author  haftmann 
Mon, 06 Dec 2010 09:19:10 +0100  
changeset 40968  a6fcd305f7dc 
parent 40610  70776ecfe324 
child 41372  551eb49a6e91 
permissions  rwrr 
10213  1 
(* Title: HOL/Sum_Type.thy 
2 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory 

3 
Copyright 1992 University of Cambridge 

4 
*) 

5 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

6 
header{*The Disjoint Sum of Two Types*} 
10213  7 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

8 
theory Sum_Type 
33961  9 
imports Typedef Inductive Fun 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

10 
begin 
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

11 

33962  12 
subsection {* Construction of the sum type and its basic abstract operations *} 
10213  13 

33962  14 
definition Inl_Rep :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where 
15 
"Inl_Rep a x y p \<longleftrightarrow> x = a \<and> p" 

10213  16 

33962  17 
definition Inr_Rep :: "'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where 
18 
"Inr_Rep b x y p \<longleftrightarrow> y = b \<and> \<not> p" 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

19 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37388
diff
changeset

20 
typedef ('a, 'b) sum (infixr "+" 10) = "{f. (\<exists>a. f = Inl_Rep (a::'a)) \<or> (\<exists>b. f = Inr_Rep (b::'b))}" 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

21 
by auto 
10213  22 

37388  23 
lemma Inl_RepI: "Inl_Rep a \<in> sum" 
24 
by (auto simp add: sum_def) 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

25 

37388  26 
lemma Inr_RepI: "Inr_Rep b \<in> sum" 
27 
by (auto simp add: sum_def) 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

28 

37388  29 
lemma inj_on_Abs_sum: "A \<subseteq> sum \<Longrightarrow> inj_on Abs_sum A" 
30 
by (rule inj_on_inverseI, rule Abs_sum_inverse) auto 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

31 

33962  32 
lemma Inl_Rep_inject: "inj_on Inl_Rep A" 
33 
proof (rule inj_onI) 

34 
show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c" 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39198
diff
changeset

35 
by (auto simp add: Inl_Rep_def fun_eq_iff) 
33962  36 
qed 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

37 

33962  38 
lemma Inr_Rep_inject: "inj_on Inr_Rep A" 
39 
proof (rule inj_onI) 

40 
show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d" 

39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39198
diff
changeset

41 
by (auto simp add: Inr_Rep_def fun_eq_iff) 
33962  42 
qed 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

43 

33962  44 
lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39198
diff
changeset

45 
by (auto simp add: Inl_Rep_def Inr_Rep_def fun_eq_iff) 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

46 

33962  47 
definition Inl :: "'a \<Rightarrow> 'a + 'b" where 
37388  48 
"Inl = Abs_sum \<circ> Inl_Rep" 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

49 

33962  50 
definition Inr :: "'b \<Rightarrow> 'a + 'b" where 
37388  51 
"Inr = Abs_sum \<circ> Inr_Rep" 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

52 

29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset

53 
lemma inj_Inl [simp]: "inj_on Inl A" 
37388  54 
by (auto simp add: Inl_def intro!: comp_inj_on Inl_Rep_inject inj_on_Abs_sum Inl_RepI) 
29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset

55 

33962  56 
lemma Inl_inject: "Inl x = Inl y \<Longrightarrow> x = y" 
57 
using inj_Inl by (rule injD) 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

58 

29025
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
huffman
parents:
28524
diff
changeset

59 
lemma inj_Inr [simp]: "inj_on Inr A" 
37388  60 
by (auto simp add: Inr_def intro!: comp_inj_on Inr_Rep_inject inj_on_Abs_sum Inr_RepI) 
15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

61 

33962  62 
lemma Inr_inject: "Inr x = Inr y \<Longrightarrow> x = y" 
63 
using inj_Inr by (rule injD) 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

64 

33962  65 
lemma Inl_not_Inr: "Inl a \<noteq> Inr b" 
66 
proof  

37388  67 
from Inl_RepI [of a] Inr_RepI [of b] have "{Inl_Rep a, Inr_Rep b} \<subseteq> sum" by auto 
68 
with inj_on_Abs_sum have "inj_on Abs_sum {Inl_Rep a, Inr_Rep b}" . 

