src/HOL/Metis_Examples/Tarski.thy
author wenzelm
Mon Feb 08 21:28:27 2010 +0100 (2010-02-08)
changeset 35054 a5db9779b026
parent 33027 9cf389429f6d
child 35416 d8d7d1b785af
permissions -rw-r--r--
modernized some syntax translations;
paulson@23449
     1
(*  Title:      HOL/MetisTest/Tarski.thy
paulson@23449
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@23449
     3
wenzelm@32960
     4
Testing the metis method.
paulson@23449
     5
*)
paulson@23449
     6
paulson@23449
     7
header {* The Full Theorem of Tarski *}
paulson@23449
     8
haftmann@27368
     9
theory Tarski
haftmann@27368
    10
imports Main FuncSet
haftmann@27368
    11
begin
paulson@23449
    12
paulson@23449
    13
(*Many of these higher-order problems appear to be impossible using the
paulson@23449
    14
current linkup. They often seem to need either higher-order unification
paulson@23449
    15
or explicit reasoning about connectives such as conjunction. The numerous
paulson@23449
    16
set comprehensions are to blame.*)
paulson@23449
    17
paulson@23449
    18
paulson@23449
    19
record 'a potype =
paulson@23449
    20
  pset  :: "'a set"
paulson@23449
    21
  order :: "('a * 'a) set"
paulson@23449
    22
paulson@23449
    23
constdefs
paulson@23449
    24
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
paulson@23449
    25
  "monotone f A r == \<forall>x\<in>A. \<forall>y\<in>A. (x, y): r --> ((f x), (f y)) : r"
paulson@23449
    26
paulson@23449
    27
  least :: "['a => bool, 'a potype] => 'a"
paulson@23449
    28
  "least P po == @ x. x: pset po & P x &
paulson@23449
    29
                       (\<forall>y \<in> pset po. P y --> (x,y): order po)"
paulson@23449
    30
paulson@23449
    31
  greatest :: "['a => bool, 'a potype] => 'a"
paulson@23449
    32
  "greatest P po == @ x. x: pset po & P x &
paulson@23449
    33
                          (\<forall>y \<in> pset po. P y --> (y,x): order po)"
paulson@23449
    34
paulson@23449
    35
  lub  :: "['a set, 'a potype] => 'a"
paulson@23449
    36
  "lub S po == least (%x. \<forall>y\<in>S. (y,x): order po) po"
paulson@23449
    37
paulson@23449
    38
  glb  :: "['a set, 'a potype] => 'a"
paulson@23449
    39
  "glb S po == greatest (%x. \<forall>y\<in>S. (x,y): order po) po"
paulson@23449
    40
paulson@23449
    41
  isLub :: "['a set, 'a potype, 'a] => bool"
paulson@23449
    42
  "isLub S po == %L. (L: pset po & (\<forall>y\<in>S. (y,L): order po) &
paulson@23449
    43
                   (\<forall>z\<in>pset po. (\<forall>y\<in>S. (y,z): order po) --> (L,z): order po))"
paulson@23449
    44
paulson@23449
    45
  isGlb :: "['a set, 'a potype, 'a] => bool"
paulson@23449
    46
  "isGlb S po == %G. (G: pset po & (\<forall>y\<in>S. (G,y): order po) &
paulson@23449
    47
                 (\<forall>z \<in> pset po. (\<forall>y\<in>S. (z,y): order po) --> (z,G): order po))"
paulson@23449
    48
paulson@23449
    49
  "fix"    :: "[('a => 'a), 'a set] => 'a set"
paulson@23449
    50
  "fix f A  == {x. x: A & f x = x}"
paulson@23449
    51
paulson@23449
    52
  interval :: "[('a*'a) set,'a, 'a ] => 'a set"
paulson@23449
    53
  "interval r a b == {x. (a,x): r & (x,b): r}"
paulson@23449
    54
paulson@23449
    55
constdefs
paulson@23449
    56
  Bot :: "'a potype => 'a"
paulson@23449
    57
  "Bot po == least (%x. True) po"
paulson@23449
    58
paulson@23449
    59
  Top :: "'a potype => 'a"
paulson@23449
    60
  "Top po == greatest (%x. True) po"
paulson@23449
    61
paulson@23449
    62
  PartialOrder :: "('a potype) set"
nipkow@30198
    63
  "PartialOrder == {P. refl_on (pset P) (order P) & antisym (order P) &
paulson@23449
    64
                       trans (order P)}"
paulson@23449
    65
paulson@23449
    66
  CompleteLattice :: "('a potype) set"
paulson@23449
    67
  "CompleteLattice == {cl. cl: PartialOrder &
paulson@23449
    68
                        (\<forall>S. S \<subseteq> pset cl --> (\<exists>L. isLub S cl L)) &
paulson@23449
    69
                        (\<forall>S. S \<subseteq> pset cl --> (\<exists>G. isGlb S cl G))}"
paulson@23449
    70
paulson@23449
    71
  induced :: "['a set, ('a * 'a) set] => ('a *'a)set"
paulson@23449
    72
  "induced A r == {(a,b). a : A & b: A & (a,b): r}"
paulson@23449
    73
paulson@23449
    74
constdefs
paulson@23449
    75
  sublattice :: "('a potype * 'a set)set"
paulson@23449
    76
  "sublattice ==
paulson@23449
    77
      SIGMA cl: CompleteLattice.
paulson@23449
    78
          {S. S \<subseteq> pset cl &
paulson@23449
    79
           (| pset = S, order = induced S (order cl) |): CompleteLattice }"
paulson@23449
    80
wenzelm@35054
    81
abbreviation
wenzelm@35054
    82
  sublattice_syntax :: "['a set, 'a potype] => bool" ("_ <<= _" [51, 50] 50)
wenzelm@35054
    83
  where "S <<= cl \<equiv> S : sublattice `` {cl}"
paulson@23449
    84
paulson@23449
    85
constdefs
paulson@23449
    86
  dual :: "'a potype => 'a potype"
paulson@23449
    87
  "dual po == (| pset = pset po, order = converse (order po) |)"
paulson@23449
    88
haftmann@27681
    89
locale PO =
paulson@23449
    90
  fixes cl :: "'a potype"
paulson@23449
    91
    and A  :: "'a set"
paulson@23449
    92
    and r  :: "('a * 'a) set"
paulson@23449
    93
  assumes cl_po:  "cl : PartialOrder"
paulson@23449
    94
  defines A_def: "A == pset cl"
paulson@23449
    95
     and  r_def: "r == order cl"
paulson@23449
    96
haftmann@27681
    97
locale CL = PO +
paulson@23449
    98
  assumes cl_co:  "cl : CompleteLattice"
paulson@23449
    99
haftmann@27681
   100
definition CLF_set :: "('a potype * ('a => 'a)) set" where
haftmann@27681
   101
  "CLF_set = (SIGMA cl: CompleteLattice.
