src/ZF/Ord.ML
author clasohm
Thu Sep 16 12:20:38 1993 +0200 (1993-09-16)
changeset 0 a5a9c433f639
child 6 8ce8c4d13d4d
permissions -rw-r--r--
Initial revision
clasohm@0
     1
(*  Title: 	ZF/ordinal.thy
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1993  University of Cambridge
clasohm@0
     5
clasohm@0
     6
For ordinal.thy.  Ordinals in Zermelo-Fraenkel Set Theory 
clasohm@0
     7
*)
clasohm@0
     8
clasohm@0
     9
open Ord;
clasohm@0
    10
clasohm@0
    11
(*** Rules for Transset ***)
clasohm@0
    12
clasohm@0
    13
(** Two neat characterisations of Transset **)
clasohm@0
    14
clasohm@0
    15
goalw Ord.thy [Transset_def] "Transset(A) <-> A<=Pow(A)";
clasohm@0
    16
by (fast_tac ZF_cs 1);
clasohm@0
    17
val Transset_iff_Pow = result();
clasohm@0
    18
clasohm@0
    19
goalw Ord.thy [Transset_def] "Transset(A) <-> Union(succ(A)) = A";
clasohm@0
    20
by (fast_tac (eq_cs addSEs [equalityE]) 1);
clasohm@0
    21
val Transset_iff_Union_succ = result();
clasohm@0
    22
clasohm@0
    23
(** Consequences of downwards closure **)
clasohm@0
    24
clasohm@0
    25
goalw Ord.thy [Transset_def]
clasohm@0
    26
    "!!C a b. [| Transset(C); {a,b}: C |] ==> a:C & b: C";
clasohm@0
    27
by (fast_tac ZF_cs 1);
clasohm@0
    28
val Transset_doubleton_D = result();
clasohm@0
    29
clasohm@0
    30
val [prem1,prem2] = goalw Ord.thy [Pair_def]
clasohm@0
    31
    "[| Transset(C); <a,b>: C |] ==> a:C & b: C";
clasohm@0
    32
by (cut_facts_tac [prem2] 1);	
clasohm@0
    33
by (fast_tac (ZF_cs addSDs [prem1 RS Transset_doubleton_D]) 1);
clasohm@0
    34
val Transset_Pair_D = result();
clasohm@0
    35
clasohm@0
    36
val prem1::prems = goal Ord.thy
clasohm@0
    37
    "[| Transset(C); A*B <= C; b: B |] ==> A <= C";
clasohm@0
    38
by (cut_facts_tac prems 1);
clasohm@0
    39
by (fast_tac (ZF_cs addSDs [prem1 RS Transset_Pair_D]) 1);
clasohm@0
    40
val Transset_includes_domain = result();
clasohm@0
    41
clasohm@0
    42
val prem1::prems = goal Ord.thy
clasohm@0
    43
    "[| Transset(C); A*B <= C; a: A |] ==> B <= C";
clasohm@0
    44
by (cut_facts_tac prems 1);
clasohm@0
    45
by (fast_tac (ZF_cs addSDs [prem1 RS Transset_Pair_D]) 1);
clasohm@0
    46
val Transset_includes_range = result();
clasohm@0
    47
clasohm@0
    48
val [prem1,prem2] = goalw (merge_theories(Ord.thy,Sum.thy)) [sum_def]
clasohm@0
    49
    "[| Transset(C); A+B <= C |] ==> A <= C & B <= C";
clasohm@0
    50
br (prem2 RS (Un_subset_iff RS iffD1) RS conjE) 1;
clasohm@0
    51
by (REPEAT (etac (prem1 RS Transset_includes_range) 1
clasohm@0
    52
     ORELSE resolve_tac [conjI, singletonI] 1));
clasohm@0
    53
val Transset_includes_summands = result();
clasohm@0
    54
clasohm@0
    55
val [prem] = goalw (merge_theories(Ord.thy,Sum.thy)) [sum_def]
clasohm@0
    56
    "Transset(C) ==> (A+B) Int C <= (A Int C) + (B Int C)";
clasohm@0
    57
br (Int_Un_distrib RS ssubst) 1;
clasohm@0
    58
by (fast_tac (ZF_cs addSDs [prem RS Transset_Pair_D]) 1);
clasohm@0
    59
val Transset_sum_Int_subset = result();
clasohm@0
    60
clasohm@0
    61
(** Closure properties **)
clasohm@0
    62
