src/HOL/Real/HahnBanach/Subspace.thy
author wenzelm
Thu Aug 22 20:49:43 2002 +0200 (2002-08-22)
changeset 13515 a6a7025fd7e8
parent 12018 ec054019c910
child 13547 bf399f3bd7dc
permissions -rw-r--r--
updated to use locales (still some rough edges);
wenzelm@7566
     1
(*  Title:      HOL/Real/HahnBanach/Subspace.thy
wenzelm@7566
     2
    ID:         $Id$
wenzelm@7566
     3
    Author:     Gertrud Bauer, TU Munich
wenzelm@7566
     4
*)
wenzelm@7535
     5
wenzelm@9035
     6
header {* Subspaces *}
wenzelm@7808
     7
wenzelm@9035
     8
theory Subspace = VectorSpace:
wenzelm@7535
     9
wenzelm@7535
    10
wenzelm@9035
    11
subsection {* Definition *}
wenzelm@7535
    12
wenzelm@10687
    13
text {*
wenzelm@10687
    14
  A non-empty subset @{text U} of a vector space @{text V} is a
wenzelm@10687
    15
  \emph{subspace} of @{text V}, iff @{text U} is closed under addition
wenzelm@10687
    16
  and scalar multiplication.
wenzelm@10687
    17
*}
wenzelm@7917
    18
wenzelm@13515
    19
locale subspace = var U + var V +
wenzelm@13515
    20
  assumes non_empty [iff, intro]: "U \<noteq> {}"
wenzelm@13515
    21
    and subset [iff]: "U \<subseteq> V"
wenzelm@13515
    22
    and add_closed [iff]: "x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x + y \<in> U"
wenzelm@13515
    23
    and mult_closed [iff]: "x \<in> U \<Longrightarrow> a \<cdot> x \<in> U"
wenzelm@7535
    24
wenzelm@13515
    25
syntax (symbols)
wenzelm@13515
    26
  subspace :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool"    (infix "\<unlhd>" 50)
wenzelm@7535
    27
wenzelm@13515
    28
lemma subspace_subset [elim]: "U \<unlhd> V \<Longrightarrow> U \<subseteq> V"
wenzelm@13515
    29
  by (rule subspace.subset)
wenzelm@7566
    30
wenzelm@13515
    31
lemma (in subspace) subsetD [iff]: "x \<in> U \<Longrightarrow> x \<in> V"
wenzelm@13515
    32
  using subset by blast
wenzelm@7566
    33
wenzelm@13515
    34
lemma subspaceD [elim]: "U \<unlhd> V \<Longrightarrow> x \<in> U \<Longrightarrow> x \<in> V"
wenzelm@13515
    35
  by (rule subspace.subsetD)
wenzelm@7535
    36
wenzelm@13515
    37
lemma rev_subspaceD [elim?]: "x \<in> U \<Longrightarrow> U \<unlhd> V \<Longrightarrow> x \<in> V"
wenzelm@13515
    38
  by (rule subspace.subsetD)
wenzelm@13515
    39
wenzelm@7535
    40
wenzelm@13515
    41
locale (open) subvectorspace =
wenzelm@13515
    42
  subspace + vectorspace
wenzelm@7808
    43
wenzelm@13515
    44
lemma (in subvectorspace) diff_closed [iff]:
wenzelm@13515
    45
    "x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x - y \<in> U"
wenzelm@10687
    46
  by (simp add: diff_eq1 negate_eq1)
wenzelm@7917
    47
wenzelm@7917
    48
wenzelm@13515
    49
text {*
wenzelm@13515
    50
  \medskip Similar as for linear spaces, the existence of the zero
wenzelm@13515
    51
  element in every subspace follows from the non-emptiness of the
wenzelm@13515
    52
  carrier set and by vector space laws.
wenzelm@13515
    53
*}
wenzelm@13515
    54
wenzelm@13515
    55
lemma (in subvectorspace) zero [intro]: "0 \<in> U"
wenzelm@10687
    56
proof -
wenzelm@13515
    57
  have "U \<noteq> {}" by (rule U_V.non_empty)
wenzelm@13515
    58
  then obtain x where x: "x \<in> U" by blast
wenzelm@13515
    59
  hence "x \<in> V" .. hence "0 = x - x" by simp
wenzelm@13515
    60
  also have "... \<in> U" by (rule U_V.diff_closed)
wenzelm@13515
    61
  finally show ?thesis .
