src/Provers/classical.ML
author clasohm
Thu Sep 16 12:20:38 1993 +0200 (1993-09-16)
changeset 0 a5a9c433f639
child 54 3dea30013b58
permissions -rw-r--r--
Initial revision
clasohm@0
     1
(*  Title: 	Provers/classical
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1992  University of Cambridge
clasohm@0
     5
clasohm@0
     6
Theorem prover for classical reasoning, including predicate calculus, set
clasohm@0
     7
theory, etc.
clasohm@0
     8
clasohm@0
     9
Rules must be classified as intr, elim, safe, hazardous.
clasohm@0
    10
clasohm@0
    11
A rule is unsafe unless it can be applied blindly without harmful results.
clasohm@0
    12
For a rule to be safe, its premises and conclusion should be logically
clasohm@0
    13
equivalent.  There should be no variables in the premises that are not in
clasohm@0
    14
the conclusion.
clasohm@0
    15
*)
clasohm@0
    16
clasohm@0
    17
signature CLASSICAL_DATA =
clasohm@0
    18
  sig
clasohm@0
    19
  val mp: thm    		(* [| P-->Q;  P |] ==> Q *)
clasohm@0
    20
  val not_elim: thm		(* [| ~P;  P |] ==> R *)
clasohm@0
    21
  val swap: thm			(* ~P ==> (~Q ==> P) ==> Q *)
clasohm@0
    22
  val sizef : thm -> int	(* size function for BEST_FIRST *)
clasohm@0
    23
  val hyp_subst_tacs: (int -> tactic) list
clasohm@0
    24
  end;
clasohm@0
    25
clasohm@0
    26
(*Higher precedence than := facilitates use of references*)
clasohm@0
    27
infix 4 addSIs addSEs addSDs addIs addEs addDs;
clasohm@0
    28
clasohm@0
    29
clasohm@0
    30
signature CLASSICAL =
clasohm@0
    31
  sig
clasohm@0
    32
  type claset
clasohm@0
    33
  val empty_cs: claset
clasohm@0
    34
  val addDs : claset * thm list -> claset
clasohm@0
    35
  val addEs : claset * thm list -> claset
clasohm@0
    36
  val addIs : claset * thm list -> claset
clasohm@0
    37
  val addSDs: claset * thm list -> claset
clasohm@0
    38
  val addSEs: claset * thm list -> claset
clasohm@0
    39
  val addSIs: claset * thm list -> claset
clasohm@0
    40
  val print_cs: claset -> unit
clasohm@0
    41
  val rep_claset: claset -> 
clasohm@0
    42
      {safeIs: thm list, safeEs: thm list, hazIs: thm list, hazEs: thm list}
clasohm@0
    43
  val best_tac : claset -> int -> tactic
clasohm@0
    44
  val chain_tac : int -> tactic
clasohm@0
    45
  val contr_tac : int -> tactic
clasohm@0
    46
  val eq_mp_tac: int -> tactic
clasohm@0
    47
  val fast_tac : claset -> int -> tactic
clasohm@0
    48
  val joinrules : thm list * thm list -> (bool * thm) list
clasohm@0
    49
  val mp_tac: int -> tactic
clasohm@0
    50
  val safe_tac : claset -> tactic
clasohm@0
    51
  val safe_step_tac : claset -> int -> tactic
clasohm@0
    52
  val slow_step_tac : claset -> int -> tactic
clasohm@0
    53
  val slow_best_tac : claset -> int -> tactic
clasohm@0
    54
  val slow_tac : claset -> int -> tactic
clasohm@0
    55
  val step_tac : claset -> int -> tactic
clasohm@0
    56
  val swapify : thm list -> thm list
clasohm@0
    57
  val swap_res_tac : thm list -> int -> tactic
clasohm@0
    58
  val inst_step_tac : claset -> int -> tactic
clasohm@0
    59
  end;
clasohm@0
    60
clasohm@0
    61
clasohm@0
    62
functor ClassicalFun(Data: CLASSICAL_DATA): CLASSICAL = 
clasohm@0
    63
struct
clasohm@0
    64
clasohm@0
    65
local open Data in
clasohm@0
    66
clasohm@0
    67
(** Useful tactics for classical reasoning **)
clasohm@0
    68
clasohm@0
    69
val imp_elim = make_elim mp;
clasohm@0
    70
clasohm@0
    71