clasohm@0
    63
goalw Ord.thy [Transset_def] "Transset(0)";
clasohm@0
    64
by (fast_tac ZF_cs 1);
clasohm@0
    65
val Transset_0 = result();
clasohm@0
    66
clasohm@0
    67
goalw Ord.thy [Transset_def]
clasohm@0
    68
    "!!i j. [| Transset(i);  Transset(j) |] ==> Transset(i Un j)";
clasohm@0
    69
by (fast_tac ZF_cs 1);
clasohm@0
    70
val Transset_Un = result();
clasohm@0
    71
clasohm@0
    72
goalw Ord.thy [Transset_def]
clasohm@0
    73
    "!!i j. [| Transset(i);  Transset(j) |] ==> Transset(i Int j)";
clasohm@0
    74
by (fast_tac ZF_cs 1);
clasohm@0
    75
val Transset_Int = result();
clasohm@0
    76
clasohm@0
    77
goalw Ord.thy [Transset_def] "!!i. Transset(i) ==> Transset(succ(i))";
clasohm@0
    78
by (fast_tac ZF_cs 1);
clasohm@0
    79
val Transset_succ = result();
clasohm@0
    80
clasohm@0
    81
goalw Ord.thy [Transset_def] "!!i. Transset(i) ==> Transset(Pow(i))";
clasohm@0
    82
by (fast_tac ZF_cs 1);
clasohm@0
    83
val Transset_Pow = result();
clasohm@0
    84
clasohm@0
    85
goalw Ord.thy [Transset_def] "!!A. Transset(A) ==> Transset(Union(A))";
clasohm@0
    86
by (fast_tac ZF_cs 1);
clasohm@0
    87
val Transset_Union = result();
clasohm@0
    88
clasohm@0
    89
val [Transprem] = goalw Ord.thy [Transset_def]
clasohm@0
    90
    "[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))";
clasohm@0
    91
by (fast_tac (ZF_cs addEs [Transprem RS bspec RS subsetD]) 1);
clasohm@0
    92
val Transset_Union_family = result();
clasohm@0
    93
clasohm@0
    94
val [prem,Transprem] = goalw Ord.thy [Transset_def]
clasohm@0
    95
    "[| j:A;  !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))";
clasohm@0
    96
by (cut_facts_tac [prem] 1);
clasohm@0
    97
by (fast_tac (ZF_cs addEs [Transprem RS bspec RS subsetD]) 1);
clasohm@0
    98
val Transset_Inter_family = result();
clasohm@0
    99
clasohm@0
   100
(*** Natural Deduction rules for Ord ***)
clasohm@0
   101
clasohm@0
   102
val prems = goalw Ord.thy [Ord_def]
clasohm@0
   103
    "[| Transset(i);  !!x. x:i ==> Transset(x) |]  ==>  Ord(i) ";
clasohm@0
   104
by (REPEAT (ares_tac (prems@[ballI,conjI]) 1));
clasohm@0
   105
val OrdI = result();
clasohm@0
   106
clasohm@0
   107
val [major] = goalw Ord.thy [Ord_def]
clasohm@0
   108
    "Ord(i) ==> Transset(i)";
clasohm@0
   109
by (rtac (major RS conjunct1) 1);
clasohm@0
   110
val Ord_is_Transset = result();
clasohm@0
   111
clasohm@0
   112
val [major,minor] = goalw Ord.thy [Ord_def]
clasohm@0
   113
    "[| Ord(i);  j:i |] ==> Transset(j) ";
clasohm@0
   114
by (rtac (minor RS (major RS conjunct2 RS bspec)) 1);
clasohm@0
   115
val Ord_contains_Transset = result();
clasohm@0
   116
clasohm@0
   117
(*** Lemmas for ordinals ***)
clasohm@0
   118
clasohm@0
   119
goalw Ord.thy [Ord_def,Transset_def] "!!i j. [| Ord(i);  j:i |] ==> Ord(j) ";
clasohm@0
   120
by (fast_tac ZF_cs 1);
clasohm@0
   121
val Ord_in_Ord = result();
clasohm@0
   122
clasohm@0
   123
goal Ord.thy "!!i j. [| Ord(i);  Transset(j);  j<=i |] ==> Ord(j)";
clasohm@0
   124
by (REPEAT (ares_tac [OrdI] 1
clasohm@0
   125
     ORELSE eresolve_tac [Ord_contains_Transset, subsetD] 1));