wenzelm@9035
    62
qed
wenzelm@7535
    63
wenzelm@13515
    64
lemma (in subvectorspace) neg_closed [iff]: "x \<in> U \<Longrightarrow> - x \<in> U"
wenzelm@9035
    65
  by (simp add: negate_eq1)
wenzelm@7917
    66
wenzelm@13515
    67
wenzelm@10687
    68
text {* \medskip Further derived laws: every subspace is a vector space. *}
wenzelm@7535
    69
wenzelm@13515
    70
lemma (in subvectorspace) vectorspace [iff]:
wenzelm@13515
    71
  "vectorspace U"
wenzelm@13515
    72
proof
wenzelm@13515
    73
  show "U \<noteq> {}" ..
wenzelm@13515
    74
  fix x y z assume x: "x \<in> U" and y: "y \<in> U" and z: "z \<in> U"
wenzelm@13515
    75
  fix a b :: real
wenzelm@13515
    76
  from x y show "x + y \<in> U" by simp
wenzelm@13515
    77
  from x show "a \<cdot> x \<in> U" by simp
wenzelm@13515
    78
  from x y z show "(x + y) + z = x + (y + z)" by (simp add: add_ac)
wenzelm@13515
    79
  from x y show "x + y = y + x" by (simp add: add_ac)
wenzelm@13515
    80
  from x show "x - x = 0" by simp
wenzelm@13515
    81
  from x show "0 + x = x" by simp
wenzelm@13515
    82
  from x y show "a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y" by (simp add: distrib)
wenzelm@13515
    83
  from x show "(a + b) \<cdot> x = a \<cdot> x + b \<cdot> x" by (simp add: distrib)
wenzelm@13515
    84
  from x show "(a * b) \<cdot> x = a \<cdot> b \<cdot> x" by (simp add: mult_assoc)
wenzelm@13515
    85
  from x show "1 \<cdot> x = x" by simp
wenzelm@13515
    86
  from x show "- x = - 1 \<cdot> x" by (simp add: negate_eq1)
wenzelm@13515
    87
  from x y show "x - y = x + - y" by (simp add: diff_eq1)
wenzelm@9035
    88
qed
wenzelm@7535
    89
wenzelm@13515
    90
wenzelm@9035
    91
text {* The subspace relation is reflexive. *}
wenzelm@7917
    92
wenzelm@13515
    93
lemma (in vectorspace) subspace_refl [intro]: "V \<unlhd> V"
wenzelm@10687
    94
proof
wenzelm@13515
    95
  show "V \<noteq> {}" ..
wenzelm@10687
    96
  show "V \<subseteq> V" ..
wenzelm@13515
    97
  fix x y assume x: "x \<in> V" and y: "y \<in> V"
wenzelm@13515
    98
  fix a :: real
wenzelm@13515
    99
  from x y show "x + y \<in> V" by simp
wenzelm@13515
   100
  from x show "a \<cdot> x \<in> V" by simp
wenzelm@9035
   101
qed
wenzelm@7535
   102
wenzelm@9035
   103
text {* The subspace relation is transitive. *}
wenzelm@7917
   104
wenzelm@13515
   105
lemma (in vectorspace) subspace_trans [trans]:
wenzelm@13515
   106
  "U \<unlhd> V \<Longrightarrow> V \<unlhd> W \<Longrightarrow> U \<unlhd> W"
wenzelm@10687
   107
proof
wenzelm@13515
   108
  assume uv: "U \<unlhd> V" and vw: "V \<unlhd> W"
wenzelm@13515
   109
  from uv show "U \<noteq> {}" by (rule subspace.non_empty)
wenzelm@13515
   110
  show "U \<subseteq> W"
wenzelm@13515
   111
  proof -
wenzelm@13515
   112
    from uv have "U \<subseteq> V" by (rule subspace.subset)
wenzelm@13515
   113
    also from vw have "V \<subseteq> W" by (rule subspace.subset)
wenzelm@13515
   114
    finally show ?thesis .
