnstile>Norm s0 \<midarrow>{C,stat}e..fn=\<succ>v\<midarrow>n\<rightarrow> s2'"
schirmer@12854
    76
schirmer@12854
    77
  AVar:	"\<lbrakk>G\<turnstile> Norm s0 \<midarrow>e1-\<succ>a\<midarrow>n\<rightarrow> s1 ; G\<turnstile>s1 \<midarrow>e2-\<succ>i\<midarrow>n\<rightarrow> s2; 
schirmer@12854
    78
	  (v,s2') = avar G i a s2\<rbrakk> \<Longrightarrow>
schirmer@12854
    79
	              G\<turnstile>Norm s0 \<midarrow>e1.[e2]=\<succ>v\<midarrow>n\<rightarrow> s2'"
schirmer@12854
    80
schirmer@12854
    81
schirmer@12854
    82
schirmer@12854
    83
schirmer@12854
    84
(* evaluation of expressions *)
schirmer@12854
    85
schirmer@12854
    86
  NewC:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>Init C\<midarrow>n\<rightarrow> s1;
schirmer@12854
    87
	  G\<turnstile>     s1 \<midarrow>halloc (CInst C)\<succ>a\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
    88
	                          G\<turnstile>Norm s0 \<midarrow>NewC C-\<succ>Addr a\<midarrow>n\<rightarrow> s2"
schirmer@12854
    89
schirmer@12854
    90
  NewA:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>init_comp_ty T\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>e-\<succ>i'\<midarrow>n\<rightarrow> s2; 
schirmer@12854
    91
	  G\<turnstile>abupd (check_neg i') s2 \<midarrow>halloc (Arr T (the_Intg i'))\<succ>a\<rightarrow> s3\<rbrakk> \<Longrightarrow>
schirmer@12854
    92
	                        G\<turnstile>Norm s0 \<midarrow>New T[e]-\<succ>Addr a\<midarrow>n\<rightarrow> s3"
schirmer@12854
    93
schirmer@12854
    94
  Cast:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1;
schirmer@12854
    95
	  s2 = abupd (raise_if (\<not>G,snd s1\<turnstile>v fits T) ClassCast) s1\<rbrakk> \<Longrightarrow>
schirmer@12854
    96
			        G\<turnstile>Norm s0 \<midarrow>Cast T e-\<succ>v\<midarrow>n\<rightarrow> s2"
schirmer@12854
    97
schirmer@12854
    98
  Inst:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1;
schirmer@12854
    99
	  b = (v\<noteq>Null \<and> G,store s1\<turnstile>v fits RefT T)\<rbrakk> \<Longrightarrow>
schirmer@12854
   100
			      G\<turnstile>Norm s0 \<midarrow>e InstOf T-\<succ>Bool b\<midarrow>n\<rightarrow> s1"
schirmer@12854
   101
schirmer@12854
   102
  Lit:			   "G\<turnstile>Norm s \<midarrow>Lit v-\<succ>v\<midarrow>n\<rightarrow> Norm s"
schirmer@12854
   103
schirmer@12854
   104
  Super:		   "G\<turnstile>Norm s \<midarrow>Super-\<succ>val_this s\<midarrow>n\<rightarrow> Norm s"
schirmer@12854
   105
schirmer@12854
   106
  Acc:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>va=\<succ>(v,f)\<midarrow>n\<rightarrow> s1\<rbrakk> \<Longrightarrow>
schirmer@12854
   107
	                          G\<turnstile>Norm s0 \<midarrow>Acc va-\<succ>v\<midarrow>n\<rightarrow> s1"
schirmer@12854
   108
schirmer@12854
   109
  Ass:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>va=\<succ>(w,f)\<midarrow>n\<rightarrow> s1;
schirmer@12854
   110
          G\<turnstile>     s1 \<midarrow>e-\<succ>v     \<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
   111
				   G\<turnstile>Norm s0 \<midarrow>va:=e-\<succ>v\<midarrow>n\<rightarrow> assign f v s2"
schirmer@12854
   112
schirmer@12854
   113
  Cond:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e0-\<succ>b\<midarrow>n\<rightarrow> s1;
schirmer@12854
   114
          G\<turnstile>     s1 \<midarrow>(if the_Bool b then e1 else e2)-\<succ>v\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
   115