clasohm@0
   126
val Ord_subset_Ord = result();
clasohm@0
   127
clasohm@0
   128
goalw Ord.thy [Ord_def,Transset_def] "!!i j. [| j:i;  Ord(i) |] ==> j<=i";
clasohm@0
   129
by (fast_tac ZF_cs 1);
clasohm@0
   130
val OrdmemD = result();
clasohm@0
   131
clasohm@0
   132
goal Ord.thy "!!i j k. [| i:j;  j:k;  Ord(k) |] ==> i:k";
clasohm@0
   133
by (REPEAT (ares_tac [OrdmemD RS subsetD] 1));
clasohm@0
   134
val Ord_trans = result();
clasohm@0
   135
clasohm@0
   136
goal Ord.thy "!!i j. [| i:j;  Ord(j) |] ==> succ(i) <= j";
clasohm@0
   137
by (REPEAT (ares_tac [OrdmemD RSN (2,succ_subsetI)] 1));
clasohm@0
   138
val Ord_succ_subsetI = result();
clasohm@0
   139
clasohm@0
   140
clasohm@0
   141
(*** The construction of ordinals: 0, succ, Union ***)
clasohm@0
   142
clasohm@0
   143
goal Ord.thy "Ord(0)";
clasohm@0
   144
by (REPEAT (ares_tac [OrdI,Transset_0] 1 ORELSE etac emptyE 1));
clasohm@0
   145
val Ord_0 = result();
clasohm@0
   146
clasohm@0
   147
goal Ord.thy "!!i. Ord(i) ==> Ord(succ(i))";
clasohm@0
   148
by (REPEAT (ares_tac [OrdI,Transset_succ] 1
clasohm@0
   149
     ORELSE eresolve_tac [succE,ssubst,Ord_is_Transset,
clasohm@0
   150
			  Ord_contains_Transset] 1));
clasohm@0
   151
val Ord_succ = result();
clasohm@0
   152
clasohm@0
   153
val nonempty::prems = goal Ord.thy
clasohm@0
   154
    "[| j:A;  !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))";
clasohm@0
   155
by (rtac (nonempty RS Transset_Inter_family RS OrdI) 1);
clasohm@0
   156
by (rtac Ord_is_Transset 1);
clasohm@0
   157
by (REPEAT (ares_tac ([Ord_contains_Transset,nonempty]@prems) 1
clasohm@0
   158
     ORELSE etac InterD 1));
clasohm@0
   159
val Ord_Inter = result();
clasohm@0
   160
clasohm@0
   161
val jmemA::prems = goal Ord.thy
clasohm@0
   162
    "[| j:A;  !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))";
clasohm@0
   163
by (rtac (jmemA RS RepFunI RS Ord_Inter) 1);
clasohm@0
   164
by (etac RepFunE 1);
clasohm@0
   165
by (etac ssubst 1);
clasohm@0
   166
by (eresolve_tac prems 1);
clasohm@0
   167
val Ord_INT = result();
clasohm@0
   168
clasohm@0
   169
clasohm@0
   170
(*** Natural Deduction rules for Memrel ***)
clasohm@0
   171
clasohm@0
   172
goalw Ord.thy [Memrel_def] "<a,b> : Memrel(A) <-> a:b & a:A & b:A";
clasohm@0
   173
by (fast_tac ZF_cs 1);
clasohm@0
   174
val Memrel_iff = result();
clasohm@0
   175
clasohm@0
   176
val prems = goal Ord.thy "[| a: b;  a: A;  b: A |]  ==>  <a,b> : Memrel(A)";
clasohm@0
   177
by (REPEAT (resolve_tac (prems@[conjI, Memrel_iff RS iffD2]) 1));
clasohm@0
   178
val MemrelI = result();
clasohm@0
   179
clasohm@0
   180
val [major,minor] = goal Ord.thy
clasohm@0
   181
    "[| <a,b> : Memrel(A);  \
clasohm@0
   182
\       [| a: A;  b: A;  a:b |]  ==> P \
clasohm@0
   183
\    |]  ==> P";
clasohm@0
   184
by (rtac (major RS (Memrel_iff RS iffD1) RS conjE) 1);
clasohm@0
   185
by (etac conjE 1);
clasohm@0
   186
by (rtac minor 1);
clasohm@0
   187
by (REPEAT (assume_tac 1));
clasohm@0
   188
val MemrelE = result();
clasohm@0
   189
clasohm@0
   190
(*The membership relation (as a set) is well-founded.