wenzelm@9035
   115
  qed
wenzelm@13515
   116
  fix x y assume x: "x \<in> U" and y: "y \<in> U"
wenzelm@13515
   117
  from uv and x y show "x + y \<in> U" by (rule subspace.add_closed)
wenzelm@13515
   118
  from uv and x show "\<And>a. a \<cdot> x \<in> U" by (rule subspace.mult_closed)
wenzelm@9035
   119
qed
wenzelm@7535
   120
wenzelm@7535
   121
wenzelm@9035
   122
subsection {* Linear closure *}
wenzelm@7808
   123
wenzelm@10687
   124
text {*
wenzelm@10687
   125
  The \emph{linear closure} of a vector @{text x} is the set of all
wenzelm@10687
   126
  scalar multiples of @{text x}.
wenzelm@10687
   127
*}
wenzelm@7535
   128
wenzelm@7535
   129
constdefs
wenzelm@13515
   130
  lin :: "('a::{minus, plus, zero}) \<Rightarrow> 'a set"
wenzelm@10687
   131
  "lin x \<equiv> {a \<cdot> x | a. True}"
wenzelm@7535
   132
wenzelm@13515
   133
lemma linI [intro]: "y = a \<cdot> x \<Longrightarrow> y \<in> lin x"
wenzelm@13515
   134
  by (unfold lin_def) blast
wenzelm@7535
   135
wenzelm@13515
   136
lemma linI' [iff]: "a \<cdot> x \<in> lin x"
wenzelm@13515
   137
  by (unfold lin_def) blast
wenzelm@13515
   138
wenzelm@13515
   139
lemma linE [elim]:
wenzelm@13515
   140
    "x \<in> lin v \<Longrightarrow> (\<And>a::real. x = a \<cdot> v \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@13515
   141
  by (unfold lin_def) blast
wenzelm@13515
   142
wenzelm@7656
   143
wenzelm@9035
   144
text {* Every vector is contained in its linear closure. *}
wenzelm@7917
   145
wenzelm@13515
   146
lemma (in vectorspace) x_lin_x [iff]: "x \<in> V \<Longrightarrow> x \<in> lin x"
wenzelm@13515
   147
proof -
wenzelm@13515
   148
  assume "x \<in> V"
wenzelm@13515
   149
  hence "x = 1 \<cdot> x" by simp
wenzelm@13515
   150
  also have "\<dots> \<in> lin x" ..
wenzelm@13515
   151
  finally show ?thesis .
wenzelm@13515
   152
qed
wenzelm@13515
   153
wenzelm@13515
   154
lemma (in vectorspace) "0_lin_x" [iff]: "x \<in> V \<Longrightarrow> 0 \<in> lin x"
wenzelm@13515
   155
proof
wenzelm@13515
   156
  assume "x \<in> V"
wenzelm@13515
   157
  thus "0 = 0 \<cdot> x" by simp
wenzelm@13515
   158
qed
wenzelm@7535
   159
wenzelm@9035
   160
text {* Any linear closure is a subspace. *}
wenzelm@7917
   161
wenzelm@13515
   162
lemma (in vectorspace) lin_subspace [intro]:
wenzelm@13515
   163
  "x \<in> V \<Longrightarrow> lin x \<unlhd> V"
wenzelm@9035
   164
proof
wenzelm@13515
   165
  assume x: "x \<in> V"
wenzelm@13515
   166
  thus "lin x \<noteq> {}" by (auto simp add: x_lin_x)
wenzelm@10687
   167
  show "lin x \<subseteq> V"
wenzelm@13515
   168
  proof
wenzelm@13515
   169
    fix x' assume "x' \<in> lin x"
wenzelm@13515
   170
    then obtain a where "x' = a \<cdot> x" ..
wenzelm@13515
   171
    with x show "x' \<in> V" by simp
wenzelm@9035
   172
  qed
wenzelm@13515
   173
  fix x' x'' assume x': "x' \<in> lin x" and x'': "x'' \<in> lin x"
wenzelm@13515
   174
  show "x' + x'' \<in> lin x"
wenzelm@13515
   175
  proof -
wenzelm@13515
   176
    from x' obtain a' where "x' = a' \<cdot> x" ..