haftmann@27681
   102
            {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)})"
haftmann@27681
   103
haftmann@27681
   104
locale CLF = CL +
paulson@23449
   105
  fixes f :: "'a => 'a"
paulson@23449
   106
    and P :: "'a set"
haftmann@27681
   107
  assumes f_cl:  "(cl,f) : CLF_set" (*was the equivalent "f : CLF``{cl}"*)
paulson@23449
   108
  defines P_def: "P == fix f A"
paulson@23449
   109
paulson@23449
   110
haftmann@27681
   111
locale Tarski = CLF +
paulson@23449
   112
  fixes Y     :: "'a set"
paulson@23449
   113
    and intY1 :: "'a set"
paulson@23449
   114
    and v     :: "'a"
paulson@23449
   115
  assumes
paulson@23449
   116
    Y_ss: "Y \<subseteq> P"
paulson@23449
   117
  defines
paulson@23449
   118
    intY1_def: "intY1 == interval r (lub Y cl) (Top cl)"
paulson@23449
   119
    and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r &
paulson@23449
   120
                             x: intY1}
paulson@23449
   121
                      (| pset=intY1, order=induced intY1 r|)"
paulson@23449
   122
paulson@23449
   123
paulson@23449
   124
subsection {* Partial Order *}
paulson@23449
   125
nipkow@30198
   126
lemma (in PO) PO_imp_refl_on: "refl_on A r"
paulson@23449
   127
apply (insert cl_po)
paulson@23449
   128
apply (simp add: PartialOrder_def A_def r_def)
paulson@23449
   129
done
paulson@23449
   130
paulson@23449
   131
lemma (in PO) PO_imp_sym: "antisym r"
paulson@23449
   132
apply (insert cl_po)
paulson@23449
   133
apply (simp add: PartialOrder_def r_def)
paulson@23449
   134
done
paulson@23449
   135
paulson@23449
   136
lemma (in PO) PO_imp_trans: "trans r"
paulson@23449
   137
apply (insert cl_po)
paulson@23449
   138
apply (simp add: PartialOrder_def r_def)
paulson@23449
   139
done
paulson@23449
   140
paulson@23449
   141
lemma (in PO) reflE: "x \<in> A ==> (x, x) \<in> r"
paulson@23449
   142
apply (insert cl_po)
nipkow@30198
   143
apply (simp add: PartialOrder_def refl_on_def A_def r_def)
paulson@23449
   144
done
paulson@23449
   145
paulson@23449
   146
lemma (in PO) antisymE: "[| (a, b) \<in> r; (b, a) \<in> r |] ==> a = b"
paulson@23449
   147
apply (insert cl_po)
paulson@23449
   148
apply (simp add: PartialOrder_def antisym_def r_def)
paulson@23449
   149
done
paulson@23449
   150
paulson@23449
   151
lemma (in PO) transE: "[| (a, b) \<in> r; (b, c) \<in> r|] ==> (a,c) \<in> r"
paulson@23449
   152
apply (insert cl_po)
paulson@23449
   153
apply (simp add: PartialOrder_def r_def)
paulson@23449
   154
apply (unfold trans_def, fast)
paulson@23449
   155
done
paulson@23449
   156
paulson@23449
   157
lemma (in PO) monotoneE:
paulson@23449
   158
     "[| monotone f A r;  x \<in> A; y \<in> A; (x, y) \<in> r |] ==> (f x, f y) \<in> r"
paulson@23449
   159
by (simp add: monotone_def)
paulson@23449
   160
paulson@23449
   161
lemma (in PO) po_subset_po:
paulson@23449
   162
     "S \<subseteq> A ==> (| pset = S, order = induced S r |) \<in> PartialOrder"
paulson@23449
   163
apply (simp (no_asm) add: PartialOrder_def)
paulson@23449
   164
apply auto
paulson@23449
   165
-- {* refl *}
nipkow@30198
   166
apply (simp add: refl_on_def induced_def)
paulson@23449
   167
apply (blast intro: reflE)
paulson@23449
   168
-- {* antisym *}
paulson@23449
   169
apply (simp add: antisym_def induced_def)
paulson@23449
   170
apply (blast intro: antisymE)
paulson@23449
   171
-- {* trans *}
paulson@23449
   172
apply (simp add: trans_def induced_def)
paulson@23449
   173
apply (blast intro: transE)
paulson@23449
   174
done
paulson@23449
   175
paulson@23449
   176
lemma (in PO) indE: "[| (x, y) \<in> induced S r; S \<subseteq> A |] ==> (x, y) \<in> r"
paulson@23449
   177
by (simp add: add: induced_def)
paulson@23449
   178
paulson@23449
   179
lemma (in PO) indI: "[| (x, y) \<in> r; x \<in> S; y \<in> S |] ==> (x, y) \<in> induced S r"
paulson@23449
   180
by (simp add: add: induced_def)
paulson@23449
   181
paulson@23449
   182
lemma (in CL) CL_imp_ex_isLub: "S \<subseteq> A ==> \<exists>L. isLub S cl L"
paulson@23449
   183
apply (insert cl_co)
paulson@23449
   184
apply (simp add: CompleteLattice_def A_def)
paulson@23449
   185
done
paulson@23449
   186
paulson@23449
   187
declare (in CL) cl_co [simp]
paulson@23449
   188
paulson@23449
   189
lemma isLub_lub: "(\<exists>L. isLub S cl L) = isLub S cl (lub S cl)"
paulson@23449
   190
by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric])
paulson@23449
   191
paulson@23449
   192
lemma isGlb_glb: "(\<exists>G. isGlb S cl G) = isGlb S cl (glb S cl)"
paulson@23449
   193
by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric])
paulson@23449
   194
paulson@23449
   195
lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)"
paulson@23449
   196
by (simp add: isLub_def isGlb_def dual_def converse_def)
paulson@23449
   197
paulson@23449
   198
lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)"
paulson@23449
   199
by (simp add: isLub_def isGlb_def dual_def converse_def)
paulson@23449
   200
paulson@23449
   201
lemma (in PO) dualPO: "dual cl \<in> PartialOrder"
paulson@23449
   202
apply (insert cl_po)
nipkow@30198
   203
apply (simp add: PartialOrder_def dual_def refl_on_converse
paulson@23449
   204
                 trans_converse antisym_converse)
paulson@23449
   205
done
paulson@23449
   206
paulson@23449
   207
lemma Rdual:
paulson@23449
   208
     "\<forall>S. (S \<subseteq> A -->( \<exists>L. isLub S (| pset = A, order = r|) L))
paulson@23449
   209
      ==> \<forall>S. (S \<subseteq> A --> (\<exists>G. isGlb S (| pset = A, order = r|) G))"
paulson@23449
   210
apply safe
paulson@23449
   211
apply (rule_tac x = "lub {y. y \<in> A & (\<forall>k \<in> S. (y, k) \<in> r)}
paulson@23449
   212
                      (|pset = A, order = r|) " in exI)
paulson@23449
   213
apply (drule_tac x = "{y. y \<in> A & (\<forall>k \<in> S. (y,k) \<in> r) }" in spec)
paulson@23449
   214
apply (drule mp, fast)
paulson@23449
   215
apply (simp add: isLub_lub isGlb_def)
paulson@23449
   216
apply (simp add: isLub_def, blast)
paulson@23449
   217
done
paulson@23449
   218
paulson@23449
   219
lemma lub_dual_glb: "lub S cl = glb S (dual cl)"
paulson@23449
   220
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
paulson@23449
   221
paulson@23449
   222
lemma glb_dual_lub: "glb S cl = lub S (dual cl)"
paulson@23449
   223
by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def)
paulson@23449
   224
paulson@23449
   225
lemma CL_subset_PO: "CompleteLattice \<subseteq> PartialOrder"
paulson@23449
   226
by (simp add: PartialOrder_def CompleteLattice_def, fast)
paulson@23449
   227
paulson@23449
   228
lemmas CL_imp_PO = CL_subset_PO [THEN subsetD]
paulson@23449
   229
nipkow@30198
   230
declare PO.PO_imp_refl_on  [OF PO.intro [OF CL_imp_PO], simp]
haftmann@27681
   231
declare PO.PO_imp_sym   [OF PO.intro [OF CL_imp_PO], simp]
haftmann@27681
   232
declare PO.PO_imp_trans [OF PO.intro [OF CL_imp_PO], simp]
paulson@23449
   233
nipkow@30198
   234
lemma (in CL) CO_refl_on: "refl_on A r"
nipkow@30198
   235
by (rule PO_imp_refl_on)
paulson@23449
   236
paulson@23449
   237
lemma (in CL) CO_antisym: "antisym r"
paulson@23449
   238
by (rule PO_imp_sym)
paulson@23449
   239
paulson@23449
   240
lemma (in CL) CO_trans: "trans r"
paulson@23449
   241
by (rule PO_imp_trans)
paulson@23449
   242
paulson@23449
   243
lemma CompleteLatticeI:
paulson@23449
   244
     "[| po \<in> PartialOrder; (\<forall>S. S \<subseteq> pset po --> (\<exists>L. isLub S po L));
paulson@23449
   245
         (\<forall>S. S \<subseteq> pset po --> (\<exists>G. isGlb S po G))|]
paulson@23449
   246
      ==> po \<in> CompleteLattice"
paulson@23449
   247
apply (unfold CompleteLattice_def, blast)
paulson@23449
   248
done
paulson@23449
   249
paulson@23449
   250
lemma (in CL) CL_dualCL: "dual cl \<in> CompleteLattice"
paulson@23449
   251
apply (insert cl_co)
paulson@23449
   252
apply (simp add: CompleteLattice_def dual_def)
paulson@23449
   253
apply (fold dual_def)
paulson@23449
   254
apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric]