69 
with Inl_Rep_not_Inr_Rep [of a b] inj_on_contraD have "Abs_sum (Inl_Rep a) \<noteq> Abs_sum (Inr_Rep b)" by auto 

33962  70 
then show ?thesis by (simp add: Inl_def Inr_def) 
71 
qed 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

72 

33962  73 
lemma Inr_not_Inl: "Inr b \<noteq> Inl a" 
74 
using Inl_not_Inr by (rule not_sym) 

15391
797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

75 

797ed46d724b
converted Sum_Type to newstyle theory: Inl, Inr are NO LONGER global
paulson
parents:
11609
diff
changeset

76 
lemma sumE: 
33962  77 
assumes "\<And>x::'a. s = Inl x \<Longrightarrow> P" 
78 
and "\<And>y::'b. s = Inr y \<Longrightarrow> P" 

79 
shows P 

37388  80 
proof (rule Abs_sum_cases [of s]) 
33962  81 
fix f 
37388  82 
assume "s = Abs_sum f" and "f \<in> sum" 
83 
with assms show P by (auto simp add: sum_def Inl_def Inr_def) 

33962  84 
qed 
33961  85 

37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37388
diff
changeset

86 
rep_datatype Inl Inr 
33961  87 
proof  
88 
fix P 

89 
fix s :: "'a + 'b" 

90 
assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)" 

91 
then show "P s" by (auto intro: sumE [of s]) 

33962  92 
qed (auto dest: Inl_inject Inr_inject simp add: Inl_not_Inr) 
93 

40610  94 
primrec sum_map :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd" where 
95 
"sum_map f1 f2 (Inl a) = Inl (f1 a)" 

96 
 "sum_map f1 f2 (Inr a) = Inr (f2 a)" 

97 

40968
a6fcd305f7dc
replace `type_mapper` by the more adequate `type_lifting`
haftmann
parents:
40610
diff
changeset

98 
type_lifting sum_map proof  
40610  99 
fix f g h i s 
100 
show "sum_map f g (sum_map h i s) = sum_map (\<lambda>x. f (h x)) (\<lambda>x. g (i x)) s" 

101 
by (cases s) simp_all 

102 
next 

103 
fix s 

104 
show "sum_map (\<lambda>x. x) (\<lambda>x. x) s = s" 

105 
by (cases s) simp_all 

106 
qed 

107 

33961  108 

33962  109 
subsection {* Projections *} 
110 

111 
lemma sum_case_KK [simp]: "sum_case (\<lambda>x. a) (\<lambda>x. a) = (\<lambda>x. a)" 

33961  112 
by (rule ext) (simp split: sum.split) 
113 

33962  114 
lemma surjective_sum: "sum_case (\<lambda>x::'a. f (Inl x)) (\<lambda>y::'b. f (Inr y)) = f" 
115 
proof 

116 
fix s :: "'a + 'b" 

117 
show "(case s of Inl (x\<Colon>'a) \<Rightarrow> f (Inl x)  Inr (y\<Colon>'b) \<Rightarrow> f (Inr y)) = f s" 

118 
by (cases s) simp_all 

119 
qed 

33961  120 

33962  121 
lemma sum_case_inject: 
122 
assumes a: "sum_case f1 f2 = sum_case g1 g2" 

123 
assumes r: "f1 = g1 \<Longrightarrow> f2 = g2 \<Longrightarrow> P" 

124 
shows P 

125 
proof (rule r) 