wenzelm@13515
   177
    moreover from x'' obtain a'' where "x'' = a'' \<cdot> x" ..
wenzelm@13515
   178
    ultimately have "x' + x'' = (a' + a'') \<cdot> x"
wenzelm@13515
   179
      using x by (simp add: distrib)
wenzelm@13515
   180
    also have "\<dots> \<in> lin x" ..
wenzelm@13515
   181
    finally show ?thesis .
wenzelm@9035
   182
  qed
wenzelm@13515
   183
  fix a :: real
wenzelm@13515
   184
  show "a \<cdot> x' \<in> lin x"
wenzelm@13515
   185
  proof -
wenzelm@13515
   186
    from x' obtain a' where "x' = a' \<cdot> x" ..
wenzelm@13515
   187
    with x have "a \<cdot> x' = (a * a') \<cdot> x" by (simp add: mult_assoc)
wenzelm@13515
   188
    also have "\<dots> \<in> lin x" ..
wenzelm@13515
   189
    finally show ?thesis .
wenzelm@10687
   190
  qed
wenzelm@9035
   191
qed
wenzelm@7535
   192
wenzelm@13515
   193
wenzelm@9035
   194
text {* Any linear closure is a vector space. *}
wenzelm@7917
   195
wenzelm@13515
   196
lemma (in vectorspace) lin_vectorspace [intro]:
wenzelm@13515
   197
    "x \<in> V \<Longrightarrow> vectorspace (lin x)"
wenzelm@13515
   198
  by (rule subvectorspace.vectorspace) (rule lin_subspace)
wenzelm@7808
   199
wenzelm@7808
   200
wenzelm@9035
   201
subsection {* Sum of two vectorspaces *}
wenzelm@7808
   202
wenzelm@10687
   203
text {*
wenzelm@10687
   204
  The \emph{sum} of two vectorspaces @{text U} and @{text V} is the
wenzelm@10687
   205
  set of all sums of elements from @{text U} and @{text V}.
wenzelm@10687
   206
*}
wenzelm@7535
   207
wenzelm@10309
   208
instance set :: (plus) plus ..
wenzelm@7917
   209
wenzelm@10687
   210
defs (overloaded)
wenzelm@13515
   211
  sum_def: "U + V \<equiv> {u + v | u v. u \<in> U \<and> v \<in> V}"
wenzelm@7917
   212
wenzelm@13515
   213
lemma sumE [elim]:
wenzelm@13515
   214
    "x \<in> U + V \<Longrightarrow> (\<And>u v. x = u + v \<Longrightarrow> u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@13515
   215
  by (unfold sum_def) blast
wenzelm@7535
   216
wenzelm@13515
   217
lemma sumI [intro]:
wenzelm@13515
   218
    "u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> x = u + v \<Longrightarrow> x \<in> U + V"
wenzelm@13515
   219
  by (unfold sum_def) blast
wenzelm@7566
   220
wenzelm@13515
   221
lemma sumI' [intro]:
wenzelm@13515
   222
    "u \<in> U \<Longrightarrow> v \<in> V \<Longrightarrow> u + v \<in> U + V"
wenzelm@13515
   223
  by (unfold sum_def) blast
wenzelm@7917
   224
wenzelm@10687
   225
text {* @{text U} is a subspace of @{text "U + V"}. *}
wenzelm@7535
   226
wenzelm@13515
   227
lemma subspace_sum1 [iff]:
wenzelm@13515
   228
  includes vectorspace U + vectorspace V
wenzelm@13515
   229
  shows "U \<unlhd> U + V"
wenzelm@10687
   230
proof
wenzelm@13515
   231
  show "U \<noteq> {}" ..
wenzelm@10687
   232
  show "U \<subseteq> U + V"
wenzelm@13515
   233
  proof
wenzelm@13515
   234
    fix x assume x: "x \<in> U"
wenzelm@13515
   235
    moreover have "0 \<in> V" ..
wenzelm@13515
   236
    ultimately have "x + 0 \<in> U + V" ..