			    G\<turnstile>Norm s0 \<midarrow>e0 ? e1 : e2-\<succ>v\<midarrow>n\<rightarrow> s2"
schirmer@12854
   116
schirmer@12854
   117
  Call:	
schirmer@12854
   118
  "\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>a'\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>args\<doteq>\<succ>vs\<midarrow>n\<rightarrow> s2;
schirmer@12854
   119
    D = invocation_declclass G mode (store s2) a' statT \<lparr>name=mn,parTs=pTs\<rparr>; 
schirmer@12854
   120
    G\<turnstile>init_lvars G D \<lparr>name=mn,parTs=pTs\<rparr> mode a' vs s2
schirmer@12854
   121
            \<midarrow>Methd D \<lparr>name=mn,parTs=pTs\<rparr>-\<succ>v\<midarrow>n\<rightarrow> s3\<rbrakk>
schirmer@12854
   122
   \<Longrightarrow> G\<turnstile>Norm s0 \<midarrow>{statT,mode}e\<cdot>mn({pTs}args)-\<succ>v\<midarrow>n\<rightarrow> (restore_lvars s2 s3)"
schirmer@12854
   123
schirmer@12854
   124
  Methd:"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>body G D sig-\<succ>v\<midarrow>n\<rightarrow> s1\<rbrakk> \<Longrightarrow>
schirmer@12854
   125
				G\<turnstile>Norm s0 \<midarrow>Methd D sig-\<succ>v\<midarrow>Suc n\<rightarrow> s1"
schirmer@12854
   126
schirmer@12854
   127
  Body:	"\<lbrakk>G\<turnstile>Norm s0\<midarrow>Init D\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>c\<midarrow>n\<rightarrow> s2\<rbrakk>\<Longrightarrow>
schirmer@12854
   128
 G\<turnstile>Norm s0 \<midarrow>Body D c-\<succ>the (locals (store s2) Result)\<midarrow>n\<rightarrow>abupd (absorb Ret) s2"
schirmer@12854
   129
schirmer@12854
   130
(* evaluation of expression lists *)
schirmer@12854
   131
schirmer@12854
   132
  Nil:
schirmer@12854
   133
				"G\<turnstile>Norm s0 \<midarrow>[]\<doteq>\<succ>[]\<midarrow>n\<rightarrow> Norm s0"
schirmer@12854
   134
schirmer@12854
   135
  Cons:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e -\<succ> v \<midarrow>n\<rightarrow> s1;
schirmer@12854
   136
          G\<turnstile>     s1 \<midarrow>es\<doteq>\<succ>vs\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
   137
			     G\<turnstile>Norm s0 \<midarrow>e#es\<doteq>\<succ>v#vs\<midarrow>n\<rightarrow> s2"
schirmer@12854
   138
schirmer@12854
   139
schirmer@12854
   140
(* execution of statements *)
schirmer@12854
   141
schirmer@12854
   142
  Skip:	 			    "G\<turnstile>Norm s \<midarrow>Skip\<midarrow>n\<rightarrow> Norm s"
schirmer@12854
   143
schirmer@12854
   144
  Expr:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1\<rbrakk> \<Longrightarrow>
schirmer@12854
   145
				  G\<turnstile>Norm s0 \<midarrow>Expr e\<midarrow>n\<rightarrow> s1"
schirmer@12854
   146
schirmer@12854
   147
  Lab:  "\<lbrakk>G\<turnstile>Norm s0 \<midarrow>c \<midarrow>n\<rightarrow> s1\<rbrakk> \<Longrightarrow>
schirmer@12854
   148
                             G\<turnstile>Norm s0 \<midarrow>l\<bullet> c\<midarrow>n\<rightarrow> abupd (absorb (Break l)) s1"
schirmer@12854
   149
schirmer@12854
   150
  Comp:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>c1 \<midarrow>n\<rightarrow> s1;
schirmer@12854
   151
	  G\<turnstile>     s1 \<midarrow>c2 \<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
   152
				 G\<turnstile>Norm s0 \<midarrow>c1;; c2\<midarrow>n\<rightarrow> s2"
schirmer@12854
   153
schirmer@12854
   154
  If:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<midarrow>n\<rightarrow> s1;
schirmer@12854
   155
	  G\<turnstile>     s1\<midarrow>(if the_Bool b then c1 else c2)\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
   156
		       G\<turnstile>Norm s0 \<midarrow>If(e) c1 Else c2 \<midarrow>n\<rightarrow> s2"