paulson@23449
   255
                 dualPO)
paulson@23449
   256
done
paulson@23449
   257
paulson@23449
   258
lemma (in PO) dualA_iff: "pset (dual cl) = pset cl"
paulson@23449
   259
by (simp add: dual_def)
paulson@23449
   260
paulson@23449
   261
lemma (in PO) dualr_iff: "((x, y) \<in> (order(dual cl))) = ((y, x) \<in> order cl)"
paulson@23449
   262
by (simp add: dual_def)
paulson@23449
   263
paulson@23449
   264
lemma (in PO) monotone_dual:
paulson@23449
   265
     "monotone f (pset cl) (order cl) 
paulson@23449
   266
     ==> monotone f (pset (dual cl)) (order(dual cl))"
paulson@23449
   267
by (simp add: monotone_def dualA_iff dualr_iff)
paulson@23449
   268
paulson@23449
   269
lemma (in PO) interval_dual:
paulson@23449
   270
     "[| x \<in> A; y \<in> A|] ==> interval r x y = interval (order(dual cl)) y x"
paulson@23449
   271
apply (simp add: interval_def dualr_iff)
paulson@23449
   272
apply (fold r_def, fast)
paulson@23449
   273
done
paulson@23449
   274
paulson@23449
   275
lemma (in PO) interval_not_empty:
paulson@23449
   276
     "[| trans r; interval r a b \<noteq> {} |] ==> (a, b) \<in> r"
paulson@23449
   277
apply (simp add: interval_def)
paulson@23449
   278
apply (unfold trans_def, blast)
paulson@23449
   279
done
paulson@23449
   280
paulson@23449
   281
lemma (in PO) interval_imp_mem: "x \<in> interval r a b ==> (a, x) \<in> r"
paulson@23449
   282
by (simp add: interval_def)
paulson@23449
   283
paulson@23449
   284
lemma (in PO) left_in_interval:
paulson@23449
   285
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> a \<in> interval r a b"
paulson@23449
   286
apply (simp (no_asm_simp) add: interval_def)
paulson@23449
   287
apply (simp add: PO_imp_trans interval_not_empty)
paulson@23449
   288
apply (simp add: reflE)
paulson@23449
   289
done
paulson@23449
   290
paulson@23449
   291
lemma (in PO) right_in_interval:
paulson@23449
   292
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |] ==> b \<in> interval r a b"
paulson@23449
   293
apply (simp (no_asm_simp) add: interval_def)
paulson@23449
   294
apply (simp add: PO_imp_trans interval_not_empty)
paulson@23449
   295
apply (simp add: reflE)
paulson@23449
   296
done
paulson@23449
   297
paulson@23449
   298
paulson@23449
   299
subsection {* sublattice *}
paulson@23449
   300
paulson@23449
   301
lemma (in PO) sublattice_imp_CL:
paulson@23449
   302
     "S <<= cl  ==> (| pset = S, order = induced S r |) \<in> CompleteLattice"
paulson@23449
   303
by (simp add: sublattice_def CompleteLattice_def A_def r_def)
paulson@23449
   304
paulson@23449
   305
lemma (in CL) sublatticeI:
paulson@23449
   306
     "[| S \<subseteq> A; (| pset = S, order = induced S r |) \<in> CompleteLattice |]
paulson@23449
   307
      ==> S <<= cl"
paulson@23449
   308
by (simp add: sublattice_def A_def r_def)
paulson@23449
   309
paulson@23449
   310
paulson@23449
   311
subsection {* lub *}
paulson@23449
   312
paulson@23449
   313
lemma (in CL) lub_unique: "[| S \<subseteq> A; isLub S cl x; isLub S cl L|] ==> x = L"
paulson@23449
   314
apply (rule antisymE)
paulson@23449
   315
apply (auto simp add: isLub_def r_def)
paulson@23449
   316
done
paulson@23449
   317
paulson@23449
   318
lemma (in CL) lub_upper: "[|S \<subseteq> A; x \<in> S|] ==> (x, lub S cl) \<in> r"
paulson@23449
   319
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@23449
   320
apply (unfold lub_def least_def)
paulson@23449
   321
apply (rule some_equality [THEN ssubst])
paulson@23449
   322
  apply (simp add: isLub_def)
paulson@23449
   323
 apply (simp add: lub_unique A_def isLub_def)
paulson@23449
   324
apply (simp add: isLub_def r_def)
paulson@23449
   325
done
paulson@23449
   326
paulson@23449
   327
lemma (in CL) lub_least:
paulson@23449
   328
     "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r |] ==> (lub S cl, L) \<in> r"
paulson@23449
   329
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@23449
   330
apply (unfold lub_def least_def)
paulson@23449
   331
apply (rule_tac s=x in some_equality [THEN ssubst])
paulson@23449
   332
  apply (simp add: isLub_def)
paulson@23449
   333
 apply (simp add: lub_unique A_def isLub_def)
paulson@23449
   334
apply (simp add: isLub_def r_def A_def)
paulson@23449
   335
done
paulson@23449
   336
paulson@23449
   337
lemma (in CL) lub_in_lattice: "S \<subseteq> A ==> lub S cl \<in> A"
paulson@23449
   338
apply (rule CL_imp_ex_isLub [THEN exE], assumption)
paulson@23449
   339
apply (unfold lub_def least_def)
paulson@23449
   340
apply (subst some_equality)
paulson@23449
   341
apply (simp add: isLub_def)
paulson@23449
   342
prefer 2 apply (simp add: isLub_def A_def)
paulson@23449
   343
apply (simp add: lub_unique A_def isLub_def)
paulson@23449
   344
done
paulson@23449
   345
paulson@23449
   346
lemma (in CL) lubI:
paulson@23449
   347
     "[| S \<subseteq> A; L \<in> A; \<forall>x \<in> S. (x,L) \<in> r;
paulson@23449
   348
         \<forall>z \<in> A. (\<forall>y \<in> S. (y,z) \<in> r) --> (L,z) \<in> r |] ==> L = lub S cl"
paulson@23449
   349
apply (rule lub_unique, assumption)
paulson@23449
   350
apply (simp add: isLub_def A_def r_def)
paulson@23449
   351
apply (unfold isLub_def)
paulson@23449
   352
apply (rule conjI)
paulson@23449
   353
apply (fold A_def r_def)
paulson@23449
   354
apply (rule lub_in_lattice, assumption)
paulson@23449
   355
apply (simp add: lub_upper lub_least)
paulson@23449
   356
done
paulson@23449
   357
paulson@23449
   358
lemma (in CL) lubIa: "[| S \<subseteq> A; isLub S cl L |] ==> L = lub S cl"
paulson@23449
   359
by (simp add: lubI isLub_def A_def r_def)
paulson@23449
   360
paulson@23449
   361
lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \<in> A"
paulson@23449
   362
by (simp add: isLub_def  A_def)
paulson@23449
   363
paulson@23449
   364
lemma (in CL) isLub_upper: "[|isLub S cl L; y \<in> S|] ==> (y, L) \<in> r"
paulson@23449
   365
by (simp add: isLub_def r_def)
paulson@23449
   366
paulson@23449
   367
lemma (in CL) isLub_least:
paulson@23449
   368
     "[| isLub S cl L; z \<in> A; \<forall>y \<in> S. (y, z) \<in> r|] ==> (L, z) \<in> r"
paulson@23449
   369
by (simp add: isLub_def A_def r_def)
paulson@23449
   370
paulson@23449
   371
lemma (in CL) isLubI:
paulson@23449
   372
     "[| L \<in> A; \<forall>y \<in> S. (y, L) \<in> r;
paulson@23449
   373
         (\<forall>z \<in> A. (\<forall>y \<in> S. (y, z):r) --> (L, z) \<in> r)|] ==> isLub S cl L"
paulson@23449
   374
by (simp add: isLub_def A_def r_def)
paulson@23449
   375
paulson@23449
   376
paulson@23449
   377
paulson@23449
   378
subsection {* glb *}
paulson@23449
   379
paulson@23449
   380
lemma (in CL) glb_in_lattice: "S \<subseteq> A ==> glb S cl \<in> A"
paulson@23449
   381
apply (subst glb_dual_lub)
paulson@23449
   382
apply (simp add: A_def)
paulson@23449
   383
apply (rule dualA_iff [THEN subst])
paulson@23449
   384
apply (rule CL.lub_in_lattice)
haftmann@27681
   385
apply (rule CL.intro)
haftmann@27681
   386
apply (rule PO.intro)
paulson@23449
   387
apply (rule dualPO)
haftmann@27681
   388
apply (rule CL_axioms.intro)
paulson@23449
   389
apply (rule CL_dualCL)
paulson@23449
   390
apply (simp add: dualA_iff)
paulson@23449
   391
done
paulson@23449
   392
paulson@23449
   393
lemma (in CL) glb_lower: "[|S \<subseteq> A; x \<in> S|] ==> (glb S cl, x) \<in> r"
paulson@23449
   394
apply (subst glb_dual_lub)
paulson@23449
   395
apply (simp add: r_def)
paulson@23449
   396
apply (rule dualr_iff [THEN subst])
paulson@23449
   397
apply (rule CL.lub_upper)
haftmann@27681
   398
apply (rule CL.intro)
haftmann@27681
   399
apply (rule PO.intro)
paulson@23449
   400
apply (rule dualPO)
haftmann@27681
   401
apply (rule CL_axioms.intro)
paulson@23449
   402
apply (rule CL_dualCL)
paulson@23449
   403
apply (simp add: dualA_iff A_def, assumption)
paulson@23449
   404
done
paulson@23449
   405
paulson@23449
   406
text {*
paulson@23449
   407
  Reduce the sublattice property by using substructural properties;
paulson@23449
   408
  abandoned see @{text "Tarski_4.ML"}.