(*Solve goal that assumes both P and ~P. *)
clasohm@0
    72
val contr_tac = eresolve_tac [not_elim]  THEN'  assume_tac;
clasohm@0
    73
clasohm@0
    74
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
clasohm@0
    75
fun mp_tac i = eresolve_tac ([not_elim,imp_elim]) i  THEN  assume_tac i;
clasohm@0
    76
clasohm@0
    77
(*Like mp_tac but instantiates no variables*)
clasohm@0
    78
fun eq_mp_tac i = ematch_tac ([not_elim,imp_elim]) i  THEN  eq_assume_tac i;
clasohm@0
    79
clasohm@0
    80
(*Creates rules to eliminate ~A, from rules to introduce A*)
clasohm@0
    81
fun swapify intrs = intrs RLN (2, [swap]);
clasohm@0
    82
clasohm@0
    83
(*Uses introduction rules in the normal way, or on negated assumptions,
clasohm@0
    84
  trying rules in order. *)
clasohm@0
    85
fun swap_res_tac rls = 
clasohm@0
    86
    let fun tacf rl = rtac rl ORELSE' etac (rl RSN (2,swap))
clasohm@0
    87
    in  assume_tac ORELSE' contr_tac ORELSE' FIRST' (map tacf rls)
clasohm@0
    88
    end;
clasohm@0
    89
clasohm@0
    90
(*Given assumption P-->Q, reduces subgoal Q to P [deletes the implication!] *)
clasohm@0
    91
fun chain_tac i =
clasohm@0
    92
    eresolve_tac [imp_elim] i  THEN
clasohm@0
    93
    (assume_tac (i+1)  ORELSE  contr_tac (i+1));
clasohm@0
    94
clasohm@0
    95
(*** Classical rule sets ***)
clasohm@0
    96
clasohm@0
    97
type netpair = (int*(bool*thm)) Net.net * (int*(bool*thm)) Net.net;
clasohm@0
    98
clasohm@0
    99
datatype claset =
clasohm@0
   100
  CS of {safeIs		: thm list,
clasohm@0
   101
	 safeEs		: thm list,
clasohm@0
   102
	 hazIs		: thm list,
clasohm@0
   103
	 hazEs		: thm list,
clasohm@0
   104
	 safe0_netpair	: netpair,
clasohm@0
   105
	 safep_netpair	: netpair,
clasohm@0
   106
	 haz_netpair  	: netpair};
clasohm@0
   107
clasohm@0
   108
fun rep_claset (CS{safeIs,safeEs,hazIs,hazEs,...}) = 
clasohm@0
   109
    {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
clasohm@0
   110
clasohm@0
   111
(*For use with biresolve_tac.  Combines intrs with swap to catch negated
clasohm@0
   112
  assumptions; pairs elims with true; sorts. *)
clasohm@0
   113
fun joinrules (intrs,elims) =  
clasohm@0
   114
  sort lessb 
clasohm@0
   115
    (map (pair true) (elims @ swapify intrs)  @
clasohm@0
   116
     map (pair false) intrs);
clasohm@0
   117
clasohm@0
   118
(*Make a claset from the four kinds of rules*)
clasohm@0
   119
fun make_cs {safeIs,safeEs,hazIs,hazEs} =
clasohm@0
   120
  let val (safe0_brls, safep_brls) = (*0 subgoals vs 1 or more*)
clasohm@0
   121
          take_prefix (fn brl => subgoals_of_brl brl=0)
clasohm@0
   122
             (joinrules(safeIs, safeEs))
clasohm@0
   123
  in CS{safeIs = safeIs, 
clasohm@0
   124
        safeEs = safeEs,
clasohm@0
   125
	hazIs = hazIs,
clasohm@0
   126
	hazEs = hazEs,
clasohm@0
   127
	safe0_netpair = build_netpair safe0_brls,
clasohm@0
   128
	safep_netpair = build_netpair safep_brls,
clasohm@0
   129
	haz_netpair = build_netpair (joinrules(hazIs, hazEs))}
clasohm@0
   130
  end;
clasohm@0
   131
clasohm@0
   132
(*** Manipulation of clasets ***)
clasohm@0
   133
clasohm@0
   134
val empty_cs = make_cs{safeIs=[], safeEs=[], hazIs=[], hazEs=[]};
clasohm@0
   135
clasohm@0
   136
fun print_cs (CS{safeIs,safeEs,hazIs,hazEs,...}) =
clasohm@0
   137
 (writeln"Introduction rules";  prths hazIs;
clasohm@0
   138
  writeln"Safe introduction rules";  prths safeIs;
clasohm@0
   139
  writeln"Elimination rules";  prths hazEs;
clasohm@0
   140
  writeln"Safe elimination rules";  prths safeEs;