schirmer@12854
   157
schirmer@12854
   158
  Loop:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>b\<midarrow>n\<rightarrow> s1;
schirmer@12854
   159
	  if normal s1 \<and> the_Bool b 
schirmer@12854
   160
             then (G\<turnstile>s1 \<midarrow>c\<midarrow>n\<rightarrow> s2 \<and> 
schirmer@12854
   161
                   G\<turnstile>(abupd (absorb (Cont l)) s2) \<midarrow>l\<bullet> While(e) c\<midarrow>n\<rightarrow> s3)
schirmer@12854
   162
	     else s3 = s1\<rbrakk> \<Longrightarrow>
schirmer@12854
   163
			      G\<turnstile>Norm s0 \<midarrow>l\<bullet> While(e) c\<midarrow>n\<rightarrow> s3"
schirmer@12854
   164
  
schirmer@12854
   165
  Do: "G\<turnstile>Norm s \<midarrow>Do j\<midarrow>n\<rightarrow> (Some (Jump j), s)"
schirmer@12854
   166
  
schirmer@12854
   167
  Throw:"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>e-\<succ>a'\<midarrow>n\<rightarrow> s1\<rbrakk> \<Longrightarrow>
schirmer@12854
   168
				 G\<turnstile>Norm s0 \<midarrow>Throw e\<midarrow>n\<rightarrow> abupd (throw a') s1"
schirmer@12854
   169
schirmer@12854
   170
  Try:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>c1\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>sxalloc\<rightarrow> s2;
schirmer@12854
   171
	  if G,s2\<turnstile>catch tn then G\<turnstile>new_xcpt_var vn s2 \<midarrow>c2\<midarrow>n\<rightarrow> s3 else s3 = s2\<rbrakk>
schirmer@12854
   172
          \<Longrightarrow>
schirmer@12854
   173
		  G\<turnstile>Norm s0 \<midarrow>Try c1 Catch(tn vn) c2\<midarrow>n\<rightarrow> s3"
schirmer@12854
   174
schirmer@12854
   175
  Fin:	"\<lbrakk>G\<turnstile>Norm s0 \<midarrow>c1\<midarrow>n\<rightarrow> (x1,s1);
schirmer@12854
   176
	  G\<turnstile>Norm s1 \<midarrow>c2\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow>
schirmer@12854
   177
              G\<turnstile>Norm s0 \<midarrow>c1 Finally c2\<midarrow>n\<rightarrow> abupd (abrupt_if (x1\<noteq>None) x1) s2"
schirmer@12854
   178
  
schirmer@12854
   179
  Init:	"\<lbrakk>the (class G C) = c;
schirmer@12854
   180
	  if inited C (globs s0) then s3 = Norm s0
schirmer@12854
   181
	  else (G\<turnstile>Norm (init_class_obj G C s0)
schirmer@12854
   182
	          \<midarrow>(if C = Object then Skip else Init (super c))\<midarrow>n\<rightarrow> s1 \<and>
schirmer@12854
   183
	        G\<turnstile>set_lvars empty s1 \<midarrow>init c\<midarrow>n\<rightarrow> s2 \<and> 
schirmer@12854
   184
                s3 = restore_lvars s1 s2)\<rbrakk>
schirmer@12854
   185
          \<Longrightarrow>
schirmer@12854
   186
		 G\<turnstile>Norm s0 \<midarrow>Init C\<midarrow>n\<rightarrow> s3"
schirmer@12854
   187
monos
schirmer@12854
   188
  if_def2
schirmer@12854
   189
schirmer@12854
   190
lemma evaln_eval: "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws \<Longrightarrow> G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> ws"
schirmer@12854
   191
apply (simp (no_asm_simp) only: split_tupled_all)
schirmer@12854
   192
apply (erule evaln.induct)
schirmer@12854
   193
apply (rule eval.intros, (assumption+)?,(force split del: split_if)?)+
schirmer@12854
   194
done
schirmer@12854
   195
schirmer@12854
   196
schirmer@12854
   197
lemma Suc_le_D_lemma: "\<lbrakk>Suc n <= m'; (\<And>m. n <= m \<Longrightarrow> P (Suc m)) \<rbrakk> \<Longrightarrow> P m'"
schirmer@12854
   198
apply (frule Suc_le_D)
schirmer@12854
   199
apply fast
schirmer@12854
   200
done
schirmer@12854
   201
schirmer@12854
   202