paulson@23449
   409
*}
paulson@23449
   410
paulson@23449
   411
declare (in CLF) f_cl [simp]
paulson@23449
   412
paulson@23449
   413
(*never proved, 2007-01-22: Tarski__CLF_unnamed_lemma
paulson@23449
   414
  NOT PROVABLE because of the conjunction used in the definition: we don't
paulson@23449
   415
  allow reasoning with rules like conjE, which is essential here.*)
boehmes@32864
   416
declare [[ atp_problem_prefix = "Tarski__CLF_unnamed_lemma" ]]
paulson@23449
   417
lemma (in CLF) [simp]:
paulson@23449
   418
    "f: pset cl -> pset cl & monotone f (pset cl) (order cl)" 
paulson@23449
   419
apply (insert f_cl)
haftmann@27681
   420
apply (unfold CLF_set_def)
paulson@23449
   421
apply (erule SigmaE2) 
paulson@23449
   422
apply (erule CollectE) 
haftmann@27681
   423
apply assumption
paulson@23449
   424
done
paulson@23449
   425
paulson@23449
   426
lemma (in CLF) f_in_funcset: "f \<in> A -> A"
paulson@23449
   427
by (simp add: A_def)
paulson@23449
   428
paulson@23449
   429
lemma (in CLF) monotone_f: "monotone f A r"
paulson@23449
   430
by (simp add: A_def r_def)
paulson@23449
   431
paulson@23449
   432
(*never proved, 2007-01-22*)
boehmes@32864
   433
declare [[ atp_problem_prefix = "Tarski__CLF_CLF_dual" ]]
haftmann@27681
   434
declare (in CLF) CLF_set_def [simp] CL_dualCL [simp] monotone_dual [simp] dualA_iff [simp]
haftmann@27681
   435
haftmann@27681
   436
lemma (in CLF) CLF_dual: "(dual cl, f) \<in> CLF_set" 
paulson@23449
   437
apply (simp del: dualA_iff)
paulson@23449
   438
apply (simp)
paulson@23449
   439
done
haftmann@27681
   440
haftmann@27681
   441
declare (in CLF) CLF_set_def[simp del] CL_dualCL[simp del] monotone_dual[simp del]
paulson@23449
   442
          dualA_iff[simp del]
paulson@23449
   443
paulson@23449
   444
paulson@23449
   445
subsection {* fixed points *}
paulson@23449
   446
paulson@23449
   447
lemma fix_subset: "fix f A \<subseteq> A"
paulson@23449
   448
by (simp add: fix_def, fast)
paulson@23449
   449
paulson@23449
   450
lemma fix_imp_eq: "x \<in> fix f A ==> f x = x"
paulson@23449
   451
by (simp add: fix_def)
paulson@23449
   452
paulson@23449
   453
lemma fixf_subset:
paulson@23449
   454
     "[| A \<subseteq> B; x \<in> fix (%y: A. f y) A |] ==> x \<in> fix f B"
paulson@23449
   455
by (simp add: fix_def, auto)
paulson@23449
   456
paulson@23449
   457
paulson@23449
   458
subsection {* lemmas for Tarski, lub *}
paulson@23449
   459
paulson@23449
   460
(*never proved, 2007-01-22*)
boehmes@32864
   461
declare [[ atp_problem_prefix = "Tarski__CLF_lubH_le_flubH" ]]
paulson@23449
   462
  declare CL.lub_least[intro] CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro] PO.transE[intro] PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro] 
paulson@23449
   463
lemma (in CLF) lubH_le_flubH:
paulson@23449
   464
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> (lub H cl, f (lub H cl)) \<in> r"
paulson@23449
   465
apply (rule lub_least, fast)
paulson@23449
   466
apply (rule f_in_funcset [THEN funcset_mem])
paulson@23449
   467
apply (rule lub_in_lattice, fast)
paulson@23449
   468
-- {* @{text "\<forall>x:H. (x, f (lub H r)) \<in> r"} *}
paulson@23449
   469
apply (rule ballI)
paulson@23449
   470
(*never proved, 2007-01-22*)
boehmes@32864
   471
using [[ atp_problem_prefix = "Tarski__CLF_lubH_le_flubH_simpler" ]]
paulson@23449
   472
apply (rule transE)
paulson@23449
   473
-- {* instantiates @{text "(x, ?z) \<in> order cl to (x, f x)"}, *}
paulson@23449
   474
-- {* because of the def of @{text H} *}
paulson@23449
   475
apply fast
paulson@23449
   476
-- {* so it remains to show @{text "(f x, f (lub H cl)) \<in> r"} *}
paulson@23449
   477
apply (rule_tac f = "f" in monotoneE)
paulson@23449
   478
apply (rule monotone_f, fast)
paulson@23449
   479
apply (rule lub_in_lattice, fast)
paulson@23449
   480
apply (rule lub_upper, fast)
paulson@23449
   481
apply assumption
paulson@23449
   482
done
paulson@23449
   483
  declare CL.lub_least[rule del] CLF.f_in_funcset[rule del] 
paulson@23449
   484
          funcset_mem[rule del] CL.lub_in_lattice[rule del] 
paulson@23449
   485
          PO.transE[rule del] PO.monotoneE[rule del] 
paulson@23449
   486
          CLF.monotone_f[rule del] CL.lub_upper[rule del] 
paulson@23449
   487
paulson@23449
   488
(*never proved, 2007-01-22*)
boehmes@32864
   489
declare [[ atp_problem_prefix = "Tarski__CLF_flubH_le_lubH" ]]
paulson@23449
   490
  declare CLF.f_in_funcset[intro] funcset_mem[intro] CL.lub_in_lattice[intro]
paulson@23449
   491
       PO.monotoneE[intro] CLF.monotone_f[intro] CL.lub_upper[intro] 
paulson@23449
   492
       CLF.lubH_le_flubH[simp]
paulson@23449
   493
lemma (in CLF) flubH_le_lubH:
paulson@23449
   494
     "[|  H = {x. (x, f x) \<in> r & x \<in> A} |] ==> (f (lub H cl), lub H cl) \<in> r"
paulson@23449
   495
apply (rule lub_upper, fast)
paulson@23449
   496
apply (rule_tac t = "H" in ssubst, assumption)
paulson@23449
   497
apply (rule CollectI)
paulson@23449
   498
apply (rule conjI)
boehmes@32864
   499
using [[ atp_problem_prefix = "Tarski__CLF_flubH_le_lubH_simpler" ]]
paulson@24827
   500
(*??no longer terminates, with combinators
nipkow@30198
   501
apply (metis CO_refl_on lubH_le_flubH monotone_def monotone_f reflD1 reflD2) 
paulson@24827
   502
*)
nipkow@30198
   503
apply (metis CO_refl_on lubH_le_flubH monotoneE [OF monotone_f] refl_onD1 refl_onD2)
nipkow@30198
   504
apply (metis CO_refl_on lubH_le_flubH refl_onD2)
paulson@23449
   505
done
paulson@23449
   506
  declare CLF.f_in_funcset[rule del] funcset_mem[rule del] 
paulson@23449
   507
          CL.lub_in_lattice[rule del] PO.monotoneE[rule del] 
paulson@23449
   508
          CLF.monotone_f[rule del] CL.lub_upper[rule del] 
paulson@23449
   509
          CLF.lubH_le_flubH[simp del]
paulson@23449
   510
paulson@23449
   511
paulson@23449
   512
(*never proved, 2007-01-22*)
boehmes@32864
   513
declare [[ atp_problem_prefix = "Tarski__CLF_lubH_is_fixp" ]]
paulson@23449
   514
(*Single-step version fails. The conjecture clauses refer to local abstraction
paulson@23449
   515
functions (Frees), which prevents expand_defs_tac from removing those 
paulson@24827
   516
"definitions" at the end of the proof. *)
paulson@23449
   517
lemma (in CLF) lubH_is_fixp:
paulson@23449
   518
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
paulson@23449
   519
apply (simp add: fix_def)
paulson@23449
   520
apply (rule conjI)
paulson@24827
   521
proof (neg_clausify)
paulson@24827
   522
assume 0: "H =
paulson@24827
   523
Collect
paulson@24827
   524
 (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) (COMBC op \<in> A))"
paulson@24827
   525
assume 1: "lub (Collect
paulson@24827
   526
      (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))
paulson@24827
   527
        (COMBC op \<in> A)))
paulson@24827
   528
 cl
paulson@24827
   529
\<notin> A"
paulson@24827
   530
have 2: "lub H cl \<notin> A"
paulson@24827
   531
  by (metis 1 0)
paulson@24827
   532
have 3: "(lub H cl, f (lub H cl)) \<in> r"
paulson@24827
   533
  by (metis lubH_le_flubH 0)
paulson@24827
   534
have 4: "(f (lub H cl), lub H cl) \<in> r"
paulson@24827
   535
  by (metis flubH_le_lubH 0)
paulson@24827
   536
have 5: "lub H cl = f (lub H cl) \<or> (lub H cl, f (lub H cl)) \<notin> r"
paulson@24827
   537
  by (metis antisymE 4)
paulson@24827
   538
have 6: "lub H cl = f (lub H cl)"
paulson@24827
   539
  by (metis 5 3)
paulson@24827
   540
have 7: "(lub H cl, lub H cl) \<in> r"
paulson@24827
   541
  by (metis 6 4)
nipkow@30198
   542
have 8: "\<And>X1. lub H cl \<in> X1 \<or> \<not> refl_on X1 r"
nipkow@30198
   543
  by (metis 7 refl_onD2)
nipkow@30198
   544
have 9: "\<not> refl_on A r"
paulson@24827
   545
  by (metis 8 2)
paulson@23449
   546
show "False"
nipkow@30198
   547
  by (metis CO_refl_on 9);
paulson@24827
   548
next --{*apparently the way to insert a second structured proof*}
paulson@24827
   549
  show "H = {x. (x, f x) \<in> r \<and> x \<in> A} \<Longrightarrow>
paulson@24827
   550
  f (lub {x. (x, f x) \<in> r \<and> x \<in> A} cl) = lub {x. (x, f x) \<in> r \<and> x \<in> A} cl"
