src/HOL/Set.ML
author nipkow
Sun Nov 16 16:18:31 1997 +0100 (1997-11-16)
changeset 4231 a73f5a63f197
parent 4229 551684f275b9
child 4240 8ba60a4cd380
permissions -rw-r--r--
Removed
"(ALL x:f``A. P x) = (ALL x:A. P(f x))",
"(EX x:f``A. P x) = (EX x:A. P(f x))",
again, because they were already there and added
"(UN x:f``A. B x) = (UN a:A. B(f a))"
"(INT x:f``A. B x) = (INT a:A. B(f a))"
instead.
clasohm@1465
     1
(*  Title:      HOL/set
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@923
     4
    Copyright   1991  University of Cambridge
clasohm@923
     5
paulson@1985
     6
Set theory for higher-order logic.  A set is simply a predicate.
clasohm@923
     7
*)
clasohm@923
     8
clasohm@923
     9
open Set;
clasohm@923
    10
nipkow@1548
    11
section "Relating predicates and sets";
nipkow@1548
    12
paulson@3469
    13
Addsimps [Collect_mem_eq];
paulson@3469
    14
AddIffs  [mem_Collect_eq];
paulson@2499
    15
wenzelm@3842
    16
goal Set.thy "!!a. P(a) ==> a : {x. P(x)}";
paulson@2499
    17
by (Asm_simp_tac 1);
clasohm@923
    18
qed "CollectI";
clasohm@923
    19
wenzelm@3842
    20
val prems = goal Set.thy "!!a. a : {x. P(x)} ==> P(a)";
paulson@2499
    21
by (Asm_full_simp_tac 1);
clasohm@923
    22
qed "CollectD";
clasohm@923
    23
clasohm@923
    24
val [prem] = goal Set.thy "[| !!x. (x:A) = (x:B) |] ==> A = B";
clasohm@923
    25
by (rtac (prem RS ext RS arg_cong RS box_equals) 1);
clasohm@923
    26
by (rtac Collect_mem_eq 1);
clasohm@923
    27
by (rtac Collect_mem_eq 1);
clasohm@923
    28
qed "set_ext";
clasohm@923
    29
clasohm@923
    30
val [prem] = goal Set.thy "[| !!x. P(x)=Q(x) |] ==> {x. P(x)} = {x. Q(x)}";
clasohm@923
    31
by (rtac (prem RS ext RS arg_cong) 1);
clasohm@923
    32
qed "Collect_cong";
clasohm@923
    33
clasohm@923
    34
val CollectE = make_elim CollectD;
clasohm@923
    35
paulson@2499
    36
AddSIs [CollectI];
paulson@2499
    37
AddSEs [CollectE];
paulson@2499
    38
paulson@2499
    39
nipkow@1548
    40
section "Bounded quantifiers";
clasohm@923
    41
clasohm@923
    42
val prems = goalw Set.thy [Ball_def]
clasohm@923
    43
    "[| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)";
clasohm@923
    44
by (REPEAT (ares_tac (prems @ [allI,impI]) 1));
clasohm@923
    45
qed "ballI";
clasohm@923
    46
clasohm@923
    47
val [major,minor] = goalw Set.thy [Ball_def]
clasohm@923
    48
    "[| ! x:A. P(x);  x:A |] ==> P(x)";
clasohm@923
    49
by (rtac (minor RS (major RS spec RS mp)) 1);
clasohm@923
    50
qed "bspec";
clasohm@923
    51
clasohm@923
    52
val major::prems = goalw Set.thy [Ball_def]
clasohm@923
    53
    "[| ! x:A. P(x);  P(x) ==> Q;  x~:A ==> Q |] ==> Q";
clasohm@923
    54
by (rtac (major RS spec RS impCE) 1);
clasohm@923
    55
by (REPEAT (eresolve_tac prems 1));
clasohm@923
    56
qed "ballE";
clasohm@923
    57
clasohm@923
    58
(*Takes assumptions ! x:A.P(x) and a:A; creates assumption P(a)*)
clasohm@923