lemma evaln_nonstrict [rule_format (no_asm), elim]: 
schirmer@12854
   203
  "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws \<Longrightarrow> \<forall>m. n\<le>m \<longrightarrow> G\<turnstile>s \<midarrow>t\<succ>\<midarrow>m\<rightarrow> ws"
schirmer@12854
   204
apply (simp (no_asm_simp) only: split_tupled_all)
schirmer@12854
   205
apply (erule evaln.induct)
schirmer@12854
   206
apply (tactic {* ALLGOALS (EVERY'[strip_tac, TRY o etac (thm "Suc_le_D_lemma"),
schirmer@12854
   207
  REPEAT o smp_tac 1, 
schirmer@12854
   208
  resolve_tac (thms "evaln.intros") THEN_ALL_NEW TRY o atac]) *})
schirmer@12854
   209
(* 3 subgoals *)
schirmer@12854
   210
apply (auto split del: split_if)
schirmer@12854
   211
done
schirmer@12854
   212
schirmer@12854
   213
lemmas evaln_nonstrict_Suc = evaln_nonstrict [OF _ le_refl [THEN le_SucI]]
schirmer@12854
   214
schirmer@12854
   215
lemma evaln_max2: "\<lbrakk>G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>n1\<rightarrow> ws1; G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>n2\<rightarrow> ws2\<rbrakk> \<Longrightarrow> 
schirmer@12854
   216
             G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>max n1 n2\<rightarrow> ws1 \<and> G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>max n1 n2\<rightarrow> ws2"
schirmer@12854
   217
apply (fast intro: le_maxI1 le_maxI2)
schirmer@12854
   218
done
schirmer@12854
   219
schirmer@12854
   220
lemma evaln_max3: 
schirmer@12854
   221
"\<lbrakk>G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>n1\<rightarrow> ws1; G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>n2\<rightarrow> ws2; G\<turnstile>s3 \<midarrow>t3\<succ>\<midarrow>n3\<rightarrow> ws3\<rbrakk> \<Longrightarrow>
schirmer@12854
   222
 G\<turnstile>s1 \<midarrow>t1\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws1 \<and>
schirmer@12854
   223
 G\<turnstile>s2 \<midarrow>t2\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws2 \<and> 
schirmer@12854
   224
 G\<turnstile>s3 \<midarrow>t3\<succ>\<midarrow>max (max n1 n2) n3\<rightarrow> ws3"
schirmer@12854
   225
apply (drule (1) evaln_max2, erule thin_rl)
schirmer@12854
   226
apply (fast intro!: le_maxI1 le_maxI2)
schirmer@12854
   227
done
schirmer@12854
   228
schirmer@12854
   229
lemma eval_evaln: "\<And>ws. G\<turnstile>s \<midarrow>t\<succ>\<rightarrow> ws \<Longrightarrow> (\<exists>n. G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> ws)"
schirmer@12854
   230
apply (simp (no_asm_simp) only: split_tupled_all)
schirmer@12854
   231
apply (erule eval.induct)
schirmer@12854
   232
apply (tactic {* ALLGOALS 
schirmer@12854
   233
         (asm_full_simp_tac (HOL_basic_ss addsplits [split_if_asm])) *})
schirmer@12854
   234
apply (tactic {* ALLGOALS (EVERY'[
schirmer@12854
   235
   REPEAT o eresolve_tac [exE, conjE], rtac exI,
schirmer@12854
   236
                     TRY o datac (thm "evaln_max3") 2, REPEAT o etac conjE,
schirmer@12854
   237
  resolve_tac (thms "evaln.intros") THEN_ALL_NEW 
schirmer@12854
   238
  force_tac (HOL_cs, HOL_ss)]) *})
schirmer@12854
   239
done
schirmer@12854
   240
schirmer@12854
   241
declare split_if     [split del] split_if_asm     [split del]
schirmer@12854
   242
        option.split [split del] option.split_asm [split del]
schirmer@12854
   243
inductive_cases evaln_cases: "G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   244
schirmer@12854
   245
inductive_cases evaln_elim_cases:
schirmer@12854
   246