clasohm@0
   191
  Proof idea: show A<=B by applying the foundation axiom to A-B *)
clasohm@0
   192
goalw Ord.thy [wf_def] "wf(Memrel(A))";
clasohm@0
   193
by (EVERY1 [rtac (foundation RS disjE RS allI),
clasohm@0
   194
	    etac disjI1,
clasohm@0
   195
	    etac bexE, 
clasohm@0
   196
	    rtac (impI RS allI RS bexI RS disjI2),
clasohm@0
   197
	    etac MemrelE,
clasohm@0
   198
	    etac bspec,
clasohm@0
   199
	    REPEAT o assume_tac]);
clasohm@0
   200
val wf_Memrel = result();
clasohm@0
   201
clasohm@0
   202
(*** Transfinite induction ***)
clasohm@0
   203
clasohm@0
   204
(*Epsilon induction over a transitive set*)
clasohm@0
   205
val major::prems = goalw Ord.thy [Transset_def]
clasohm@0
   206
    "[| i: k;  Transset(k);                          \
clasohm@0
   207
\       !!x.[| x: k;  ALL y:x. P(y) |] ==> P(x) \
clasohm@0
   208
\    |]  ==>  P(i)";
clasohm@0
   209
by (rtac (major RS (wf_Memrel RS wf_induct2)) 1);
clasohm@0
   210
by (fast_tac (ZF_cs addEs [MemrelE]) 1);
clasohm@0
   211
by (resolve_tac prems 1);
clasohm@0
   212
by (assume_tac 1);
clasohm@0
   213
by (cut_facts_tac prems 1);
clasohm@0
   214
by (fast_tac (ZF_cs addIs [MemrelI]) 1);
clasohm@0
   215
val Transset_induct = result();
clasohm@0
   216
clasohm@0
   217
(*Induction over an ordinal*)
clasohm@0
   218
val Ord_induct = Ord_is_Transset RSN (2, Transset_induct);
clasohm@0
   219
clasohm@0
   220
(*Induction over the class of ordinals -- a useful corollary of Ord_induct*)
clasohm@0
   221
val [major,indhyp] = goal Ord.thy
clasohm@0
   222
    "[| Ord(i); \
clasohm@0
   223
\       !!x.[| Ord(x);  ALL y:x. P(y) |] ==> P(x) \
clasohm@0
   224
\    |]  ==>  P(i)";
clasohm@0
   225
by (rtac (major RS Ord_succ RS (succI1 RS Ord_induct)) 1);
clasohm@0
   226
by (rtac indhyp 1);
clasohm@0
   227
by (rtac (major RS Ord_succ RS Ord_in_Ord) 1);
clasohm@0
   228
by (REPEAT (assume_tac 1));
clasohm@0
   229
val trans_induct = result();
clasohm@0
   230
clasohm@0
   231
(*Perform induction on i, then prove the Ord(i) subgoal using prems. *)
clasohm@0
   232
fun trans_ind_tac a prems i = 
clasohm@0
   233
    EVERY [res_inst_tac [("i",a)] trans_induct i,
clasohm@0
   234
	   rename_last_tac a ["1"] (i+1),
clasohm@0
   235
	   ares_tac prems i];
clasohm@0
   236
clasohm@0
   237
clasohm@0
   238
(*** Fundamental properties of the epsilon ordering (< on ordinals) ***)
clasohm@0
   239
clasohm@0
   240
(*Finds contradictions for the following proof*)
clasohm@0
   241
val Ord_trans_tac = EVERY' [etac notE, etac Ord_trans, REPEAT o atac];
clasohm@0
   242
clasohm@0
   243
(** Proving that "member" is a linear ordering on the ordinals **)
clasohm@0
   244
clasohm@0
   245
val prems = goal Ord.thy
clasohm@0
   246
    "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)";
clasohm@0
   247
by (trans_ind_tac "i" prems 1);
clasohm@0
   248
by (rtac (impI RS allI) 1);
