src/CTT/CTT.thy
author clasohm
Thu Sep 16 12:20:38 1993 +0200 (1993-09-16)
changeset 0 a5a9c433f639
child 23 1cd377c2f7c6
permissions -rw-r--r--
Initial revision
clasohm@0
     1
(*  Title:      CTT/ctt.thy
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Constructive Type Theory
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
CTT = Pure +
clasohm@0
    10
clasohm@0
    11
types i,t,o 0
clasohm@0
    12
clasohm@0
    13
arities i,t,o :: logic
clasohm@0
    14
clasohm@0
    15
consts
clasohm@0
    16
  (*Types*)
clasohm@0
    17
  F,T       :: "t"          (*F is empty, T contains one element*)
clasohm@0
    18
  contr     :: "i=>i"
clasohm@0
    19
  tt        :: "i"
clasohm@0
    20
  (*Natural numbers*)
clasohm@0
    21
  N         :: "t"
clasohm@0
    22
  succ      :: "i=>i"
clasohm@0
    23
  rec       :: "[i, i, [i,i]=>i] => i"
clasohm@0
    24
  (*Unions*)
clasohm@0
    25
  inl,inr   :: "i=>i"
clasohm@0
    26
  when      :: "[i, i=>i, i=>i]=>i"
clasohm@0
    27
  (*General Sum and Binary Product*)
clasohm@0
    28
  Sum       :: "[t, i=>t]=>t"
clasohm@0
    29
  fst,snd   :: "i=>i"
clasohm@0
    30
  split     :: "[i, [i,i]=>i] =>i"
clasohm@0
    31
  (*General Product and Function Space*)
clasohm@0
    32
  Prod      :: "[t, i=>t]=>t"
clasohm@0
    33
  (*Equality type*)
clasohm@0
    34
  Eq        :: "[t,i,i]=>t"
clasohm@0
    35
  eq        :: "i"
clasohm@0
    36
  (*Judgements*)
clasohm@0
    37
  Type      :: "t => prop"          ("(_ type)" [10] 5)
clasohm@0
    38
  Eqtype    :: "[t,t]=>prop"        ("(3_ =/ _)" [10,10] 5)
clasohm@0
    39
  Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
clasohm@0
    40
  Eqelem    :: "[i,i,t]=>prop"      ("(3_ =/ _ :/ _)" [10,10,10] 5)
clasohm@0
    41
  Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
clasohm@0
    42
  (*Types*)
clasohm@0
    43
  "@PROD"   :: "[id,t,t]=>t"        ("(3PROD _:_./ _)" 10)
clasohm@0
    44
  "@SUM"    :: "[id,t,t]=>t"        ("(3SUM _:_./ _)" 10)
clasohm@0
    45
  "+"       :: "[t,t]=>t"           (infixr 40)
clasohm@0
    46
  (*Invisible infixes!*)
clasohm@0
    47
  "@-->"    :: "[t,t]=>t"           ("(_ -->/ _)" [31,30] 30)
clasohm@0
    48
  "@*"      :: "[t,t]=>t"           ("(_ */ _)" [51,50] 50)
clasohm@0
    49
  (*Functions*)
clasohm@0
    50
  lambda    :: "(i => i) => i"      (binder "lam " 10)
clasohm@0
    51
  "`"       :: "[i,i]=>i"           (infixl 60)
clasohm@0
    52
  (*Natural numbers*)
clasohm@0
    53
  "0"       :: "i"                  ("0")
clasohm@0
    54
  (*Pairing*)
clasohm@0
    55
  pair      :: "[i,i]=>i"           ("(1<_,/_>)")
clasohm@0
    56
clasohm@0
    57
translations
clasohm@0
    58
  "PROD x:A. B" => "Prod(A, %x. B)"
clasohm@0
    59
  "SUM x:A. B"  => "Sum(A, %x. B)"
clasohm@0
    60
clasohm@0
    61
rules
clasohm@0
    62
clasohm@0
    63
  (*Reduction: a weaker notion than equality;  a hack for simplification.