paulson@24827
   551
  proof (neg_clausify)
paulson@24827
   552
  assume 0: "H =
paulson@24827
   553
  Collect
paulson@24827
   554
   (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r)) (COMBC op \<in> A))"
paulson@24827
   555
  assume 1: "f (lub (Collect
wenzelm@32960
   556
           (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))
wenzelm@32960
   557
             (COMBC op \<in> A)))
paulson@24827
   558
      cl) \<noteq>
paulson@24827
   559
  lub (Collect
wenzelm@32960
   560
        (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))
wenzelm@32960
   561
          (COMBC op \<in> A)))
paulson@24827
   562
   cl"
paulson@24827
   563
  have 2: "f (lub H cl) \<noteq>
paulson@24827
   564
  lub (Collect
wenzelm@32960
   565
        (COMBS (COMBB op \<and> (COMBC (COMBB op \<in> (COMBS Pair f)) r))
wenzelm@32960
   566
          (COMBC op \<in> A)))
paulson@24827
   567
   cl"
paulson@24827
   568
    by (metis 1 0)
paulson@24827
   569
  have 3: "f (lub H cl) \<noteq> lub H cl"
paulson@24827
   570
    by (metis 2 0)
paulson@24827
   571
  have 4: "(lub H cl, f (lub H cl)) \<in> r"
paulson@24827
   572
    by (metis lubH_le_flubH 0)
paulson@24827
   573
  have 5: "(f (lub H cl), lub H cl) \<in> r"
paulson@24827
   574
    by (metis flubH_le_lubH 0)
paulson@24827
   575
  have 6: "lub H cl = f (lub H cl) \<or> (lub H cl, f (lub H cl)) \<notin> r"
paulson@24827
   576
    by (metis antisymE 5)
paulson@24827
   577
  have 7: "lub H cl = f (lub H cl)"
paulson@24827
   578
    by (metis 6 4)
paulson@24827
   579
  show "False"
paulson@24827
   580
    by (metis 3 7)
paulson@24827
   581
  qed
paulson@24827
   582
qed
paulson@23449
   583
paulson@25710
   584
lemma (in CLF) (*lubH_is_fixp:*)
paulson@23449
   585
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> lub H cl \<in> fix f A"
paulson@23449
   586
apply (simp add: fix_def)
paulson@23449
   587
apply (rule conjI)
boehmes@32864
   588
using [[ atp_problem_prefix = "Tarski__CLF_lubH_is_fixp_simpler" ]]
nipkow@30198
   589
apply (metis CO_refl_on lubH_le_flubH refl_onD1)
paulson@23449
   590
apply (metis antisymE flubH_le_lubH lubH_le_flubH)
paulson@23449
   591
done
paulson@23449
   592
paulson@23449
   593
lemma (in CLF) fix_in_H:
paulson@23449
   594
     "[| H = {x. (x, f x) \<in> r & x \<in> A};  x \<in> P |] ==> x \<in> H"
nipkow@30198
   595
by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on
paulson@23449
   596
                    fix_subset [of f A, THEN subsetD])
paulson@23449
   597
paulson@23449
   598
paulson@23449
   599
lemma (in CLF) fixf_le_lubH:
paulson@23449
   600
     "H = {x. (x, f x) \<in> r & x \<in> A} ==> \<forall>x \<in> fix f A. (x, lub H cl) \<in> r"
paulson@23449
   601
apply (rule ballI)
paulson@23449
   602
apply (rule lub_upper, fast)
paulson@23449
   603
apply (rule fix_in_H)
paulson@23449
   604
apply (simp_all add: P_def)
paulson@23449
   605
done
paulson@23449
   606
boehmes@32864
   607
declare [[ atp_problem_prefix = "Tarski__CLF_lubH_least_fixf" ]]
paulson@23449
   608
lemma (in CLF) lubH_least_fixf:
paulson@23449
   609
     "H = {x. (x, f x) \<in> r & x \<in> A}
paulson@23449
   610
      ==> \<forall>L. (\<forall>y \<in> fix f A. (y,L) \<in> r) --> (lub H cl, L) \<in> r"
paulson@23449
   611
apply (metis P_def lubH_is_fixp)
paulson@23449
   612
done
paulson@23449
   613
paulson@23449
   614
subsection {* Tarski fixpoint theorem 1, first part *}
boehmes@32864
   615
declare [[ atp_problem_prefix = "Tarski__CLF_T_thm_1_lub" ]]
paulson@23449
   616
  declare CL.lubI[intro] fix_subset[intro] CL.lub_in_lattice[intro] 
paulson@23449
   617
          CLF.fixf_le_lubH[simp] CLF.lubH_least_fixf[simp]
paulson@23449
   618
lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \<in> r & x \<in> A} cl"
paulson@23449
   619
(*sledgehammer;*)
paulson@23449
   620
apply (rule sym)
paulson@23449
   621
apply (simp add: P_def)
paulson@23449
   622
apply (rule lubI)
boehmes@32864
   623
using [[ atp_problem_prefix = "Tarski__CLF_T_thm_1_lub_simpler" ]]
paulson@24855
   624
apply (metis P_def fix_subset) 
paulson@24827
   625
apply (metis Collect_conj_eq Collect_mem_eq Int_commute Int_lower1 lub_in_lattice vimage_def)
paulson@24827
   626
(*??no longer terminates, with combinators
paulson@24827
   627
apply (metis P_def fix_def fixf_le_lubH)
paulson@24827
   628
apply (metis P_def fix_def lubH_least_fixf)
paulson@24827
   629
*)
paulson@24827
   630
apply (simp add: fixf_le_lubH)
paulson@24827
   631
apply (simp add: lubH_least_fixf)
paulson@23449
   632
done
paulson@23449
   633
  declare CL.lubI[rule del] fix_subset[rule del] CL.lub_in_lattice[rule del] 
paulson@23449
   634
          CLF.fixf_le_lubH[simp del] CLF.lubH_least_fixf[simp del]
paulson@23449
   635
paulson@23449
   636
paulson@23449
   637
(*never proved, 2007-01-22*)
boehmes@32864
   638
declare [[ atp_problem_prefix = "Tarski__CLF_glbH_is_fixp" ]]
paulson@23449
   639
  declare glb_dual_lub[simp] PO.dualA_iff[intro] CLF.lubH_is_fixp[intro] 
paulson@23449
   640
          PO.dualPO[intro] CL.CL_dualCL[intro] PO.dualr_iff[simp]
paulson@23449
   641
lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \<in> r & x \<in> A} ==> glb H cl \<in> P"
paulson@23449
   642
  -- {* Tarski for glb *}
paulson@23449
   643
(*sledgehammer;*)
paulson@23449
   644
apply (simp add: glb_dual_lub P_def A_def r_def)
paulson@23449
   645
apply (rule dualA_iff [THEN subst])
paulson@23449
   646
apply (rule CLF.lubH_is_fixp)
haftmann@27681
   647
apply (rule CLF.intro)
haftmann@27681
   648
apply (rule CL.intro)
haftmann@27681
   649
apply (rule PO.intro)
paulson@23449
   650
apply (rule dualPO)
haftmann@27681
   651
apply (rule CL_axioms.intro)
paulson@23449
   652
apply (rule CL_dualCL)
haftmann@27681
   653
apply (rule CLF_axioms.intro)
paulson@23449
   654
apply (rule CLF_dual)
paulson@23449
   655
apply (simp add: dualr_iff dualA_iff)
paulson@23449
   656
done
paulson@23449
   657
  declare glb_dual_lub[simp del] PO.dualA_iff[rule del] CLF.lubH_is_fixp[rule del] 
paulson@23449
   658
          PO.dualPO[rule del] CL.CL_dualCL[rule del] PO.dualr_iff[simp del]
paulson@23449
   659
paulson@23449
   660
paulson@23449
   661
(*never proved, 2007-01-22*)
boehmes@32864
   662
declare [[ atp_problem_prefix = "Tarski__T_thm_1_glb" ]]  (*ALL THEOREMS*)
paulson@23449
   663
lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \<in> r & x \<in> A} cl"
paulson@23449
   664
(*sledgehammer;*)
paulson@23449
   665
apply (simp add: glb_dual_lub P_def A_def r_def)
paulson@23449
   666
apply (rule dualA_iff [THEN subst])
paulson@23449
   667
(*never proved, 2007-01-22*)
boehmes@32864
   668
using [[ atp_problem_prefix = "Tarski__T_thm_1_glb_simpler" ]]  (*ALL THEOREMS*)
paulson@23449
   669
(*sledgehammer;*)
haftmann@27681
   670
apply (simp add: CLF.T_thm_1_lub [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro,
haftmann@27681
   671
  OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff)
paulson@23449
   672
done
paulson@23449
   673
paulson@23449
   674
subsection {* interval *}
paulson@23449
   675
paulson@23449
   676
boehmes@32864
   677
declare [[ atp_problem_prefix = "Tarski__rel_imp_elem" ]]
nipkow@30198
   678
  declare (in CLF) CO_refl_on[simp] refl_on_def [simp]
paulson@23449
   679
lemma (in CLF) rel_imp_elem: "(x, y) \<in> r ==> x \<in> A"
nipkow@30198
   680
by (metis CO_refl_on refl_onD1)
nipkow@30198
   681
  declare (in CLF) CO_refl_on[simp del]  refl_on_def [simp del]
paulson@23449
   682
boehmes@32864
   683
declare [[ atp_problem_prefix = "Tarski__interval_subset" ]]
paulson@23449
   684
  declare (in CLF) rel_imp_elem[intro] 
paulson@23449
   685
  declare interval_def [simp]
paulson@23449
   686
lemma (in CLF) interval_subset: "[| a \<in> A; b \<in> A |] ==> interval r a b \<subseteq> A"
nipkow@30198
   687
by (metis CO_refl_on interval_imp_mem refl_onD refl_onD2 rel_imp_elem subset_eq)
paulson@23449
   688
  declare (in CLF) rel_imp_elem[rule del] 
paulson@23449
   689
  declare interval_def [simp del]
paulson@23449
   690
paulson@23449
   691
paulson@23449