wenzelm@13515
   237
    with x show "x \<in> U + V" by simp
wenzelm@9035
   238
  qed
wenzelm@13515
   239
  fix x y assume x: "x \<in> U" and "y \<in> U"
wenzelm@13515
   240
  thus "x + y \<in> U" by simp
wenzelm@13515
   241
  from x show "\<And>a. a \<cdot> x \<in> U" by simp
wenzelm@9035
   242
qed
wenzelm@7535
   243
wenzelm@13515
   244
text {* The sum of two subspaces is again a subspace. *}
wenzelm@7917
   245
wenzelm@13515
   246
lemma sum_subspace [intro?]:
wenzelm@13515
   247
  includes subvectorspace U E + subvectorspace V E
wenzelm@13515
   248
  shows "U + V \<unlhd> E"
wenzelm@10687
   249
proof
wenzelm@13515
   250
  have "0 \<in> U + V"
wenzelm@13515
   251
  proof
bauerg@9374
   252
    show "0 \<in> U" ..
bauerg@9374
   253
    show "0 \<in> V" ..
wenzelm@13515
   254
    show "(0::'a) = 0 + 0" by simp
wenzelm@9035
   255
  qed
wenzelm@13515
   256
  thus "U + V \<noteq> {}" by blast
wenzelm@10687
   257
  show "U + V \<subseteq> E"
wenzelm@13515
   258
  proof
wenzelm@13515
   259
    fix x assume "x \<in> U + V"
wenzelm@13515
   260
    then obtain u v where x: "x = u + v" and
wenzelm@13515
   261
      u: "u \<in> U" and v: "v \<in> V" ..
wenzelm@13515
   262
    have "U \<unlhd> E" . with u have "u \<in> E" ..
wenzelm@13515
   263
    moreover have "V \<unlhd> E" . with v have "v \<in> E" ..
wenzelm@13515
   264
    ultimately show "x \<in> E" using x by simp
wenzelm@9035
   265
  qed
wenzelm@13515
   266
  fix x y assume x: "x \<in> U + V" and y: "y \<in> U + V"
wenzelm@13515
   267
  show "x + y \<in> U + V"
wenzelm@13515
   268
  proof -
wenzelm@13515
   269
    from x obtain ux vx where "x = ux + vx" and "ux \<in> U" and "vx \<in> V" ..
wenzelm@13515
   270
    moreover
wenzelm@13515
   271
    from y obtain uy vy where "y = uy + vy" and "uy \<in> U" and "vy \<in> V" ..
wenzelm@13515
   272
    ultimately
wenzelm@13515
   273
    have "ux + uy \<in> U"
wenzelm@13515
   274
      and "vx + vy \<in> V"
wenzelm@13515
   275
      and "x + y = (ux + uy) + (vx + vy)"
wenzelm@13515
   276
      using x y by (simp_all add: add_ac)
wenzelm@13515
   277
    thus ?thesis ..
wenzelm@9035
   278
  qed
wenzelm@13515
   279
  fix a show "a \<cdot> x \<in> U + V"
wenzelm@13515
   280
  proof -
wenzelm@13515
   281
    from x obtain u v where "x = u + v" and "u \<in> U" and "v \<in> V" ..
wenzelm@13515
   282
    hence "a \<cdot> u \<in> U" and "a \<cdot> v \<in> V"
wenzelm@13515
   283
      and "a \<cdot> x = (a \<cdot> u) + (a \<cdot> v)" by (simp_all add: distrib)
wenzelm@13515
   284
    thus ?thesis ..