	"G\<turnstile>(Some xc, s) \<midarrow>t                        \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   247
	"G\<turnstile>Norm s \<midarrow>In1r Skip                      \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   248
        "G\<turnstile>Norm s \<midarrow>In1r (Do j)                    \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   249
        "G\<turnstile>Norm s \<midarrow>In1r (l\<bullet> c)                    \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   250
	"G\<turnstile>Norm s \<midarrow>In3  ([])                      \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   251
	"G\<turnstile>Norm s \<midarrow>In3  (e#es)                    \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   252
	"G\<turnstile>Norm s \<midarrow>In1l (Lit w)                   \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   253
	"G\<turnstile>Norm s \<midarrow>In2  (LVar vn)                 \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   254
	"G\<turnstile>Norm s \<midarrow>In1l (Cast T e)                \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   255
	"G\<turnstile>Norm s \<midarrow>In1l (e InstOf T)              \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   256
	"G\<turnstile>Norm s \<midarrow>In1l (Super)                   \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   257
	"G\<turnstile>Norm s \<midarrow>In1l (Acc va)                  \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   258
	"G\<turnstile>Norm s \<midarrow>In1r (Expr e)                  \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   259
	"G\<turnstile>Norm s \<midarrow>In1r (c1;; c2)                 \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   260
	"G\<turnstile>Norm s \<midarrow>In1l (Methd C sig)             \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   261
	"G\<turnstile>Norm s \<midarrow>In1l (Body D c)                \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   262
	"G\<turnstile>Norm s \<midarrow>In1l (e0 ? e1 : e2)            \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   263
	"G\<turnstile>Norm s \<midarrow>In1r (If(e) c1 Else c2)        \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   264
	"G\<turnstile>Norm s \<midarrow>In1r (l\<bullet> While(e) c)           \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   265
	"G\<turnstile>Norm s \<midarrow>In1r (c1 Finally c2)           \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   266
	"G\<turnstile>Norm s \<midarrow>In1r (Throw e)                 \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   267
	"G\<turnstile>Norm s \<midarrow>In1l (NewC C)                  \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   268
	"G\<turnstile>Norm s \<midarrow>In1l (New T[e])                \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   269
	"G\<turnstile>Norm s \<midarrow>In1l (Ass va e)                \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   270
	"G\<turnstile>Norm s \<midarrow>In1r (Try c1 Catch(tn vn) c2)  \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   271
	"G\<turnstile>Norm s \<midarrow>In2  ({C,stat}e..fn)           \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   272
	"G\<turnstile>Norm s \<midarrow>In2  (e1.[e2])                 \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   273
	"G\<turnstile>Norm s \<midarrow>In1l ({statT,mode}e\<cdot>mn({pT}p)) \<succ>\<midarrow>n\<rightarrow> vs'"
schirmer@12854
   274