126 
show "f1 = g1" proof 

127 
fix x :: 'a 

128 
from a have "sum_case f1 f2 (Inl x) = sum_case g1 g2 (Inl x)" by simp 

129 
then show "f1 x = g1 x" by simp 

130 
qed 

131 
show "f2 = g2" proof 

132 
fix y :: 'b 

133 
from a have "sum_case f1 f2 (Inr y) = sum_case g1 g2 (Inr y)" by simp 

134 
then show "f2 y = g2 y" by simp 

135 
qed 

136 
qed 

137 

138 
lemma sum_case_weak_cong: 

139 
"s = t \<Longrightarrow> sum_case f g s = sum_case f g t" 

33961  140 
 {* Prevents simplification of @{text f} and @{text g}: much faster. *} 
141 
by simp 

142 

33962  143 
primrec Projl :: "'a + 'b \<Rightarrow> 'a" where 
144 
Projl_Inl: "Projl (Inl x) = x" 

145 

146 
primrec Projr :: "'a + 'b \<Rightarrow> 'b" where 

147 
Projr_Inr: "Projr (Inr x) = x" 

148 

149 
primrec Suml :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where 

150 
"Suml f (Inl x) = f x" 

151 

152 
primrec Sumr :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where 

153 
"Sumr f (Inr x) = f x" 

154 

155 
lemma Suml_inject: 

156 
assumes "Suml f = Suml g" shows "f = g" 

157 
proof 

158 
fix x :: 'a 

159 
let ?s = "Inl x \<Colon> 'a + 'b" 

160 
from assms have "Suml f ?s = Suml g ?s" by simp 

161 
then show "f x = g x" by simp 

33961  162 
qed 
163 

33962  164 
lemma Sumr_inject: 
165 
assumes "Sumr f = Sumr g" shows "f = g" 

166 
proof 

167 
fix x :: 'b 

168 
let ?s = "Inr x \<Colon> 'a + 'b" 

169 
from assms have "Sumr f ?s = Sumr g ?s" by simp 

170 
then show "f x = g x" by simp 

171 
qed 

33961  172 

33995  173 

33962  174 
subsection {* The Disjoint Sum of Sets *} 
33961  175 

33962  176 
definition Plus :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a + 'b) set" (infixr "<+>" 65) where 
177 
"A <+> B = Inl ` A \<union> Inr ` B" 

178 

40271  179 
hide_const (open) Plus "Valuable identifier" 
180 

33962  181 
lemma InlI [intro!]: "a \<in> A \<Longrightarrow> Inl a \<in> A <+> B" 
182 
by (simp add: Plus_def) 

33961  183 

33962  184 
lemma InrI [intro!]: "b \<in> B \<Longrightarrow> Inr b \<in> A <+> B" 
185 
by (simp add: Plus_def) 

33961  186 

33962  187 
text {* Exhaustion rule for sums, a degenerate form of induction *} 
188 

189 
lemma PlusE [elim!]: 

190 
"u \<in> A <+> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> u = Inl x \<Longrightarrow> P) \<Longrightarrow> (\<And>y. y \<in> B \<Longrightarrow> u = Inr y \<Longrightarrow> P) \<Longrightarrow> P" 

191 
by (auto simp add: Plus_def) 

33961  192 

33962  193 
lemma Plus_eq_empty_conv [simp]: "A <+> B = {} \<longleftrightarrow> A = {} \<and> B = {}" 
194 
by auto 

33961  195 

33962  196 
lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV" 
39302
d7728f65b353
renamed lemmas: ext_iff > fun_eq_iff, set_ext_iff > set_eq_iff, set_ext > set_eqI
nipkow
parents:
39198
diff
changeset

197 
proof (rule set_eqI) 
33962  198 
fix u :: "'a + 'b" 
199 
show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto 

200 
qed 

33961  201 

36176
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact'  frees some popular keywords;
wenzelm
parents:
33995
diff
changeset

202 
hide_const (open) Suml Sumr Projl Projr 
33961  203 

10213  204 
end 