    59
fun ball_tac i = etac ballE i THEN contr_tac (i+1);
clasohm@923
    60
paulson@2499
    61
AddSIs [ballI];
paulson@2499
    62
AddEs  [ballE];
paulson@2499
    63
clasohm@923
    64
val prems = goalw Set.thy [Bex_def]
clasohm@923
    65
    "[| P(x);  x:A |] ==> ? x:A. P(x)";
clasohm@923
    66
by (REPEAT (ares_tac (prems @ [exI,conjI]) 1));
clasohm@923
    67
qed "bexI";
clasohm@923
    68
clasohm@923
    69
qed_goal "bexCI" Set.thy 
wenzelm@3842
    70
   "[| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A. P(x)"
clasohm@923
    71
 (fn prems=>
clasohm@923
    72
  [ (rtac classical 1),
clasohm@923
    73
    (REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1))  ]);
clasohm@923
    74
clasohm@923
    75
val major::prems = goalw Set.thy [Bex_def]
clasohm@923
    76
    "[| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q";
clasohm@923
    77
by (rtac (major RS exE) 1);
clasohm@923
    78
by (REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1));
clasohm@923
    79
qed "bexE";
clasohm@923
    80
paulson@2499
    81
AddIs  [bexI];
paulson@2499
    82
AddSEs [bexE];
paulson@2499
    83
paulson@3420
    84
(*Trival rewrite rule*)
wenzelm@3842
    85
goal Set.thy "(! x:A. P) = ((? x. x:A) --> P)";
wenzelm@4089
    86
by (simp_tac (simpset() addsimps [Ball_def]) 1);
paulson@3420
    87
qed "ball_triv";
paulson@1816
    88
paulson@1882
    89
(*Dual form for existentials*)
wenzelm@3842
    90
goal Set.thy "(? x:A. P) = ((? x. x:A) & P)";
wenzelm@4089
    91
by (simp_tac (simpset() addsimps [Bex_def]) 1);
paulson@3420
    92
qed "bex_triv";
paulson@1882
    93
paulson@3420
    94
Addsimps [ball_triv, bex_triv];
clasohm@923
    95
clasohm@923
    96
(** Congruence rules **)
clasohm@923
    97
clasohm@923
    98
val prems = goal Set.thy
clasohm@923
    99
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
   100
\    (! x:A. P(x)) = (! x:B. Q(x))";
clasohm@923
   101
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
   102
by (REPEAT (ares_tac [ballI,iffI] 1
clasohm@923
   103
     ORELSE eresolve_tac ([make_elim bspec, mp] @ (prems RL [iffE])) 1));
clasohm@923
   104
qed "ball_cong";
clasohm@923
   105
clasohm@923
   106
val prems = goal Set.thy
clasohm@923
   107
    "[| A=B;  !!x. x:B ==> P(x) = Q(x) |] ==> \
clasohm@923
   108
\    (? x:A. P(x)) = (? x:B. Q(x))";
clasohm@923
   109
by (resolve_tac (prems RL [ssubst]) 1);
clasohm@923
   110
by (REPEAT (etac bexE 1
clasohm@923
   111
     ORELSE ares_tac ([bexI,iffI] @ (prems RL [iffD1,iffD2])) 1));
clasohm@923
   112
qed "bex_cong";
clasohm@923
   113
nipkow@1548
   114
section "Subsets";
clasohm@923
   115
wenzelm@3842
   116
val prems = goalw Set.thy [subset_def] "(!!x. x:A ==> x:B) ==> A <= B";
clasohm@923
   117
by (REPEAT (ares_tac (prems @ [ballI]) 1));
clasohm@923
   118
qed "subsetI";
clasohm@923
   119
paulson@4059
   120
Blast.overload ("op <=", domain_type); (*The <= relation is overloaded*)
paulson@4059