   692
lemma (in CLF) intervalI:
paulson@23449
   693
     "[| (a, x) \<in> r; (x, b) \<in> r |] ==> x \<in> interval r a b"
paulson@23449
   694
by (simp add: interval_def)
paulson@23449
   695
paulson@23449
   696
lemma (in CLF) interval_lemma1:
paulson@23449
   697
     "[| S \<subseteq> interval r a b; x \<in> S |] ==> (a, x) \<in> r"
paulson@23449
   698
by (unfold interval_def, fast)
paulson@23449
   699
paulson@23449
   700
lemma (in CLF) interval_lemma2:
paulson@23449
   701
     "[| S \<subseteq> interval r a b; x \<in> S |] ==> (x, b) \<in> r"
paulson@23449
   702
by (unfold interval_def, fast)
paulson@23449
   703
paulson@23449
   704
lemma (in CLF) a_less_lub:
paulson@23449
   705
     "[| S \<subseteq> A; S \<noteq> {};
paulson@23449
   706
         \<forall>x \<in> S. (a,x) \<in> r; \<forall>y \<in> S. (y, L) \<in> r |] ==> (a,L) \<in> r"
paulson@23449
   707
by (blast intro: transE)
paulson@23449
   708
paulson@23449
   709
lemma (in CLF) glb_less_b:
paulson@23449
   710
     "[| S \<subseteq> A; S \<noteq> {};
paulson@23449
   711
         \<forall>x \<in> S. (x,b) \<in> r; \<forall>y \<in> S. (G, y) \<in> r |] ==> (G,b) \<in> r"
paulson@23449
   712
by (blast intro: transE)
paulson@23449
   713
paulson@23449
   714
lemma (in CLF) S_intv_cl:
paulson@23449
   715
     "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b |]==> S \<subseteq> A"
paulson@23449
   716
by (simp add: subset_trans [OF _ interval_subset])
paulson@23449
   717
boehmes@32864
   718
declare [[ atp_problem_prefix = "Tarski__L_in_interval" ]]  (*ALL THEOREMS*)
paulson@23449
   719
lemma (in CLF) L_in_interval:
paulson@23449
   720
     "[| a \<in> A; b \<in> A; S \<subseteq> interval r a b;
paulson@23449
   721
         S \<noteq> {}; isLub S cl L; interval r a b \<noteq> {} |] ==> L \<in> interval r a b" 
paulson@23449
   722
(*WON'T TERMINATE
paulson@23449
   723
apply (metis CO_trans intervalI interval_lemma1 interval_lemma2 isLub_least isLub_upper subset_empty subset_iff trans_def)
paulson@23449
   724
*)
paulson@23449
   725
apply (rule intervalI)
paulson@23449
   726
apply (rule a_less_lub)
paulson@23449
   727
prefer 2 apply assumption
paulson@23449
   728
apply (simp add: S_intv_cl)
paulson@23449
   729
apply (rule ballI)
paulson@23449
   730
apply (simp add: interval_lemma1)
paulson@23449
   731
apply (simp add: isLub_upper)
paulson@23449
   732
-- {* @{text "(L, b) \<in> r"} *}
paulson@23449
   733
apply (simp add: isLub_least interval_lemma2)
paulson@23449
   734
done
paulson@23449
   735
paulson@23449
   736
(*never proved, 2007-01-22*)
boehmes@32864
   737
declare [[ atp_problem_prefix = "Tarski__G_in_interval" ]]  (*ALL THEOREMS*)
paulson@23449
   738
lemma (in CLF) G_in_interval:
paulson@23449
   739
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {}; S \<subseteq> interval r a b; isGlb S cl G;
paulson@23449
   740
         S \<noteq> {} |] ==> G \<in> interval r a b"
paulson@23449
   741
apply (simp add: interval_dual)
haftmann@27681
   742
apply (simp add: CLF.L_in_interval [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]
paulson@23449
   743
                 dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub)
paulson@23449
   744
done
paulson@23449
   745
boehmes@32864
   746
declare [[ atp_problem_prefix = "Tarski__intervalPO" ]]  (*ALL THEOREMS*)
paulson@23449
   747
lemma (in CLF) intervalPO:
paulson@23449
   748
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@23449
   749
      ==> (| pset = interval r a b, order = induced (interval r a b) r |)
paulson@23449
   750
          \<in> PartialOrder"
paulson@23449
   751
proof (neg_clausify)
paulson@23449
   752
assume 0: "a \<in> A"
paulson@23449
   753
assume 1: "b \<in> A"
paulson@23449
   754
assume 2: "\<lparr>pset = interval r a b, order = induced (interval r a b) r\<rparr> \<notin> PartialOrder"
paulson@23449
   755
have 3: "\<not> interval r a b \<subseteq> A"
paulson@23449
   756
  by (metis 2 po_subset_po)
paulson@23449
   757
have 4: "b \<notin> A \<or> a \<notin> A"
paulson@23449
   758
  by (metis 3 interval_subset)
paulson@23449
   759
have 5: "a \<notin> A"
paulson@23449
   760
  by (metis 4 1)
paulson@23449
   761
show "False"
paulson@23449
   762
  by (metis 5 0)
paulson@23449
   763
qed
paulson@23449
   764
paulson@23449
   765
lemma (in CLF) intv_CL_lub:
paulson@23449
   766
 "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@23449
   767
  ==> \<forall>S. S \<subseteq> interval r a b -->
paulson@23449
   768
          (\<exists>L. isLub S (| pset = interval r a b,
paulson@23449
   769
                          order = induced (interval r a b) r |)  L)"
paulson@23449
   770
apply (intro strip)
paulson@23449
   771
apply (frule S_intv_cl [THEN CL_imp_ex_isLub])
paulson@23449
   772
prefer 2 apply assumption
paulson@23449
   773
apply assumption
paulson@23449
   774
apply (erule exE)
paulson@23449
   775
-- {* define the lub for the interval as *}
paulson@23449
   776
apply (rule_tac x = "if S = {} then a else L" in exI)
paulson@23449
   777
apply (simp (no_asm_simp) add: isLub_def split del: split_if)
paulson@23449
   778
apply (intro impI conjI)
paulson@23449
   779
-- {* @{text "(if S = {} then a else L) \<in> interval r a b"} *}
paulson@23449
   780
apply (simp add: CL_imp_PO L_in_interval)
paulson@23449
   781
apply (simp add: left_in_interval)
paulson@23449
   782
-- {* lub prop 1 *}
paulson@23449
   783
apply (case_tac "S = {}")
paulson@23449
   784
-- {* @{text "S = {}, y \<in> S = False => everything"} *}
paulson@23449
   785
apply fast
paulson@23449
   786
-- {* @{text "S \<noteq> {}"} *}
paulson@23449
   787
apply simp
paulson@23449
   788
-- {* @{text "\<forall>y:S. (y, L) \<in> induced (interval r a b) r"} *}
paulson@23449
   789
apply (rule ballI)
paulson@23449
   790
apply (simp add: induced_def  L_in_interval)
paulson@23449
   791
apply (rule conjI)
paulson@23449
   792
apply (rule subsetD)
paulson@23449
   793
apply (simp add: S_intv_cl, assumption)
paulson@23449
   794
apply (simp add: isLub_upper)
paulson@23449
   795
-- {* @{text "\<forall>z:interval r a b. (\<forall>y:S. (y, z) \<in> induced (interval r a b) r \<longrightarrow> (if S = {} then a else L, z) \<in> induced (interval r a b) r"} *}
paulson@23449
   796
apply (rule ballI)
paulson@23449
   797
apply (rule impI)
paulson@23449
   798
apply (case_tac "S = {}")
paulson@23449
   799
-- {* @{text "S = {}"} *}
paulson@23449
   800
apply simp
paulson@23449
   801
apply (simp add: induced_def  interval_def)
paulson@23449
   802
apply (rule conjI)
paulson@23449
   803
apply (rule reflE, assumption)
paulson@23449
   804
apply (rule interval_not_empty)
paulson@23449
   805
apply (rule CO_trans)
paulson@23449
   806
apply (simp add: interval_def)
paulson@23449
   807
-- {* @{text "S \<noteq> {}"} *}
paulson@23449
   808
apply simp
paulson@23449
   809
apply (simp add: induced_def  L_in_interval)
paulson@23449
   810
apply (rule isLub_least, assumption)
paulson@23449
   811
apply (rule subsetD)
paulson@23449
   812
prefer 2 apply assumption
paulson@23449
   813
apply (simp add: S_intv_cl, fast)
paulson@23449
   814
done
paulson@23449
   815
paulson@23449
   816
lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual]
paulson@23449
   817
paulson@23449
   818
(*never proved, 2007-01-22*)
boehmes@32864
   819
declare [[ atp_problem_prefix = "Tarski__interval_is_sublattice" ]]  (*ALL THEOREMS*)
paulson@23449
   820
lemma (in CLF) interval_is_sublattice:
paulson@23449
   821
     "[| a \<in> A; b \<in> A; interval r a b \<noteq> {} |]
paulson@23449
   822
        ==> interval r a b <<= cl"
paulson@23449
   823
(*sledgehammer *)
paulson@23449
   824
apply (rule sublatticeI)
paulson@23449
   825
apply (simp add: interval_subset)
paulson@23449
   826
(*never proved, 2007-01-22*)
boehmes@32864
   827
using [[ atp_problem_prefix = "Tarski__interval_is_sublattice_simpler" ]]
paulson@23449
   828
(*sledgehammer *)
paulson@23449
   829
apply (rule CompleteLatticeI)
paulson@23449
   830
apply (simp add: intervalPO)
paulson@23449
   831
 apply (simp add: intv_CL_lub)
paulson@23449
   832