clasohm@0
    64
    Reduce[a,b] means either that  a=b:A  for some A or else that "a" and "b"
clasohm@0
    65
    are textually identical.*)
clasohm@0
    66
clasohm@0
    67
  (*does not verify a:A!  Sound because only trans_red uses a Reduce premise
clasohm@0
    68
    No new theorems can be proved about the standard judgements.*)
clasohm@0
    69
  refl_red "Reduce[a,a]"
clasohm@0
    70
  red_if_equal "a = b : A ==> Reduce[a,b]"
clasohm@0
    71
  trans_red "[| a = b : A;  Reduce[b,c] |] ==> a = c : A"
clasohm@0
    72
clasohm@0
    73
  (*Reflexivity*)
clasohm@0
    74
clasohm@0
    75
  refl_type "A type ==> A = A"
clasohm@0
    76
  refl_elem "a : A ==> a = a : A"
clasohm@0
    77
clasohm@0
    78
  (*Symmetry*)
clasohm@0
    79
clasohm@0
    80
  sym_type  "A = B ==> B = A"
clasohm@0
    81
  sym_elem  "a = b : A ==> b = a : A"
clasohm@0
    82
clasohm@0
    83
  (*Transitivity*)
clasohm@0
    84
clasohm@0
    85
  trans_type   "[| A = B;  B = C |] ==> A = C"
clasohm@0
    86
  trans_elem   "[| a = b : A;  b = c : A |] ==> a = c : A"
clasohm@0
    87
clasohm@0
    88
  equal_types  "[| a : A;  A = B |] ==> a : B"
clasohm@0
    89
  equal_typesL "[| a = b : A;  A = B |] ==> a = b : B"
clasohm@0
    90
clasohm@0
    91
  (*Substitution*)
clasohm@0
    92
clasohm@0
    93
  subst_type   "[| a : A;  !!z. z:A ==> B(z) type |] ==> B(a) type"
clasohm@0
    94
  subst_typeL  "[| a = c : A;  !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
clasohm@0
    95
clasohm@0
    96
  subst_elem   "[| a : A;  !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
clasohm@0
    97
  subst_elemL
clasohm@0
    98
    "[| a=c : A;  !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"
clasohm@0
    99
clasohm@0
   100
clasohm@0
   101
  (*The type N -- natural numbers*)
clasohm@0
   102
clasohm@0
   103
  NF "N type"
clasohm@0
   104
  NI0 "0 : N"
clasohm@0
   105
  NI_succ "a : N ==> succ(a) : N"
clasohm@0
   106
  NI_succL  "a = b : N ==> succ(a) = succ(b) : N"
clasohm@0
   107
clasohm@0
   108
  NE
clasohm@0
   109
   "[| p: N;  a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \
clasohm@0
   110
\   ==> rec(p, a, %u v.b(u,v)) : C(p)"
clasohm@0
   111
clasohm@0
   112
  NEL
clasohm@0
   113
   "[| p = q : N;  a = c : C(0);  \
clasohm@0
   114
\      !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] \
clasohm@0
   115
\   ==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)"
clasohm@0
   116
clasohm@0
   117
  NC0
clasohm@0
   118
   "[| a: C(0);  !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] \
clasohm@0
   119
\   ==> rec(0, a, %u v.b(u,v)) = a : C(0)"
clasohm@0
   120
clasohm@0
   121
  NC_succ
clasohm@0
   122
   "[| p: N;  a: C(0);  \
clasohm@0
   123
\       !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>  \
clasohm@0
   124
\   rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))"
clasohm@0
   125
clasohm@0
   126
  (*The fourth Peano axiom.  See page 91 of Martin-Lof's book*)
clasohm@0
   127