   121
paulson@4059
   122
(*While (:) is not, its type must be kept
paulson@4059
   123
  for overloading of = to work.*)
paulson@4059
   124
Blast.overload ("op :", domain_type);
paulson@4059
   125
seq (fn a => Blast.overload (a, HOLogic.dest_setT o domain_type))
paulson@4059
   126
    ["Ball", "Bex"];
paulson@4059
   127
(*need UNION, INTER also?*)
paulson@4059
   128
paulson@2881
   129
clasohm@923
   130
(*Rule in Modus Ponens style*)
clasohm@923
   131
val major::prems = goalw Set.thy [subset_def] "[| A <= B;  c:A |] ==> c:B";
clasohm@923
   132
by (rtac (major RS bspec) 1);
clasohm@923
   133
by (resolve_tac prems 1);
clasohm@923
   134
qed "subsetD";
clasohm@923
   135
clasohm@923
   136
(*The same, with reversed premises for use with etac -- cf rev_mp*)
clasohm@923
   137
qed_goal "rev_subsetD" Set.thy "[| c:A;  A <= B |] ==> c:B"
clasohm@923
   138
 (fn prems=>  [ (REPEAT (resolve_tac (prems@[subsetD]) 1)) ]);
clasohm@923
   139
paulson@1920
   140
(*Converts A<=B to x:A ==> x:B*)
paulson@1920
   141
fun impOfSubs th = th RSN (2, rev_subsetD);
paulson@1920
   142
paulson@1841
   143
qed_goal "contra_subsetD" Set.thy "!!c. [| A <= B; c ~: B |] ==> c ~: A"
paulson@1841
   144
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   145
paulson@1841
   146
qed_goal "rev_contra_subsetD" Set.thy "!!c. [| c ~: B;  A <= B |] ==> c ~: A"
paulson@1841
   147
 (fn prems=>  [ (REPEAT (eresolve_tac [asm_rl, contrapos, subsetD] 1)) ]);
paulson@1841
   148
clasohm@923
   149
(*Classical elimination rule*)
clasohm@923
   150
val major::prems = goalw Set.thy [subset_def] 
clasohm@923
   151
    "[| A <= B;  c~:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   152
by (rtac (major RS ballE) 1);
clasohm@923
   153
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   154
qed "subsetCE";
clasohm@923
   155
clasohm@923
   156
(*Takes assumptions A<=B; c:A and creates the assumption c:B *)
clasohm@923
   157
fun set_mp_tac i = etac subsetCE i  THEN  mp_tac i;
clasohm@923
   158
paulson@2499
   159
AddSIs [subsetI];
paulson@2499
   160
AddEs  [subsetD, subsetCE];
clasohm@923
   161
paulson@2499
   162
qed_goal "subset_refl" Set.thy "A <= (A::'a set)"
paulson@4059
   163
 (fn _=> [Fast_tac 1]);		(*Blast_tac would try order_refl and fail*)
paulson@2499
   164
paulson@2499
   165
val prems = goal Set.thy "!!B. [| A<=B;  B<=C |] ==> A<=(C::'a set)";
paulson@2891
   166
by (Blast_tac 1);
clasohm@923
   167
qed "subset_trans";
clasohm@923
   168
clasohm@923
   169
nipkow@1548
   170
section "Equality";
clasohm@923
   171
clasohm@923
   172
(*Anti-symmetry of the subset relation*)
clasohm@923
   173
val prems = goal Set.thy "[| A <= B;  B <= A |] ==> A = (B::'a set)";
clasohm@923
   174
by (rtac (iffI RS set_ext) 1);
clasohm@923
   175
by (REPEAT (ares_tac (prems RL [subsetD]) 1));
clasohm@923
   176
qed "subset_antisym";
clasohm@923
   177
val equalityI = subset_antisym;
clasohm@923
   178