clasohm@0
   249
by (trans_ind_tac "j" [] 1);
clasohm@0
   250
by (DEPTH_SOLVE (swap_res_tac [disjCI,equalityI,subsetI] 1
clasohm@0
   251
     ORELSE ball_tac 1
clasohm@0
   252
     ORELSE eresolve_tac [impE,disjE,allE] 1 
clasohm@0
   253
     ORELSE hyp_subst_tac 1
clasohm@0
   254
     ORELSE Ord_trans_tac 1));
clasohm@0
   255
val Ord_linear_lemma = result();
clasohm@0
   256
clasohm@0
   257
val ordi::ordj::prems = goal Ord.thy
clasohm@0
   258
    "[| Ord(i);  Ord(j);  i:j ==> P;  i=j ==> P;  j:i ==> P |] \
clasohm@0
   259
\    ==> P";
clasohm@0
   260
by (rtac (ordi RS Ord_linear_lemma RS spec RS impE) 1);
clasohm@0
   261
by (rtac ordj 1);
clasohm@0
   262
by (REPEAT (eresolve_tac (prems@[asm_rl,disjE]) 1)); 
clasohm@0
   263
val Ord_linear = result();
clasohm@0
   264
clasohm@0
   265
val prems = goal Ord.thy
clasohm@0
   266
    "[| Ord(i);  Ord(j);  i<=j ==> P;  j<=i ==> P |] \
clasohm@0
   267
\    ==> P";
clasohm@0
   268
by (res_inst_tac [("i","i"),("j","j")] Ord_linear 1);
clasohm@0
   269
by (DEPTH_SOLVE (ares_tac (prems@[subset_refl]) 1
clasohm@0
   270
          ORELSE eresolve_tac [asm_rl,OrdmemD,ssubst] 1));
clasohm@0
   271
val Ord_subset = result();
clasohm@0
   272
clasohm@0
   273
goal Ord.thy "!!i j. [| j<=i;  ~ i<=j;  Ord(i);  Ord(j) |] ==> j:i";
clasohm@0
   274
by (etac Ord_linear 1);
clasohm@0
   275
by (REPEAT (ares_tac [subset_refl] 1
clasohm@0
   276
     ORELSE eresolve_tac [notE,OrdmemD,ssubst] 1));
clasohm@0
   277
val Ord_member = result();
clasohm@0
   278
clasohm@0
   279
val [prem] = goal Ord.thy "Ord(i) ==> 0: succ(i)";
clasohm@0
   280
by (rtac (empty_subsetI RS Ord_member) 1);
clasohm@0
   281
by (fast_tac ZF_cs 1);
clasohm@0
   282
by (rtac (prem RS Ord_succ) 1);
clasohm@0
   283
by (rtac Ord_0 1);
clasohm@0
   284
val Ord_0_mem_succ = result();
clasohm@0
   285
clasohm@0
   286
goal Ord.thy "!!i j. [| Ord(i);  Ord(j) |] ==> j:i <-> j<=i & ~(i<=j)";
clasohm@0
   287
by (rtac iffI 1);
clasohm@0
   288
by (rtac conjI 1);
clasohm@0
   289
by (etac OrdmemD 1);
clasohm@0
   290
by (rtac (mem_anti_refl RS notI) 2);
clasohm@0
   291
by (etac subsetD 2);
clasohm@0
   292
by (REPEAT (eresolve_tac [asm_rl, conjE, Ord_member] 1));
clasohm@0
   293
val Ord_member_iff = result();
clasohm@0
   294
clasohm@0
   295
goal Ord.thy "!!i. Ord(i) ==> 0:i  <-> ~ i=0";
clasohm@0
   296
be (Ord_0 RSN (2,Ord_member_iff) RS iff_trans) 1;
clasohm@0
   297
by (fast_tac eq_cs 1);
clasohm@0
   298
val Ord_0_member_iff = result();
clasohm@0
   299
clasohm@0
   300
(** For ordinals, i: succ(j) means 'less-than or equals' **)
clasohm@0
   301
clasohm@0
   302
goal Ord.thy "!!i j. [| j<=i;  Ord(i);  Ord(j) |] ==> j : succ(i)";
clasohm@0
   303
by (rtac Ord_member 1);
clasohm@0
   304
by (REPEAT (ares_tac [Ord_succ] 3));
clasohm@0
   305
by (rtac (mem_anti_refl RS notI) 2);
clasohm@0
   306