wenzelm@9035
   285
  qed
wenzelm@9035
   286
qed
wenzelm@7535
   287
wenzelm@9035
   288
text{* The sum of two subspaces is a vectorspace. *}
wenzelm@7917
   289
wenzelm@13515
   290
lemma sum_vs [intro?]:
wenzelm@13515
   291
    "U \<unlhd> E \<Longrightarrow> V \<unlhd> E \<Longrightarrow> vectorspace E \<Longrightarrow> vectorspace (U + V)"
wenzelm@13515
   292
  by (rule subvectorspace.vectorspace) (rule sum_subspace)
wenzelm@7535
   293
wenzelm@7808
   294
wenzelm@9035
   295
subsection {* Direct sums *}
wenzelm@7808
   296
wenzelm@10687
   297
text {*
wenzelm@10687
   298
  The sum of @{text U} and @{text V} is called \emph{direct}, iff the
wenzelm@10687
   299
  zero element is the only common element of @{text U} and @{text
wenzelm@10687
   300
  V}. For every element @{text x} of the direct sum of @{text U} and
wenzelm@10687
   301
  @{text V} the decomposition in @{text "x = u + v"} with
wenzelm@10687
   302
  @{text "u \<in> U"} and @{text "v \<in> V"} is unique.
wenzelm@10687
   303
*}
wenzelm@7808
   304
wenzelm@10687
   305
lemma decomp:
wenzelm@13515
   306
  includes vectorspace E + subspace U E + subspace V E
wenzelm@13515
   307
  assumes direct: "U \<inter> V = {0}"
wenzelm@13515
   308
    and u1: "u1 \<in> U" and u2: "u2 \<in> U"
wenzelm@13515
   309
    and v1: "v1 \<in> V" and v2: "v2 \<in> V"
wenzelm@13515
   310
    and sum: "u1 + v1 = u2 + v2"
wenzelm@13515
   311
  shows "u1 = u2 \<and> v1 = v2"
wenzelm@10687
   312
proof
wenzelm@13515
   313
  have U: "vectorspace U" by (rule subvectorspace.vectorspace)
wenzelm@13515
   314
  have V: "vectorspace V" by (rule subvectorspace.vectorspace)
wenzelm@13515
   315
  from u1 u2 v1 v2 and sum have eq: "u1 - u2 = v2 - v1"
wenzelm@13515
   316
    by (simp add: add_diff_swap)
wenzelm@13515
   317
  from u1 u2 have u: "u1 - u2 \<in> U"
wenzelm@13515
   318
    by (rule vectorspace.diff_closed [OF U])
wenzelm@13515
   319
  with eq have v': "v2 - v1 \<in> U" by (simp only:)
wenzelm@13515
   320
  from v2 v1 have v: "v2 - v1 \<in> V"
wenzelm@13515
   321
    by (rule vectorspace.diff_closed [OF V])
wenzelm@13515
   322
  with eq have u': " u1 - u2 \<in> V" by (simp only:)
wenzelm@10687
   323
wenzelm@9035
   324
  show "u1 = u2"
wenzelm@13515
   325
  proof (rule add_minus_eq)
bauerg@9374
   326
    show "u1 \<in> E" ..
bauerg@9374
   327
    show "u2 \<in> E" ..
wenzelm@13515
   328
    from u u' and direct show "u1 - u2 = 0" by blast
wenzelm@9035
   329
  qed
wenzelm@9035
   330
  show "v1 = v2"
wenzelm@13515
   331
  proof (rule add_minus_eq [symmetric])
bauerg@9374
   332
    show "v1 \<in> E" ..
bauerg@9374
   333
    show "v2 \<in> E" ..
wenzelm@13515
   334
    from v v' and direct show "v2 - v1 = 0" by blast
wenzelm@9035
   335
  qed
wenzelm@9035
   336
qed
wenzelm@7656
   337
wenzelm@10687
   338
text {*
wenzelm@10687
   339
  An application of the previous lemma will be used in the proof of
wenzelm@10687
   340
  the Hahn-Banach Theorem (see page \pageref{decomp-H-use}): for any
wenzelm@10687
   341
  element @{text "y + a \<cdot> x\<^sub>0"} of the direct sum of a
wenzelm@10687
   342
  vectorspace @{text H} and the linear closure of @{text "x\<^sub>0"}
wenzelm@10687
   343
  the components @{text "y \<in> H"} and @{text a} are uniquely
wenzelm@10687
   344
  determined.