berghofe@1762
   179
AddSIs [equalityI];
berghofe@1762
   180
clasohm@923
   181
(* Equality rules from ZF set theory -- are they appropriate here? *)
clasohm@923
   182
val prems = goal Set.thy "A = B ==> A<=(B::'a set)";
clasohm@923
   183
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   184
by (rtac subset_refl 1);
clasohm@923
   185
qed "equalityD1";
clasohm@923
   186
clasohm@923
   187
val prems = goal Set.thy "A = B ==> B<=(A::'a set)";
clasohm@923
   188
by (resolve_tac (prems RL [subst]) 1);
clasohm@923
   189
by (rtac subset_refl 1);
clasohm@923
   190
qed "equalityD2";
clasohm@923
   191
clasohm@923
   192
val prems = goal Set.thy
clasohm@923
   193
    "[| A = B;  [| A<=B; B<=(A::'a set) |] ==> P |]  ==>  P";
clasohm@923
   194
by (resolve_tac prems 1);
clasohm@923
   195
by (REPEAT (resolve_tac (prems RL [equalityD1,equalityD2]) 1));
clasohm@923
   196
qed "equalityE";
clasohm@923
   197
clasohm@923
   198
val major::prems = goal Set.thy
clasohm@923
   199
    "[| A = B;  [| c:A; c:B |] ==> P;  [| c~:A; c~:B |] ==> P |]  ==>  P";
clasohm@923
   200
by (rtac (major RS equalityE) 1);
clasohm@923
   201
by (REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1));
clasohm@923
   202
qed "equalityCE";
clasohm@923
   203
clasohm@923
   204
(*Lemma for creating induction formulae -- for "pattern matching" on p
clasohm@923
   205
  To make the induction hypotheses usable, apply "spec" or "bspec" to
clasohm@923
   206
  put universal quantifiers over the free variables in p. *)
clasohm@923
   207
val prems = goal Set.thy 
clasohm@923
   208
    "[| p:A;  !!z. z:A ==> p=z --> R |] ==> R";
clasohm@923
   209
by (rtac mp 1);
clasohm@923
   210
by (REPEAT (resolve_tac (refl::prems) 1));
clasohm@923
   211
qed "setup_induction";
clasohm@923
   212
clasohm@923
   213
paulson@4159
   214
section "The universal set -- UNIV";
paulson@4159
   215
paulson@4159
   216
qed_goalw "UNIV_I" Set.thy [UNIV_def] "x : UNIV"
paulson@4159
   217
  (fn _ => [rtac CollectI 1, rtac TrueI 1]);
paulson@4159
   218
paulson@4159
   219
AddIffs [UNIV_I];
paulson@4159
   220
paulson@4159
   221
qed_goal "subset_UNIV" Set.thy "A <= UNIV"
paulson@4159
   222
  (fn _ => [rtac subsetI 1, rtac UNIV_I 1]);
paulson@4159
   223
paulson@4159
   224
(** Eta-contracting these two rules (to remove P) causes them to be ignored
paulson@4159
   225
    because of their interaction with congruence rules. **)
paulson@4159
   226
paulson@4159
   227
goalw Set.thy [Ball_def] "Ball UNIV P = All P";
paulson@4159
   228
by (Simp_tac 1);
paulson@4159
   229
qed "ball_UNIV";
paulson@4159
   230
paulson@4159
   231
goalw Set.thy [Bex_def] "Bex UNIV P = Ex P";
paulson@4159
   232
by (Simp_tac 1);
paulson@4159
   233
qed "bex_UNIV";
paulson@4159
   234
Addsimps [ball_UNIV, bex_UNIV];
paulson@4159
   235
paulson@4159
   236
paulson@2858
   237
section "The empty set -- {}";
paulson@2858
   238
paulson@2858
   239