apply (simp add: intv_CL_glb)
paulson@23449
   833
done
paulson@23449
   834
paulson@23449
   835
lemmas (in CLF) interv_is_compl_latt =
paulson@23449
   836
    interval_is_sublattice [THEN sublattice_imp_CL]
paulson@23449
   837
paulson@23449
   838
paulson@23449
   839
subsection {* Top and Bottom *}
paulson@23449
   840
lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)"
paulson@23449
   841
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
paulson@23449
   842
paulson@23449
   843
lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)"
paulson@23449
   844
by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff)
paulson@23449
   845
boehmes@32864
   846
declare [[ atp_problem_prefix = "Tarski__Bot_in_lattice" ]]  (*ALL THEOREMS*)
paulson@23449
   847
lemma (in CLF) Bot_in_lattice: "Bot cl \<in> A"
paulson@23449
   848
(*sledgehammer; *)
paulson@23449
   849
apply (simp add: Bot_def least_def)
paulson@23449
   850
apply (rule_tac a="glb A cl" in someI2)
paulson@23449
   851
apply (simp_all add: glb_in_lattice glb_lower 
paulson@23449
   852
                     r_def [symmetric] A_def [symmetric])
paulson@23449
   853
done
paulson@23449
   854
paulson@23449
   855
(*first proved 2007-01-25 after relaxing relevance*)
boehmes@32864
   856
declare [[ atp_problem_prefix = "Tarski__Top_in_lattice" ]]  (*ALL THEOREMS*)
paulson@23449
   857
lemma (in CLF) Top_in_lattice: "Top cl \<in> A"
paulson@23449
   858
(*sledgehammer;*)
paulson@23449
   859
apply (simp add: Top_dual_Bot A_def)
paulson@23449
   860
(*first proved 2007-01-25 after relaxing relevance*)
boehmes@32864
   861
using [[ atp_problem_prefix = "Tarski__Top_in_lattice_simpler" ]]  (*ALL THEOREMS*)
paulson@23449
   862
(*sledgehammer*)
paulson@23449
   863
apply (rule dualA_iff [THEN subst])
haftmann@27681
   864
apply (blast intro!: CLF.Bot_in_lattice [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] dualPO CL_dualCL CLF_dual)
paulson@23449
   865
done
paulson@23449
   866
paulson@23449
   867
lemma (in CLF) Top_prop: "x \<in> A ==> (x, Top cl) \<in> r"
paulson@23449
   868
apply (simp add: Top_def greatest_def)
paulson@23449
   869
apply (rule_tac a="lub A cl" in someI2)
paulson@23449
   870
apply (rule someI2)
paulson@23449
   871
apply (simp_all add: lub_in_lattice lub_upper 
paulson@23449
   872
                     r_def [symmetric] A_def [symmetric])
paulson@23449
   873
done
paulson@23449
   874
paulson@23449
   875
(*never proved, 2007-01-22*)
boehmes@32864
   876
declare [[ atp_problem_prefix = "Tarski__Bot_prop" ]]  (*ALL THEOREMS*) 
paulson@23449
   877
lemma (in CLF) Bot_prop: "x \<in> A ==> (Bot cl, x) \<in> r"
paulson@23449
   878
(*sledgehammer*) 
paulson@23449
   879
apply (simp add: Bot_dual_Top r_def)
paulson@23449
   880
apply (rule dualr_iff [THEN subst])
haftmann@27681
   881
apply (simp add: CLF.Top_prop [of _ f, OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro]
paulson@23449
   882
                 dualA_iff A_def dualPO CL_dualCL CLF_dual)
paulson@23449
   883
done
paulson@23449
   884
boehmes@32864
   885
declare [[ atp_problem_prefix = "Tarski__Bot_in_lattice" ]]  (*ALL THEOREMS*)
paulson@23449
   886
lemma (in CLF) Top_intv_not_empty: "x \<in> A  ==> interval r x (Top cl) \<noteq> {}" 
paulson@23449
   887
apply (metis Top_in_lattice Top_prop empty_iff intervalI reflE)
paulson@23449
   888
done
paulson@23449
   889
boehmes@32864
   890
declare [[ atp_problem_prefix = "Tarski__Bot_intv_not_empty" ]]  (*ALL THEOREMS*)
paulson@23449
   891
lemma (in CLF) Bot_intv_not_empty: "x \<in> A ==> interval r (Bot cl) x \<noteq> {}" 
paulson@23449
   892
apply (metis Bot_prop ex_in_conv intervalI reflE rel_imp_elem)
paulson@23449
   893
done
paulson@23449
   894
paulson@23449
   895
paulson@23449
   896
subsection {* fixed points form a partial order *}
paulson@23449
   897
paulson@23449
   898
lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \<in> PartialOrder"
paulson@23449
   899
by (simp add: P_def fix_subset po_subset_po)
paulson@23449
   900
paulson@23449
   901
(*first proved 2007-01-25 after relaxing relevance*)
boehmes@32864
   902
declare [[ atp_problem_prefix = "Tarski__Y_subset_A" ]]
paulson@23449
   903
  declare (in Tarski) P_def[simp] Y_ss [simp]
paulson@23449
   904
  declare fix_subset [intro] subset_trans [intro]
paulson@23449
   905
lemma (in Tarski) Y_subset_A: "Y \<subseteq> A"
paulson@23449
   906
(*sledgehammer*) 
paulson@23449
   907
apply (rule subset_trans [OF _ fix_subset])
paulson@23449
   908
apply (rule Y_ss [simplified P_def])
paulson@23449
   909
done
paulson@23449
   910
  declare (in Tarski) P_def[simp del] Y_ss [simp del]
paulson@23449
   911
  declare fix_subset [rule del] subset_trans [rule del]
paulson@23449
   912
paulson@23449
   913
paulson@23449
   914
lemma (in Tarski) lubY_in_A: "lub Y cl \<in> A"
paulson@23449
   915
  by (rule Y_subset_A [THEN lub_in_lattice])
paulson@23449
   916
paulson@23449
   917
(*never proved, 2007-01-22*)
boehmes@32864
   918
declare [[ atp_problem_prefix = "Tarski__lubY_le_flubY" ]]  (*ALL THEOREMS*)
paulson@23449
   919
lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \<in> r"
paulson@23449
   920
(*sledgehammer*) 
paulson@23449
   921
apply (rule lub_least)
paulson@23449
   922
apply (rule Y_subset_A)
paulson@23449
   923
apply (rule f_in_funcset [THEN funcset_mem])
paulson@23449
   924
apply (rule lubY_in_A)
paulson@23449
   925
-- {* @{text "Y \<subseteq> P ==> f x = x"} *}
paulson@23449
   926
apply (rule ballI)
boehmes@32864
   927
using [[ atp_problem_prefix = "Tarski__lubY_le_flubY_simpler" ]]  (*ALL THEOREMS*)
paulson@23449
   928
(*sledgehammer *)
paulson@23449
   929
apply (rule_tac t = "x" in fix_imp_eq [THEN subst])
paulson@23449
   930
apply (erule Y_ss [simplified P_def, THEN subsetD])
paulson@23449
   931
-- {* @{text "reduce (f x, f (lub Y cl)) \<in> r to (x, lub Y cl) \<in> r"} by monotonicity *}
boehmes@32864
   932
using [[ atp_problem_prefix = "Tarski__lubY_le_flubY_simplest" ]]  (*ALL THEOREMS*)
paulson@23449
   933
(*sledgehammer*)
paulson@23449
   934
apply (rule_tac f = "f" in monotoneE)
paulson@23449
   935
apply (rule monotone_f)
paulson@23449
   936
apply (simp add: Y_subset_A [THEN subsetD])
paulson@23449
   937
apply (rule lubY_in_A)
paulson@23449
   938
apply (simp add: lub_upper Y_subset_A)
paulson@23449
   939
done
paulson@23449
   940
paulson@23449
   941
(*first proved 2007-01-25 after relaxing relevance*)
boehmes@32864
   942
declare [[ atp_problem_prefix = "Tarski__intY1_subset" ]]  (*ALL THEOREMS*)
paulson@23449
   943
lemma (in Tarski) intY1_subset: "intY1 \<subseteq> A"
paulson@23449
   944
(*sledgehammer*) 
paulson@23449
   945
apply (unfold intY1_def)
paulson@23449
   946
apply (rule interval_subset)
paulson@23449
   947
apply (rule lubY_in_A)
paulson@23449
   948
apply (rule Top_in_lattice)
paulson@23449
   949
done
paulson@23449
   950
paulson@23449
   951
lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD]
paulson@23449
   952
paulson@23449
   953
(*never proved, 2007-01-22*)
boehmes@32864
   954
declare [[ atp_problem_prefix = "Tarski__intY1_f_closed" ]]  (*ALL THEOREMS*)
paulson@23449
   955
lemma (in Tarski) intY1_f_closed: "x \<in> intY1 \<Longrightarrow> f x \<in> intY1"
paulson@23449
   956
(*sledgehammer*) 
paulson@23449
   957
apply (simp add: intY1_def  interval_def)
paulson@23449
   958
apply (rule conjI)
paulson@23449
   959
apply (rule transE)
paulson@23449
   960
apply (rule lubY_le_flubY)
paulson@23449
   961
-- {* @{text "(f (lub Y cl), f x) \<in> r"} *}
boehmes@32864
   962
using [[ atp_problem_prefix = "Tarski__intY1_f_closed_simpler" ]]  (*ALL THEOREMS*)
paulson@23449
   963
(*sledgehammer [has been proved before now...]*)
paulson@23449
   964
apply (rule_tac f=f in monotoneE)
paulson@23449
   965
apply (rule monotone_f)
paulson@23449
   966
apply (rule lubY_in_A)
paulson@23449
   967
apply (simp add: intY1_def interval_def  intY1_elem)
paulson@23449
   968
apply (simp add: intY1_def  interval_def)
paulson@23449
   969
-- {* @{text "(f x, Top cl) \<in> r"} *} 
paulson@23449
   970
apply (rule Top_prop)
paulson@23449