  zero_ne_succ
clasohm@0
   128
    "[| a: N;  0 = succ(a) : N |] ==> 0: F"
clasohm@0
   129
clasohm@0
   130
clasohm@0
   131
  (*The Product of a family of types*)
clasohm@0
   132
clasohm@0
   133
  ProdF  "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type"
clasohm@0
   134
clasohm@0
   135
  ProdFL
clasohm@0
   136
   "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> \
clasohm@0
   137
\   PROD x:A.B(x) = PROD x:C.D(x)"
clasohm@0
   138
clasohm@0
   139
  ProdI
clasohm@0
   140
   "[| A type;  !!x. x:A ==> b(x):B(x)|] ==> lam x.b(x) : PROD x:A.B(x)"
clasohm@0
   141
clasohm@0
   142
  ProdIL
clasohm@0
   143
   "[| A type;  !!x. x:A ==> b(x) = c(x) : B(x)|] ==> \
clasohm@0
   144
\   lam x.b(x) = lam x.c(x) : PROD x:A.B(x)"
clasohm@0
   145
clasohm@0
   146
  ProdE  "[| p : PROD x:A.B(x);  a : A |] ==> p`a : B(a)"
clasohm@0
   147
  ProdEL "[| p=q: PROD x:A.B(x);  a=b : A |] ==> p`a = q`b : B(a)"
clasohm@0
   148
clasohm@0
   149
  ProdC
clasohm@0
   150
   "[| a : A;  !!x. x:A ==> b(x) : B(x)|] ==> \
clasohm@0
   151
\   (lam x.b(x)) ` a = b(a) : B(a)"
clasohm@0
   152
clasohm@0
   153
  ProdC2
clasohm@0
   154
   "p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)"
clasohm@0
   155
clasohm@0
   156
clasohm@0
   157
  (*The Sum of a family of types*)
clasohm@0
   158
clasohm@0
   159
  SumF  "[| A type;  !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type"
clasohm@0
   160
  SumFL
clasohm@0
   161
    "[| A = C;  !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A.B(x) = SUM x:C.D(x)"
clasohm@0
   162
clasohm@0
   163
  SumI  "[| a : A;  b : B(a) |] ==> <a,b> : SUM x:A.B(x)"
clasohm@0
   164
  SumIL "[| a=c:A;  b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A.B(x)"
clasohm@0
   165
clasohm@0
   166
  SumE
clasohm@0
   167
    "[| p: SUM x:A.B(x);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] \
clasohm@0
   168
\    ==> split(p, %x y.c(x,y)) : C(p)"
clasohm@0
   169
clasohm@0
   170
  SumEL
clasohm@0
   171
    "[| p=q : SUM x:A.B(x); \
clasohm@0
   172
\       !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] \
clasohm@0
   173
\    ==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)"
clasohm@0
   174
clasohm@0
   175
  SumC
clasohm@0
   176
    "[| a: A;  b: B(a);  !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] \
clasohm@0
   177
\    ==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)"
clasohm@0
   178
clasohm@0
   179
  fst_def   "fst(a) == split(a, %x y.x)"
clasohm@0
   180
  snd_def   "snd(a) == split(a, %x y.y)"
clasohm@0
   181
clasohm@0
   182
clasohm@0
   183
  (*The sum of two types*)
clasohm@0
   184
clasohm@0
   185
  PlusF   "[| A type;  B type |] ==> A+B type"
clasohm@0
   186
  PlusFL  "[| A = C;  B = D |] ==> A+B = C+D"
clasohm@0
   187
clasohm@0
   188
  PlusI_inl   "[| a : A;  B type |] ==> inl(a) : A+B"
clasohm@0
   189
  PlusI_inlL "[| a = c : A;  B type |] ==> inl(a) = inl(c) : A+B"
clasohm@0
   190
clasohm@0
   191