qed_goalw "empty_iff" Set.thy [empty_def] "(c : {}) = False"
paulson@2891
   240
 (fn _ => [ (Blast_tac 1) ]);
paulson@2858
   241
paulson@2858
   242
Addsimps [empty_iff];
paulson@2858
   243
paulson@2858
   244
qed_goal "emptyE" Set.thy "!!a. a:{} ==> P"
paulson@2858
   245
 (fn _ => [Full_simp_tac 1]);
paulson@2858
   246
paulson@2858
   247
AddSEs [emptyE];
paulson@2858
   248
paulson@2858
   249
qed_goal "empty_subsetI" Set.thy "{} <= A"
paulson@2891
   250
 (fn _ => [ (Blast_tac 1) ]);
paulson@2858
   251
paulson@2858
   252
qed_goal "equals0I" Set.thy "[| !!y. y:A ==> False |] ==> A={}"
paulson@2858
   253
 (fn [prem]=>
wenzelm@4089
   254
  [ (blast_tac (claset() addIs [prem RS FalseE]) 1) ]);
paulson@2858
   255
paulson@2858
   256
qed_goal "equals0D" Set.thy "!!a. [| A={};  a:A |] ==> P"
paulson@2891
   257
 (fn _ => [ (Blast_tac 1) ]);
paulson@2858
   258
paulson@4159
   259
goalw Set.thy [Ball_def] "Ball {} P = True";
paulson@4159
   260
by (Simp_tac 1);
paulson@4159
   261
qed "ball_empty";
paulson@4159
   262
paulson@4159
   263
goalw Set.thy [Bex_def] "Bex {} P = False";
paulson@4159
   264
by (Simp_tac 1);
paulson@4159
   265
qed "bex_empty";
paulson@4159
   266
Addsimps [ball_empty, bex_empty];
paulson@4159
   267
paulson@4159
   268
goal thy "UNIV ~= {}";
paulson@4159
   269
by (blast_tac (claset() addEs [equalityE]) 1);
paulson@4159
   270
qed "UNIV_not_empty";
paulson@4159
   271
AddIffs [UNIV_not_empty];
paulson@4159
   272
paulson@4159
   273
paulson@2858
   274
paulson@2858
   275
section "The Powerset operator -- Pow";
paulson@2858
   276
paulson@2858
   277
qed_goalw "Pow_iff" Set.thy [Pow_def] "(A : Pow(B)) = (A <= B)"
paulson@2858
   278
 (fn _ => [ (Asm_simp_tac 1) ]);
paulson@2858
   279
paulson@2858
   280
AddIffs [Pow_iff]; 
paulson@2858
   281
paulson@2858
   282
qed_goalw "PowI" Set.thy [Pow_def] "!!A B. A <= B ==> A : Pow(B)"
paulson@2858
   283
 (fn _ => [ (etac CollectI 1) ]);
paulson@2858
   284
paulson@2858
   285
qed_goalw "PowD" Set.thy [Pow_def] "!!A B. A : Pow(B)  ==>  A<=B"
paulson@2858
   286
 (fn _=> [ (etac CollectD 1) ]);
paulson@2858
   287
paulson@2858
   288
val Pow_bottom = empty_subsetI RS PowI;        (* {}: Pow(B) *)
paulson@2858
   289
val Pow_top = subset_refl RS PowI;             (* A : Pow(A) *)
paulson@2858
   290
paulson@2858
   291
nipkow@1548
   292
section "Set complement -- Compl";
clasohm@923
   293
paulson@2499
   294
qed_goalw "Compl_iff" Set.thy [Compl_def] "(c : Compl(A)) = (c~:A)"
paulson@2891
   295
 (fn _ => [ (Blast_tac 1) ]);
paulson@2499
   296
paulson@2499
   297
Addsimps [Compl_iff];
paulson@2499
   298
clasohm@923
   299
val prems = goalw Set.thy [Compl_def]
clasohm@923
   300
    "[| c:A ==> False |] ==> c : Compl(A)";
clasohm@923
   301
by (REPEAT (ares_tac (prems @ [CollectI,notI]) 1));
clasohm@923
   302
qed "ComplI";
clasohm@923
   303
clasohm@923
   304
(*This form, with negated conclusion, works well with the Classical prover.