	"G\<turnstile>Norm s \<midarrow>In1r (Init C)                  \<succ>\<midarrow>n\<rightarrow> xs'"
schirmer@12854
   275
declare split_if     [split] split_if_asm     [split] 
schirmer@12854
   276
        option.split [split] option.split_asm [split]
schirmer@12854
   277
schirmer@12854
   278
lemma evaln_Inj_elim: "G\<turnstile>s \<midarrow>t\<succ>\<midarrow>n\<rightarrow> (w,s') \<Longrightarrow> case t of In1 ec \<Rightarrow>  
schirmer@12854
   279
  (case ec of Inl e \<Rightarrow> (\<exists>v. w = In1 v) | Inr c \<Rightarrow> w = \<diamondsuit>)  
schirmer@12854
   280
  | In2 e \<Rightarrow> (\<exists>v. w = In2 v) | In3 e \<Rightarrow> (\<exists>v. w = In3 v)"
schirmer@12854
   281
apply (erule evaln_cases , auto)
schirmer@12854
   282
apply (induct_tac "t")
schirmer@12854
   283
apply   (induct_tac "a")
schirmer@12854
   284
apply auto
schirmer@12854
   285
done
schirmer@12854
   286
schirmer@12854
   287
ML_setup {*
schirmer@12854
   288
fun enf nam inj rhs =
schirmer@12854
   289
let
schirmer@12854
   290
  val name = "evaln_" ^ nam ^ "_eq"
schirmer@12854
   291
  val lhs = "G\<turnstile>s \<midarrow>" ^ inj ^ " t\<succ>\<midarrow>n\<rightarrow> (w, s')"
schirmer@12854
   292
  val () = qed_goal name (the_context()) (lhs ^ " = (" ^ rhs ^ ")") 
schirmer@12854
   293
	(K [Auto_tac, ALLGOALS (ftac (thm "evaln_Inj_elim")) THEN Auto_tac])
schirmer@12854
   294
  fun is_Inj (Const (inj,_) $ _) = true
schirmer@12854
   295
    | is_Inj _                   = false
schirmer@12854
   296
  fun pred (_ $ (Const ("Pair",_) $ _ $ (Const ("Pair", _) $ _ $ 
schirmer@12854
   297
    (Const ("Pair", _) $ _ $ (Const ("Pair", _) $ x $ _ )))) $ _ ) = is_Inj x
schirmer@12854
   298
in
schirmer@12854
   299
  make_simproc name lhs pred (thm name)
schirmer@12854
   300
end;
schirmer@12854
   301
schirmer@12854
   302
val evaln_expr_proc = enf "expr" "In1l" "\<exists>v.  w=In1 v  \<and> G\<turnstile>s \<midarrow>t-\<succ>v \<midarrow>n\<rightarrow> s'";
schirmer@12854
   303
val evaln_var_proc  = enf "var"  "In2"  "\<exists>vf. w=In2 vf \<and> G\<turnstile>s \<midarrow>t=\<succ>vf\<midarrow>n\<rightarrow> s'";
schirmer@12854
   304
val evaln_exprs_proc= enf "exprs""In3"  "\<exists>vs. w=In3 vs \<and> G\<turnstile>s \<midarrow>t\<doteq>\<succ>vs\<midarrow>n\<rightarrow> s'";
schirmer@12854
   305
val evaln_stmt_proc = enf "stmt" "In1r" "     w=\<diamondsuit>      \<and> G\<turnstile>s \<midarrow>t     \<midarrow>n\<rightarrow> s'";
schirmer@12854
   306
Addsimprocs [evaln_expr_proc,evaln_var_proc,evaln_exprs_proc,evaln_stmt_proc];
schirmer@12854
   307
schirmer@12854
   308
bind_thms ("evaln_AbruptIs", sum3_instantiate (thm "evaln.Abrupt"))
schirmer@12854
   309
*}
schirmer@12854
   310
declare evaln_AbruptIs [intro!]
schirmer@12854
   311
schirmer@12854
   312
lemma evaln_abrupt_lemma: "G\<turnstile>s \<midarrow>e\<succ>\<midarrow>n\<rightarrow> (v,s') \<Longrightarrow> 
schirmer@12854
   313
 fst s = Some xc \<longrightarrow> s' = s \<and> v = arbitrary3 e"
schirmer@12854
   314
apply (erule evaln_cases , auto)
schirmer@12854
   315
done
schirmer@12854
   316
schirmer@12854
   317
lemma evaln_abrupt: 
schirmer@12854
   318
 "\<And>s'. G\<turnstile>(Some xc,s) \<midarrow>e\<succ>\<midarrow>n\<rightarrow> (w,s') = (s' = (Some xc,s) \<and>  
schirmer@12854
   319
  w=arbitrary3 e \<and> G\<turnstile>(Some xc,s) \<midarrow>e\<succ>\<midarrow>n\<rightarrow> (arbitrary3 e,(Some xc,s)))"
schirmer@12854
   320
apply auto
schirmer@12854
   321
apply (frule evaln_abrupt_lemma, auto)+
schirmer@12854
   322
done