wenzelm@10687
   345
*}
wenzelm@7917
   346
wenzelm@10687
   347
lemma decomp_H':
wenzelm@13515
   348
  includes vectorspace E + subvectorspace H E
wenzelm@13515
   349
  assumes y1: "y1 \<in> H" and y2: "y2 \<in> H"
wenzelm@13515
   350
    and x': "x' \<notin> H"  "x' \<in> E"  "x' \<noteq> 0"
wenzelm@13515
   351
    and eq: "y1 + a1 \<cdot> x' = y2 + a2 \<cdot> x'"
wenzelm@13515
   352
  shows "y1 = y2 \<and> a1 = a2"
wenzelm@9035
   353
proof
bauerg@9374
   354
  have c: "y1 = y2 \<and> a1 \<cdot> x' = a2 \<cdot> x'"
wenzelm@10687
   355
  proof (rule decomp)
wenzelm@10687
   356
    show "a1 \<cdot> x' \<in> lin x'" ..
bauerg@9374
   357
    show "a2 \<cdot> x' \<in> lin x'" ..
wenzelm@13515
   358
    show "H \<inter> lin x' = {0}"
wenzelm@9035
   359
    proof
wenzelm@10687
   360
      show "H \<inter> lin x' \<subseteq> {0}"
wenzelm@13515
   361
      proof
wenzelm@13515
   362
        fix x assume x: "x \<in> H \<inter> lin x'"
wenzelm@13515
   363
        then obtain a where xx': "x = a \<cdot> x'"
wenzelm@13515
   364
          by blast
wenzelm@13515
   365
        have "x = 0"
wenzelm@13515
   366
        proof cases
wenzelm@13515
   367
          assume "a = 0"
wenzelm@13515
   368
          with xx' and x' show ?thesis by simp
wenzelm@13515
   369
        next
wenzelm@13515
   370
          assume a: "a \<noteq> 0"
wenzelm@13515
   371
          from x have "x \<in> H" ..
wenzelm@13515
   372
          with xx' have "inverse a \<cdot> a \<cdot> x' \<in> H" by simp
wenzelm@13515
   373
          with a and x' have "x' \<in> H" by (simp add: mult_assoc2)
wenzelm@13515
   374
          thus ?thesis by contradiction
wenzelm@13515
   375
        qed
wenzelm@13515
   376
        thus "x \<in> {0}" ..
wenzelm@9035
   377
      qed
wenzelm@10687
   378
      show "{0} \<subseteq> H \<inter> lin x'"
wenzelm@9035
   379
      proof -
wenzelm@13515
   380
        have "0 \<in> H" ..
wenzelm@13515
   381
        moreover have "0 \<in> lin x'" ..
wenzelm@13515
   382
        ultimately show ?thesis by blast
wenzelm@9035
   383
      qed
wenzelm@9035
   384
    qed
wenzelm@13515
   385
    show "lin x' \<unlhd> E" ..
wenzelm@9035
   386
  qed
wenzelm@13515
   387
  thus "y1 = y2" ..
wenzelm@13515
   388
  from c have "a1 \<cdot> x' = a2 \<cdot> x'" ..
wenzelm@13515
   389
  with x' show "a1 = a2" by (simp add: mult_right_cancel)
wenzelm@9035
   390
qed
wenzelm@7535
   391
wenzelm@10687
   392
text {*
wenzelm@10687
   393
  Since for any element @{text "y + a \<cdot> x'"} of the direct sum of a
wenzelm@10687
   394
  vectorspace @{text H} and the linear closure of @{text x'} the
wenzelm@10687
   395
  components @{text "y \<in> H"} and @{text a} are unique, it follows from
wenzelm@10687
   396
  @{text "y \<in> H"} that @{text "a = 0"}.
wenzelm@10687
   397
*}
wenzelm@7917
   398
wenzelm@10687
   399
lemma decomp_H'_H:
wenzelm@13515
   400
  includes vectorspace E + subvectorspace H E
wenzelm@13515
   401
  assumes t: "t \<in> H"
wenzelm@13515
   402
    and x': "x' \<notin> H"  "x' \<in> E"  "x' \<noteq> 0"
wenzelm@13515
   403
  shows "(SOME (y, a). t = y + a \<cdot> x' \<and> y \<in> H) = (t, 0)"
wenzelm@13515
   404
proof (rule, simp_all only: split_paired_all split_conv)
wenzelm@13515
   405
  from t x' show "t = t + 0 \<cdot> x' \<and> t \<in> H" by simp
wenzelm@13515
   406
  fix y and a assume ya: "t = y + a \<cdot> x' \<and> y \<in> H"
wenzelm@13515
   407
  have "y = t \<and> a = 0"
wenzelm@13515
   408
  proof (rule decomp_H')
wenzelm@13515
   409
    from ya x' show "y + a \<cdot> x' = t + 0 \<cdot> x'" by simp
wenzelm@13515
   410
    from ya show "y \<in> H" ..