clasohm@923
   305
  Negated assumptions behave like formulae on the right side of the notional
clasohm@923
   306
  turnstile...*)
clasohm@923
   307
val major::prems = goalw Set.thy [Compl_def]
paulson@2499
   308
    "c : Compl(A) ==> c~:A";
clasohm@923
   309
by (rtac (major RS CollectD) 1);
clasohm@923
   310
qed "ComplD";
clasohm@923
   311
clasohm@923
   312
val ComplE = make_elim ComplD;
clasohm@923
   313
paulson@2499
   314
AddSIs [ComplI];
paulson@2499
   315
AddSEs [ComplE];
paulson@1640
   316
clasohm@923
   317
nipkow@1548
   318
section "Binary union -- Un";
clasohm@923
   319
paulson@2499
   320
qed_goalw "Un_iff" Set.thy [Un_def] "(c : A Un B) = (c:A | c:B)"
paulson@2891
   321
 (fn _ => [ Blast_tac 1 ]);
paulson@2499
   322
paulson@2499
   323
Addsimps [Un_iff];
paulson@2499
   324
paulson@2499
   325
goal Set.thy "!!c. c:A ==> c : A Un B";
paulson@2499
   326
by (Asm_simp_tac 1);
clasohm@923
   327
qed "UnI1";
clasohm@923
   328
paulson@2499
   329
goal Set.thy "!!c. c:B ==> c : A Un B";
paulson@2499
   330
by (Asm_simp_tac 1);
clasohm@923
   331
qed "UnI2";
clasohm@923
   332
clasohm@923
   333
(*Classical introduction rule: no commitment to A vs B*)
clasohm@923
   334
qed_goal "UnCI" Set.thy "(c~:B ==> c:A) ==> c : A Un B"
clasohm@923
   335
 (fn prems=>
paulson@2499
   336
  [ (Simp_tac 1),
paulson@2499
   337
    (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
clasohm@923
   338
clasohm@923
   339
val major::prems = goalw Set.thy [Un_def]
clasohm@923
   340
    "[| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P";
clasohm@923
   341
by (rtac (major RS CollectD RS disjE) 1);
clasohm@923
   342
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   343
qed "UnE";
clasohm@923
   344
paulson@2499
   345
AddSIs [UnCI];
paulson@2499
   346
AddSEs [UnE];
paulson@1640
   347
clasohm@923
   348
nipkow@1548
   349
section "Binary intersection -- Int";
clasohm@923
   350
paulson@2499
   351
qed_goalw "Int_iff" Set.thy [Int_def] "(c : A Int B) = (c:A & c:B)"
paulson@2891
   352
 (fn _ => [ (Blast_tac 1) ]);
paulson@2499
   353
paulson@2499
   354
Addsimps [Int_iff];
paulson@2499
   355
paulson@2499
   356
goal Set.thy "!!c. [| c:A;  c:B |] ==> c : A Int B";
paulson@2499
   357
by (Asm_simp_tac 1);
clasohm@923
   358
qed "IntI";
clasohm@923
   359
paulson@2499
   360
goal Set.thy "!!c. c : A Int B ==> c:A";
paulson@2499
   361
by (Asm_full_simp_tac 1);
clasohm@923
   362
qed "IntD1";
clasohm@923
   363
paulson@2499
   364
goal Set.thy "!!c. c : A Int B ==> c:B";
paulson@2499
   365
by (Asm_full_simp_tac 1);
clasohm@923
   366
qed "IntD2";
clasohm@923
   367
clasohm@923
   368
val [major,minor] = goal Set.thy
clasohm@923
   369
    "[| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P";
clasohm@923
   370
by (rtac minor 1);
clasohm@923
   371
by (rtac (major RS IntD1) 1);
clasohm@923
   372
by (rtac (major RS IntD2) 1);
clasohm@923
   373
qed "IntE";
clasohm@923
   374
paulson@2499
   375
AddSIs [IntI];
paulson@2499
   376
AddSEs [IntE];
clasohm@923
   377
nipkow@1548
   378
section "Set difference";
clasohm@923
   379
paulson@2499
   380