by (etac subsetD 2);
clasohm@0
   307
by (ALLGOALS (fast_tac ZF_cs));
clasohm@0
   308
val member_succI = result();
clasohm@0
   309
clasohm@0
   310
goalw Ord.thy [Transset_def,Ord_def]
clasohm@0
   311
    "!!i j. [| i : succ(j);  Ord(j) |] ==> i<=j";
clasohm@0
   312
by (fast_tac ZF_cs 1);
clasohm@0
   313
val member_succD = result();
clasohm@0
   314
clasohm@0
   315
goal Ord.thy "!!i j. [| Ord(i);  Ord(j) |] ==> j:succ(i) <-> j<=i";
clasohm@0
   316
by (fast_tac (subset_cs addSEs [member_succI, member_succD]) 1);
clasohm@0
   317
val member_succ_iff = result();
clasohm@0
   318
clasohm@0
   319
goal Ord.thy
clasohm@0
   320
    "!!i j. [| Ord(i);  Ord(j) |] ==> i<=succ(j) <-> i<=j | i=succ(j)";
clasohm@0
   321
by (ASM_SIMP_TAC (ZF_ss addrews [member_succ_iff RS iff_sym, Ord_succ]) 1);
clasohm@0
   322
by (fast_tac ZF_cs 1);
clasohm@0
   323
val subset_succ_iff = result();
clasohm@0
   324
clasohm@0
   325
goal Ord.thy "!!i j. [| i:succ(j);  j:k;  Ord(k) |] ==> i:k";
clasohm@0
   326
by (fast_tac (ZF_cs addEs [Ord_trans]) 1);
clasohm@0
   327
val Ord_trans1 = result();
clasohm@0
   328
clasohm@0
   329
goal Ord.thy "!!i j. [| i:j;  j:succ(k);  Ord(k) |] ==> i:k";
clasohm@0
   330
by (fast_tac (ZF_cs addEs [Ord_trans]) 1);
clasohm@0
   331
val Ord_trans2 = result();
clasohm@0
   332
clasohm@0
   333
goal Ord.thy "!!i jk. [| i:j;  j<=k;  Ord(k) |] ==> i:k";
clasohm@0
   334
by (fast_tac (ZF_cs addEs [Ord_trans]) 1);
clasohm@0
   335
val Ord_transsub2 = result();
clasohm@0
   336
clasohm@0
   337
goal Ord.thy "!!i j. [| i:j;  Ord(j) |] ==> succ(i) : succ(j)";
clasohm@0
   338
by (rtac member_succI 1);
clasohm@0
   339
by (REPEAT (ares_tac [subsetI,Ord_succ,Ord_in_Ord] 1   
clasohm@0
   340
     ORELSE eresolve_tac [succE,Ord_trans,ssubst] 1));
clasohm@0
   341
val succ_mem_succI = result();
clasohm@0
   342
clasohm@0
   343
goal Ord.thy "!!i j. [| succ(i) : succ(j);  Ord(j) |] ==> i:j";
clasohm@0
   344
by (REPEAT (eresolve_tac [asm_rl, make_elim member_succD, succ_subsetE] 1));
clasohm@0
   345
val succ_mem_succE = result();
clasohm@0
   346
clasohm@0
   347
goal Ord.thy "!!i j. Ord(j) ==> succ(i) : succ(j) <-> i:j";
clasohm@0
   348
by (REPEAT (ares_tac [iffI,succ_mem_succI,succ_mem_succE] 1));
clasohm@0
   349
val succ_mem_succ_iff = result();
clasohm@0
   350
clasohm@0
   351
goal Ord.thy "!!i j. [| i<=j;  Ord(i);  Ord(j) |] ==> succ(i) <= succ(j)";
clasohm@0
   352
by (rtac (member_succI RS succ_mem_succI RS member_succD) 1);
clasohm@0
   353
by (REPEAT (ares_tac [Ord_succ] 1));
clasohm@0
   354
val Ord_succ_mono = result();
clasohm@0
   355
clasohm@0
   356
goal Ord.thy "!!i j k. [| i:k;  j:k;  Ord(k) |] ==> i Un j : k";
clasohm@0
   357
by (res_inst_tac [("i","i"),("j","j")] Ord_subset 1);
clasohm@0
   358
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));
clasohm@0
   359
by (ASM_SIMP_TAC (ZF_ss addrews [subset_Un_iff RS iffD1]) 1);