wenzelm@13515
   411
  qed
wenzelm@13515
   412
  with t x' show "(y, a) = (y + a \<cdot> x', 0)" by simp
wenzelm@13515
   413
qed
wenzelm@7535
   414
wenzelm@10687
   415
text {*
wenzelm@10687
   416
  The components @{text "y \<in> H"} and @{text a} in @{text "y + a \<cdot> x'"}
wenzelm@10687
   417
  are unique, so the function @{text h'} defined by
wenzelm@10687
   418
  @{text "h' (y + a \<cdot> x') = h y + a \<cdot> \<xi>"} is definite.
wenzelm@10687
   419
*}
wenzelm@7917
   420
bauerg@9374
   421
lemma h'_definite:
wenzelm@13515
   422
  includes var H
wenzelm@13515
   423
  assumes h'_def:
wenzelm@13515
   424
    "h' \<equiv> (\<lambda>x. let (y, a) = SOME (y, a). (x = y + a \<cdot> x' \<and> y \<in> H)
wenzelm@13515
   425
                in (h y) + a * xi)"
wenzelm@13515
   426
    and x: "x = y + a \<cdot> x'"
wenzelm@13515
   427
  includes vectorspace E + subvectorspace H E
wenzelm@13515
   428
  assumes y: "y \<in> H"
wenzelm@13515
   429
    and x': "x' \<notin> H"  "x' \<in> E"  "x' \<noteq> 0"
wenzelm@13515
   430
  shows "h' x = h y + a * xi"
wenzelm@10687
   431
proof -
wenzelm@13515
   432
  from x y x' have "x \<in> H + lin x'" by auto
wenzelm@13515
   433
  have "\<exists>!p. (\<lambda>(y, a). x = y + a \<cdot> x' \<and> y \<in> H) p" (is "\<exists>!p. ?P p")
wenzelm@9035
   434
  proof
wenzelm@13515
   435
    from x y show "\<exists>p. ?P p" by blast
wenzelm@13515
   436
    fix p q assume p: "?P p" and q: "?P q"
wenzelm@13515
   437
    show "p = q"
wenzelm@9035
   438
    proof -
wenzelm@13515
   439
      from p have xp: "x = fst p + snd p \<cdot> x' \<and> fst p \<in> H"
wenzelm@13515
   440
        by (cases p) simp
wenzelm@13515
   441
      from q have xq: "x = fst q + snd q \<cdot> x' \<and> fst q \<in> H"
wenzelm@13515
   442
        by (cases q) simp
wenzelm@13515
   443
      have "fst p = fst q \<and> snd p = snd q"
wenzelm@13515
   444
      proof (rule decomp_H')
wenzelm@13515
   445
        from xp show "fst p \<in> H" ..
wenzelm@13515
   446
        from xq show "fst q \<in> H" ..
wenzelm@13515
   447
        from xp and xq show "fst p + snd p \<cdot> x' = fst q + snd q \<cdot> x'"
wenzelm@13515
   448
          by simp
wenzelm@13515
   449
        apply_end assumption+
wenzelm@13515
   450
      qed
wenzelm@13515
   451
      thus ?thesis by (cases p, cases q) simp
wenzelm@9035
   452
    qed
wenzelm@9035
   453
  qed
wenzelm@10687
   454
  hence eq: "(SOME (y, a). x = y + a \<cdot> x' \<and> y \<in> H) = (y, a)"
wenzelm@13515
   455
    by (rule some1_equality) (simp add: x y)
wenzelm@13515
   456
  with h'_def show "h' x = h y + a * xi" by (simp add: Let_def)
wenzelm@9035
   457
qed
wenzelm@7535
   458
wenzelm@10687
   459
end