qed_goalw "Diff_iff" Set.thy [set_diff_def] "(c : A-B) = (c:A & c~:B)"
paulson@2891
   381
 (fn _ => [ (Blast_tac 1) ]);
clasohm@923
   382
paulson@2499
   383
Addsimps [Diff_iff];
paulson@2499
   384
paulson@2499
   385
qed_goal "DiffI" Set.thy "!!c. [| c : A;  c ~: B |] ==> c : A - B"
paulson@2499
   386
 (fn _=> [ Asm_simp_tac 1 ]);
clasohm@923
   387
paulson@2499
   388
qed_goal "DiffD1" Set.thy "!!c. c : A - B ==> c : A"
paulson@2499
   389
 (fn _=> [ (Asm_full_simp_tac 1) ]);
clasohm@923
   390
paulson@2499
   391
qed_goal "DiffD2" Set.thy "!!c. [| c : A - B;  c : B |] ==> P"
paulson@2499
   392
 (fn _=> [ (Asm_full_simp_tac 1) ]);
paulson@2499
   393
paulson@2499
   394
qed_goal "DiffE" Set.thy "[| c : A - B;  [| c:A; c~:B |] ==> P |] ==> P"
clasohm@923
   395
 (fn prems=>
clasohm@923
   396
  [ (resolve_tac prems 1),
clasohm@923
   397
    (REPEAT (ares_tac (prems RL [DiffD1, DiffD2 RS notI]) 1)) ]);
clasohm@923
   398
paulson@2499
   399
AddSIs [DiffI];
paulson@2499
   400
AddSEs [DiffE];
clasohm@923
   401
clasohm@923
   402
nipkow@1548
   403
section "Augmenting a set -- insert";
clasohm@923
   404
paulson@2499
   405
qed_goalw "insert_iff" Set.thy [insert_def] "a : insert b A = (a=b | a:A)"
paulson@2891
   406
 (fn _ => [Blast_tac 1]);
paulson@2499
   407
paulson@2499
   408
Addsimps [insert_iff];
clasohm@923
   409
paulson@2499
   410
qed_goal "insertI1" Set.thy "a : insert a B"
paulson@2499
   411
 (fn _ => [Simp_tac 1]);
paulson@2499
   412
paulson@2499
   413
qed_goal "insertI2" Set.thy "!!a. a : B ==> a : insert b B"
paulson@2499
   414
 (fn _=> [Asm_simp_tac 1]);
clasohm@923
   415
clasohm@923
   416
qed_goalw "insertE" Set.thy [insert_def]
clasohm@923
   417
    "[| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P"
clasohm@923
   418
 (fn major::prems=>
clasohm@923
   419
  [ (rtac (major RS UnE) 1),
clasohm@923
   420
    (REPEAT (eresolve_tac (prems @ [CollectE]) 1)) ]);
clasohm@923
   421
clasohm@923
   422
(*Classical introduction rule*)
clasohm@923
   423
qed_goal "insertCI" Set.thy "(a~:B ==> a=b) ==> a: insert b B"
paulson@2499
   424
 (fn prems=>
paulson@2499
   425
  [ (Simp_tac 1),
paulson@2499
   426
    (REPEAT (ares_tac (prems@[disjCI]) 1)) ]);
paulson@2499
   427
paulson@2499
   428
AddSIs [insertCI]; 
paulson@2499
   429
AddSEs [insertE];
clasohm@923
   430
nipkow@1548
   431
section "Singletons, using insert";
clasohm@923
   432
clasohm@923
   433
qed_goal "singletonI" Set.thy "a : {a}"
clasohm@923
   434
 (fn _=> [ (rtac insertI1 1) ]);
clasohm@923
   435
paulson@2499
   436
goal Set.thy "!!a. b : {a} ==> b=a";
paulson@2891
   437
by (Blast_tac 1);
clasohm@923
   438
qed "singletonD";
clasohm@923
   439
oheimb@1776
   440
bind_thm ("singletonE", make_elim singletonD);
oheimb@1776
   441
paulson@2499
   442
qed_goal "singleton_iff" thy "(b : {a}) = (b=a)" 
paulson@2891
   443
(fn _ => [Blast_tac 1]);
clasohm@923
   444
paulson@2499
   445
goal Set.thy "!!a b. {a}={b} ==> a=b";
wenzelm@4089
   446
by (blast_tac (claset() addEs [equalityE]) 1);
clasohm@923
   447
qed "singleton_inject";
clasohm@923
   448
paulson@2858
   449
(*Redundant? But unlike insertCI, it proves the subgoal immediately!*)