   971
apply (rule f_in_funcset [THEN funcset_mem])
paulson@23449
   972
apply (simp add: intY1_def interval_def  intY1_elem)
paulson@23449
   973
done
paulson@23449
   974
boehmes@32864
   975
declare [[ atp_problem_prefix = "Tarski__intY1_func" ]]  (*ALL THEOREMS*)
haftmann@27368
   976
lemma (in Tarski) intY1_func: "(%x: intY1. f x) \<in> intY1 -> intY1"
haftmann@27368
   977
apply (rule restrict_in_funcset)
haftmann@27368
   978
apply (metis intY1_f_closed restrict_in_funcset)
haftmann@27368
   979
done
paulson@23449
   980
boehmes@32864
   981
declare [[ atp_problem_prefix = "Tarski__intY1_mono" ]]  (*ALL THEOREMS*)
paulson@24855
   982
lemma (in Tarski) intY1_mono:
paulson@23449
   983
     "monotone (%x: intY1. f x) intY1 (induced intY1 r)"
paulson@23449
   984
(*sledgehammer *)
paulson@23449
   985
apply (auto simp add: monotone_def induced_def intY1_f_closed)
paulson@23449
   986
apply (blast intro: intY1_elem monotone_f [THEN monotoneE])
paulson@23449
   987
done
paulson@23449
   988
paulson@23449
   989
(*proof requires relaxing relevance: 2007-01-25*)
boehmes@32864
   990
declare [[ atp_problem_prefix = "Tarski__intY1_is_cl" ]]  (*ALL THEOREMS*)
paulson@23449
   991
lemma (in Tarski) intY1_is_cl:
paulson@23449
   992
    "(| pset = intY1, order = induced intY1 r |) \<in> CompleteLattice"
paulson@23449
   993
(*sledgehammer*) 
paulson@23449
   994
apply (unfold intY1_def)
paulson@23449
   995
apply (rule interv_is_compl_latt)
paulson@23449
   996
apply (rule lubY_in_A)
paulson@23449
   997
apply (rule Top_in_lattice)
paulson@23449
   998
apply (rule Top_intv_not_empty)
paulson@23449
   999
apply (rule lubY_in_A)
paulson@23449
  1000
done
paulson@23449
  1001
paulson@23449
  1002
(*never proved, 2007-01-22*)
boehmes@32864
  1003
declare [[ atp_problem_prefix = "Tarski__v_in_P" ]]  (*ALL THEOREMS*)
paulson@23449
  1004
lemma (in Tarski) v_in_P: "v \<in> P"
paulson@23449
  1005
(*sledgehammer*) 
paulson@23449
  1006
apply (unfold P_def)
paulson@23449
  1007
apply (rule_tac A = "intY1" in fixf_subset)
paulson@23449
  1008
apply (rule intY1_subset)
haftmann@27681
  1009
apply (simp add: CLF.glbH_is_fixp [OF CLF.intro, OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified]
haftmann@27681
  1010
                 v_def CL_imp_PO intY1_is_cl CLF_set_def intY1_func intY1_mono)
paulson@23449
  1011
done
paulson@23449
  1012
boehmes@32864
  1013
declare [[ atp_problem_prefix = "Tarski__z_in_interval" ]]  (*ALL THEOREMS*)
paulson@23449
  1014
lemma (in Tarski) z_in_interval:
paulson@23449
  1015
     "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |] ==> z \<in> intY1"
paulson@23449
  1016
(*sledgehammer *)
paulson@23449
  1017
apply (unfold intY1_def P_def)
paulson@23449
  1018
apply (rule intervalI)
paulson@23449
  1019
prefer 2
paulson@23449
  1020
 apply (erule fix_subset [THEN subsetD, THEN Top_prop])
paulson@23449
  1021
apply (rule lub_least)
paulson@23449
  1022
apply (rule Y_subset_A)
paulson@23449
  1023
apply (fast elim!: fix_subset [THEN subsetD])
paulson@23449
  1024
apply (simp add: induced_def)
paulson@23449
  1025
done
paulson@23449
  1026
boehmes@32864
  1027
declare [[ atp_problem_prefix = "Tarski__fz_in_int_rel" ]]  (*ALL THEOREMS*)
paulson@23449
  1028
lemma (in Tarski) f'z_in_int_rel: "[| z \<in> P; \<forall>y\<in>Y. (y, z) \<in> induced P r |]
paulson@23449
  1029
      ==> ((%x: intY1. f x) z, z) \<in> induced intY1 r" 
berghofe@26806
  1030
apply (metis P_def acc_def fix_imp_eq fix_subset indI reflE restrict_apply subset_eq z_in_interval)
paulson@23449
  1031
done
paulson@23449
  1032
paulson@23449
  1033
(*never proved, 2007-01-22*)
boehmes@32864
  1034
declare [[ atp_problem_prefix = "Tarski__tarski_full_lemma" ]]  (*ALL THEOREMS*)
paulson@23449
  1035
lemma (in Tarski) tarski_full_lemma:
paulson@23449
  1036
     "\<exists>L. isLub Y (| pset = P, order = induced P r |) L"
paulson@23449
  1037
apply (rule_tac x = "v" in exI)
paulson@23449
  1038
apply (simp add: isLub_def)
paulson@23449
  1039
-- {* @{text "v \<in> P"} *}
paulson@23449
  1040
apply (simp add: v_in_P)
paulson@23449
  1041
apply (rule conjI)
paulson@23449
  1042
(*sledgehammer*) 
paulson@23449
  1043
-- {* @{text v} is lub *}
paulson@23449
  1044
-- {* @{text "1. \<forall>y:Y. (y, v) \<in> induced P r"} *}
paulson@23449
  1045
apply (rule ballI)
paulson@23449
  1046
apply (simp add: induced_def subsetD v_in_P)
paulson@23449
  1047
apply (rule conjI)
paulson@23449
  1048
apply (erule Y_ss [THEN subsetD])
paulson@23449
  1049
apply (rule_tac b = "lub Y cl" in transE)
paulson@23449
  1050
apply (rule lub_upper)
paulson@23449
  1051
apply (rule Y_subset_A, assumption)
paulson@23449
  1052
apply (rule_tac b = "Top cl" in interval_imp_mem)
paulson@23449
  1053
apply (simp add: v_def)
paulson@23449
  1054
apply (fold intY1_def)
haftmann@27681
  1055
apply (rule CL.glb_in_lattice [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])
paulson@23449
  1056
 apply (simp add: CL_imp_PO intY1_is_cl, force)
paulson@23449
  1057
-- {* @{text v} is LEAST ub *}
paulson@23449
  1058
apply clarify
paulson@23449
  1059
apply (rule indI)
paulson@23449
  1060
  prefer 3 apply assumption
paulson@23449
  1061
 prefer 2 apply (simp add: v_in_P)
paulson@23449
  1062
apply (unfold v_def)
paulson@23449
  1063
(*never proved, 2007-01-22*)
boehmes@32864
  1064
using [[ atp_problem_prefix = "Tarski__tarski_full_lemma_simpler" ]]
paulson@23449
  1065
(*sledgehammer*) 
paulson@23449
  1066
apply (rule indE)
paulson@23449
  1067
apply (rule_tac [2] intY1_subset)
paulson@23449
  1068
(*never proved, 2007-01-22*)
boehmes@32864
  1069
using [[ atp_problem_prefix = "Tarski__tarski_full_lemma_simplest" ]]
paulson@23449
  1070
(*sledgehammer*) 
haftmann@27681
  1071
apply (rule CL.glb_lower [OF CL.intro, OF PO.intro CL_axioms.intro, OF _ intY1_is_cl, simplified])
paulson@23449
  1072
  apply (simp add: CL_imp_PO intY1_is_cl)
paulson@23449
  1073
 apply force
paulson@23449
  1074
apply (simp add: induced_def intY1_f_closed z_in_interval)
paulson@23449
  1075
apply (simp add: P_def fix_imp_eq [of _ f A] reflE
paulson@23449
  1076
                 fix_subset [of f A, THEN subsetD])
paulson@23449
  1077
done
paulson@23449
  1078
paulson@23449
  1079
lemma CompleteLatticeI_simp:
paulson@23449
  1080
     "[| (| pset = A, order = r |) \<in> PartialOrder;
paulson@23449
  1081
         \<forall>S. S \<subseteq> A --> (\<exists>L. isLub S (| pset = A, order = r |)  L) |]
paulson@23449
  1082
    ==> (| pset = A, order = r |) \<in> CompleteLattice"
paulson@23449
  1083
by (simp add: CompleteLatticeI Rdual)
paulson@23449
  1084
paulson@23449
  1085
paulson@23449
  1086
(*never proved, 2007-01-22*)
boehmes@32864
  1087
declare [[ atp_problem_prefix = "Tarski__Tarski_full" ]]
paulson@23449
  1088
  declare (in CLF) fixf_po[intro] P_def [simp] A_def [simp] r_def [simp]
paulson@23449
  1089
               Tarski.tarski_full_lemma [intro] cl_po [intro] cl_co [intro]
paulson@23449
  1090
               CompleteLatticeI_simp [intro]
paulson@23449
  1091
theorem (in CLF) Tarski_full:
paulson@23449
  1092
     "(| pset = P, order = induced P r|) \<in> CompleteLattice"
paulson@23449
  1093
(*sledgehammer*) 
paulson@23449
  1094
apply (rule CompleteLatticeI_simp)
paulson@23449
  1095
apply (rule fixf_po, clarify)
paulson@23449
  1096
(*never proved, 2007-01-22*)
boehmes@32864
  1097
using [[ atp_problem_prefix = "Tarski__Tarski_full_simpler" ]]
paulson@23449
  1098
(*sledgehammer*) 
paulson@23449
  1099
apply (simp add: P_def A_def r_def)
haftmann@27681
  1100
apply (blast intro!: Tarski.tarski_full_lemma [OF Tarski.intro, OF CLF.intro Tarski_axioms.intro,
haftmann@27681
  1101
  OF CL.intro CLF_axioms.intro, OF PO.intro CL_axioms.intro] cl_po cl_co f_cl)
paulson@23449
  1102
done
paulson@23449
  1103
  declare (in CLF) fixf_po[rule del] P_def [simp del] A_def [simp del] r_def [simp del]
paulson@23449
  1104
         Tarski.tarski_full_lemma [rule del] cl_po [rule del] cl_co [rule del]
paulson@23449
  1105
         CompleteLatticeI_simp [rule del]
paulson@23449
  1106
paulson@23449
  1107
paulson@23449
  1108
end