schirmer@12854
   323
schirmer@12854
   324
ML {*
schirmer@12854
   325
local
schirmer@12854
   326
  fun is_Some (Const ("Pair",_) $ (Const ("Option.option.Some",_) $ _)$ _) =true
schirmer@12854
   327
    | is_Some _ = false
schirmer@12854
   328
  fun pred (_ $ (Const ("Pair",_) $
schirmer@12854
   329
     _ $ (Const ("Pair", _) $ _ $ (Const ("Pair", _) $ _ $
schirmer@12854
   330
       (Const ("Pair", _) $ _ $ x)))) $ _ ) = is_Some x
schirmer@12854
   331
in
schirmer@12854
   332
  val evaln_abrupt_proc = 
schirmer@12854
   333
 make_simproc "evaln_abrupt" "G\<turnstile>(Some xc,s) \<midarrow>e\<succ>\<midarrow>n\<rightarrow> (w,s')" pred (thm "evaln_abrupt")
schirmer@12854
   334
end;
schirmer@12854
   335
Addsimprocs [evaln_abrupt_proc]
schirmer@12854
   336
*}
schirmer@12854
   337
schirmer@12854
   338
lemma evaln_LitI: "G\<turnstile>s \<midarrow>Lit v-\<succ>(if normal s then v else arbitrary)\<midarrow>n\<rightarrow> s"
schirmer@12854
   339
apply (case_tac "s", case_tac "a = None")
schirmer@12854
   340
by (auto intro!: evaln.Lit)
schirmer@12854
   341
schirmer@12854
   342
lemma CondI: 
schirmer@12854
   343
 "\<And>s1. \<lbrakk>G\<turnstile>s \<midarrow>e-\<succ>b\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>(if the_Bool b then e1 else e2)-\<succ>v\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow> 
schirmer@12854
   344
  G\<turnstile>s \<midarrow>e ? e1 : e2-\<succ>(if normal s1 then v else arbitrary)\<midarrow>n\<rightarrow> s2"
schirmer@12854
   345
apply (case_tac "s", case_tac "a = None")
schirmer@12854
   346
by (auto intro!: evaln.Cond)
schirmer@12854
   347
schirmer@12854
   348
lemma evaln_SkipI [intro!]: "G\<turnstile>s \<midarrow>Skip\<midarrow>n\<rightarrow> s"
schirmer@12854
   349
apply (case_tac "s", case_tac "a = None")
schirmer@12854
   350
by (auto intro!: evaln.Skip)
schirmer@12854
   351
schirmer@12854
   352
lemma evaln_ExprI: "G\<turnstile>s \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s' \<Longrightarrow> G\<turnstile>s \<midarrow>Expr e\<midarrow>n\<rightarrow> s'"
schirmer@12854
   353
apply (case_tac "s", case_tac "a = None")
schirmer@12854
   354
by (auto intro!: evaln.Expr)
schirmer@12854
   355
schirmer@12854
   356
lemma evaln_CompI: "\<lbrakk>G\<turnstile>s \<midarrow>c1\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>c2\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow> G\<turnstile>s \<midarrow>c1;; c2\<midarrow>n\<rightarrow> s2"
schirmer@12854
   357
apply (case_tac "s", case_tac "a = None")
schirmer@12854
   358
by (auto intro!: evaln.Comp)
schirmer@12854
   359
schirmer@12854
   360
lemma evaln_IfI: 
schirmer@12854
   361
 "\<lbrakk>G\<turnstile>s \<midarrow>e-\<succ>v\<midarrow>n\<rightarrow> s1; G\<turnstile>s1 \<midarrow>(if the_Bool v then c1 else c2)\<midarrow>n\<rightarrow> s2\<rbrakk> \<Longrightarrow> 
schirmer@12854
   362
  G\<turnstile>s \<midarrow>If(e) c1 Else c2\<midarrow>n\<rightarrow> s2"
schirmer@12854
   363
apply (case_tac "s", case_tac "a = None")
schirmer@12854
   364
by (auto intro!: evaln.If)
schirmer@12854
   365
schirmer@12854
   366
lemma evaln_SkipD [dest!]: "G\<turnstile>s \<midarrow>Skip\<midarrow>n\<rightarrow> s' \<Longrightarrow> s' = s" 
schirmer@12854
   367
by (erule evaln_cases, auto)
schirmer@12854
   368
schirmer@12854
   369
lemma evaln_Skip_eq [simp]: "G\<turnstile>s \<midarrow>Skip\<midarrow>n\<rightarrow> s' = (s = s')"
schirmer@12854
   370
apply auto
schirmer@12854
   371
done
schirmer@12854
   372
schirmer@12854
   373
end