clasohm@0
   141
  ());
clasohm@0
   142
clasohm@0
   143
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSIs ths =
clasohm@0
   144
  make_cs {safeIs=ths@safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=hazEs};
clasohm@0
   145
clasohm@0
   146
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addSEs ths =
clasohm@0
   147
  make_cs {safeIs=safeIs, safeEs=ths@safeEs, hazIs=hazIs, hazEs=hazEs};
clasohm@0
   148
clasohm@0
   149
fun cs addSDs ths = cs addSEs (map make_elim ths);
clasohm@0
   150
clasohm@0
   151
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addIs ths =
clasohm@0
   152
  make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=ths@hazIs, hazEs=hazEs};
clasohm@0
   153
clasohm@0
   154
fun (CS{safeIs,safeEs,hazIs,hazEs,...}) addEs ths =
clasohm@0
   155
  make_cs {safeIs=safeIs, safeEs=safeEs, hazIs=hazIs, hazEs=ths@hazEs};
clasohm@0
   156
clasohm@0
   157
fun cs addDs ths = cs addEs (map make_elim ths);
clasohm@0
   158
clasohm@0
   159
(*** Simple tactics for theorem proving ***)
clasohm@0
   160
clasohm@0
   161
(*Attack subgoals using safe inferences -- matching, not resolution*)
clasohm@0
   162
fun safe_step_tac (CS{safe0_netpair,safep_netpair,...}) = 
clasohm@0
   163
  FIRST' [eq_assume_tac,
clasohm@0
   164
	  eq_mp_tac,
clasohm@0
   165
	  bimatch_from_nets_tac safe0_netpair,
clasohm@0
   166
	  FIRST' hyp_subst_tacs,
clasohm@0
   167
	  bimatch_from_nets_tac safep_netpair] ;
clasohm@0
   168
clasohm@0
   169
(*Repeatedly attack subgoals using safe inferences -- it's deterministic!*)
clasohm@0
   170
fun safe_tac cs = DETERM (REPEAT_FIRST (safe_step_tac cs));
clasohm@0
   171
clasohm@0
   172
(*These steps could instantiate variables and are therefore unsafe.*)
clasohm@0
   173
fun inst_step_tac (CS{safe0_netpair,safep_netpair,...}) =
clasohm@0
   174
  assume_tac 			  APPEND' 
clasohm@0
   175
  contr_tac 			  APPEND' 
clasohm@0
   176
  biresolve_from_nets_tac safe0_netpair APPEND' 
clasohm@0
   177
  biresolve_from_nets_tac safep_netpair;
clasohm@0
   178
clasohm@0
   179
(*Single step for the prover.  FAILS unless it makes progress. *)
clasohm@0
   180
fun step_tac (cs as (CS{haz_netpair,...})) i = 
clasohm@0
   181
  FIRST [safe_tac cs,
clasohm@0
   182
         inst_step_tac cs i,
clasohm@0
   183
         biresolve_from_nets_tac haz_netpair i];
clasohm@0
   184
clasohm@0
   185
(*Using a "safe" rule to instantiate variables is unsafe.  This tactic
clasohm@0
   186
  allows backtracking from "safe" rules to "unsafe" rules here.*)
clasohm@0
   187
fun slow_step_tac (cs as (CS{haz_netpair,...})) i = 
clasohm@0
   188
    safe_tac cs ORELSE 
clasohm@0
   189
    (inst_step_tac cs i APPEND biresolve_from_nets_tac haz_netpair i);
clasohm@0
   190
clasohm@0
   191
(*** The following tactics all fail unless they solve one goal ***)
clasohm@0
   192
clasohm@0
   193
(*Dumb but fast*)
clasohm@0
   194
fun fast_tac cs = SELECT_GOAL (DEPTH_SOLVE (step_tac cs 1));
clasohm@0
   195
clasohm@0
   196
(*Slower but smarter than fast_tac*)
clasohm@0
   197
fun best_tac cs = 
clasohm@0
   198
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (step_tac cs 1));
clasohm@0
   199
clasohm@0
   200
fun slow_tac cs = SELECT_GOAL (DEPTH_SOLVE (slow_step_tac cs 1));
clasohm@0
   201
clasohm@0
   202
fun slow_best_tac cs = 
clasohm@0
   203
  SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, sizef) (slow_step_tac cs 1));
clasohm@0
   204
clasohm@0
   205
end; 
clasohm@0
   206
end;