clasohm@0
   360
by (rtac (Un_commute RS ssubst) 1);
clasohm@0
   361
by (ASM_SIMP_TAC (ZF_ss addrews [subset_Un_iff RS iffD1]) 1);
clasohm@0
   362
val Ord_member_UnI = result();
clasohm@0
   363
clasohm@0
   364
goal Ord.thy "!!i j k. [| i:k;  j:k;  Ord(k) |] ==> i Int j : k";
clasohm@0
   365
by (res_inst_tac [("i","i"),("j","j")] Ord_subset 1);
clasohm@0
   366
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));
clasohm@0
   367
by (ASM_SIMP_TAC (ZF_ss addrews [subset_Int_iff RS iffD1]) 1);
clasohm@0
   368
by (rtac (Int_commute RS ssubst) 1);
clasohm@0
   369
by (ASM_SIMP_TAC (ZF_ss addrews [subset_Int_iff RS iffD1]) 1);
clasohm@0
   370
val Ord_member_IntI = result();
clasohm@0
   371
clasohm@0
   372
clasohm@0
   373
(*** Results about limits ***)
clasohm@0
   374
clasohm@0
   375
val prems = goal Ord.thy "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))";
clasohm@0
   376
by (rtac (Ord_is_Transset RS Transset_Union_family RS OrdI) 1);
clasohm@0
   377
by (REPEAT (etac UnionE 1 ORELSE ares_tac ([Ord_contains_Transset]@prems) 1));
clasohm@0
   378
val Ord_Union = result();
clasohm@0
   379
clasohm@0
   380
val prems = goal Ord.thy "[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))";
clasohm@0
   381
by (rtac Ord_Union 1);
clasohm@0
   382
by (etac RepFunE 1);
clasohm@0
   383
by (etac ssubst 1);
clasohm@0
   384
by (eresolve_tac prems 1);
clasohm@0
   385
val Ord_UN = result();
clasohm@0
   386
clasohm@0
   387
(*The upper bound must be a successor ordinal --
clasohm@0
   388
  consider that (UN i:nat.i)=nat although nat is an upper bound of each i*)
clasohm@0
   389
val [ordi,limit] = goal Ord.thy
clasohm@0
   390
    "[| Ord(i);  !!y. y:A ==> f(y): succ(i) |] ==> (UN y:A. f(y)) : succ(i)";
clasohm@0
   391
by (rtac (member_succD RS UN_least RS member_succI) 1);
clasohm@0
   392
by (REPEAT (ares_tac [ordi, Ord_UN, ordi RS Ord_succ RS Ord_in_Ord,
clasohm@0
   393
		      limit] 1));
clasohm@0
   394
val sup_least = result();
clasohm@0
   395
clasohm@0
   396
val [jmemi,ordi,limit] = goal Ord.thy
clasohm@0
   397
    "[| j: i;  Ord(i);  !!y. y:A ==> f(y): j |] ==> (UN y:A. succ(f(y))) : i";
clasohm@0
   398
by (cut_facts_tac [jmemi RS (ordi RS Ord_in_Ord)] 1);
clasohm@0
   399
by (rtac (sup_least RS Ord_trans2) 1);
clasohm@0
   400
by (REPEAT (ares_tac [jmemi, ordi, succ_mem_succI, limit] 1));
clasohm@0
   401
val sup_least2 = result();
clasohm@0
   402
clasohm@0
   403
goal Ord.thy "!!i. Ord(i) ==> (UN y:i. succ(y)) = i";
clasohm@0
   404
by (fast_tac (eq_cs addSEs [Ord_trans1]) 1);
clasohm@0
   405
val Ord_equality = result();
clasohm@0
   406
clasohm@0
   407
(*Holds for all transitive sets, not just ordinals*)
clasohm@0
   408
goal Ord.thy "!!i. Ord(i) ==> Union(i) <= i";
clasohm@0
   409
by (fast_tac (ZF_cs addSEs [Ord_trans]) 1);
clasohm@0
   410
val Ord_Union_subset = result();