  PlusI_inr   "[| A type;  b : B |] ==> inr(b) : A+B"
clasohm@0
   192
  PlusI_inrL "[| A type;  b = d : B |] ==> inr(b) = inr(d) : A+B"
clasohm@0
   193
clasohm@0
   194
  PlusE
clasohm@0
   195
    "[| p: A+B;  !!x. x:A ==> c(x): C(inl(x));  \
clasohm@0
   196
\                !!y. y:B ==> d(y): C(inr(y)) |] \
clasohm@0
   197
\    ==> when(p, %x.c(x), %y.d(y)) : C(p)"
clasohm@0
   198
clasohm@0
   199
  PlusEL
clasohm@0
   200
    "[| p = q : A+B;  !!x. x: A ==> c(x) = e(x) : C(inl(x));   \
clasohm@0
   201
\                     !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] \
clasohm@0
   202
\    ==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)"
clasohm@0
   203
clasohm@0
   204
  PlusC_inl
clasohm@0
   205
    "[| a: A;  !!x. x:A ==> c(x): C(inl(x));  \
clasohm@0
   206
\              !!y. y:B ==> d(y): C(inr(y)) |] \
clasohm@0
   207
\    ==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))"
clasohm@0
   208
clasohm@0
   209
  PlusC_inr
clasohm@0
   210
    "[| b: B;  !!x. x:A ==> c(x): C(inl(x));  \
clasohm@0
   211
\              !!y. y:B ==> d(y): C(inr(y)) |] \
clasohm@0
   212
\    ==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))"
clasohm@0
   213
clasohm@0
   214
clasohm@0
   215
  (*The type Eq*)
clasohm@0
   216
clasohm@0
   217
  EqF    "[| A type;  a : A;  b : A |] ==> Eq(A,a,b) type"
clasohm@0
   218
  EqFL "[| A=B;  a=c: A;  b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
clasohm@0
   219
  EqI "a = b : A ==> eq : Eq(A,a,b)"
clasohm@0
   220
  EqE "p : Eq(A,a,b) ==> a = b : A"
clasohm@0
   221
clasohm@0
   222
  (*By equality of types, can prove C(p) from C(eq), an elimination rule*)
clasohm@0
   223
  EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
clasohm@0
   224
clasohm@0
   225
  (*The type F*)
clasohm@0
   226
clasohm@0
   227
  FF "F type"
clasohm@0
   228
  FE "[| p: F;  C type |] ==> contr(p) : C"
clasohm@0
   229
  FEL  "[| p = q : F;  C type |] ==> contr(p) = contr(q) : C"
clasohm@0
   230
clasohm@0
   231
  (*The type T
clasohm@0
   232
     Martin-Lof's book (page 68) discusses elimination and computation.
clasohm@0
   233
     Elimination can be derived by computation and equality of types,
clasohm@0
   234
     but with an extra premise C(x) type x:T.
clasohm@0
   235
     Also computation can be derived from elimination. *)
clasohm@0
   236
clasohm@0
   237
  TF "T type"
clasohm@0
   238
  TI "tt : T"
clasohm@0
   239
  TE "[| p : T;  c : C(tt) |] ==> c : C(p)"
clasohm@0
   240
  TEL "[| p = q : T;  c = d : C(tt) |] ==> c = d : C(p)"
clasohm@0
   241
  TC "p : T ==> p = tt : T"
clasohm@0
   242
end
clasohm@0
   243
clasohm@0
   244
clasohm@0
   245
ML
clasohm@0
   246
clasohm@0
   247
val parse_translation =
clasohm@0
   248
  [("@-->", ndependent_tr "Prod"), ("@*", ndependent_tr "Sum")];
clasohm@0
   249
clasohm@0
   250
val print_translation =
clasohm@0
   251
  [("Prod", dependent_tr' ("@PROD", "@-->")),
clasohm@0
   252
   ("Sum", dependent_tr' ("@SUM", "@*"))];
clasohm@0
   253