paulson@2858
   450
AddSIs [singletonI];   
paulson@2499
   451
AddSDs [singleton_inject];
paulson@3718
   452
AddSEs [singletonE];
paulson@2499
   453
wenzelm@3842
   454
goal Set.thy "{x. x=a} = {a}";
nipkow@3582
   455
by(Blast_tac 1);
nipkow@3582
   456
qed "singleton_conv";
nipkow@3582
   457
Addsimps [singleton_conv];
nipkow@1531
   458
nipkow@1531
   459
nipkow@1548
   460
section "Unions of families -- UNION x:A. B(x) is Union(B``A)";
clasohm@923
   461
paulson@2499
   462
goalw Set.thy [UNION_def] "(b: (UN x:A. B(x))) = (EX x:A. b: B(x))";
paulson@2891
   463
by (Blast_tac 1);
paulson@2499
   464
qed "UN_iff";
paulson@2499
   465
paulson@2499
   466
Addsimps [UN_iff];
paulson@2499
   467
clasohm@923
   468
(*The order of the premises presupposes that A is rigid; b may be flexible*)
paulson@2499
   469
goal Set.thy "!!b. [| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))";
paulson@2499
   470
by (Auto_tac());
clasohm@923
   471
qed "UN_I";
clasohm@923
   472
clasohm@923
   473
val major::prems = goalw Set.thy [UNION_def]
clasohm@923
   474
    "[| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R";
clasohm@923
   475
by (rtac (major RS CollectD RS bexE) 1);
clasohm@923
   476
by (REPEAT (ares_tac prems 1));
clasohm@923
   477
qed "UN_E";
clasohm@923
   478
paulson@2499
   479
AddIs  [UN_I];
paulson@2499
   480
AddSEs [UN_E];
paulson@2499
   481
clasohm@923
   482
val prems = goal Set.thy
clasohm@923
   483
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   484
\    (UN x:A. C(x)) = (UN x:B. D(x))";
clasohm@923
   485
by (REPEAT (etac UN_E 1
clasohm@923
   486
     ORELSE ares_tac ([UN_I,equalityI,subsetI] @ 
clasohm@1465
   487
                      (prems RL [equalityD1,equalityD2] RL [subsetD])) 1));
clasohm@923
   488
qed "UN_cong";
clasohm@923
   489
clasohm@923
   490
nipkow@1548
   491
section "Intersections of families -- INTER x:A. B(x) is Inter(B``A)";
clasohm@923
   492
paulson@2499
   493
goalw Set.thy [INTER_def] "(b: (INT x:A. B(x))) = (ALL x:A. b: B(x))";
paulson@2499
   494
by (Auto_tac());
paulson@2499
   495
qed "INT_iff";
paulson@2499
   496
paulson@2499
   497
Addsimps [INT_iff];
paulson@2499
   498
clasohm@923
   499
val prems = goalw Set.thy [INTER_def]
clasohm@923
   500
    "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))";
clasohm@923
   501
by (REPEAT (ares_tac ([CollectI,ballI] @ prems) 1));
clasohm@923
   502
qed "INT_I";
clasohm@923
   503
paulson@2499
   504
goal Set.thy "!!b. [| b : (INT x:A. B(x));  a:A |] ==> b: B(a)";
paulson@2499
   505
by (Auto_tac());
clasohm@923
   506
qed "INT_D";
clasohm@923
   507
clasohm@923
   508
(*"Classical" elimination -- by the Excluded Middle on a:A *)
clasohm@923
   509
val major::prems = goalw Set.thy [INTER_def]
clasohm@923
   510
    "[| b : (INT x:A. B(x));  b: B(a) ==> R;  a~:A ==> R |] ==> R";
clasohm@923
   511
by (rtac (major RS CollectD RS ballE) 1);
clasohm@923
   512
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   513
qed "INT_E";
clasohm@923
   514
paulson@2499
   515
AddSIs [INT_I];
paulson@2499
   516
AddEs  [INT_D, INT_E];
paulson@2499
   517
clasohm@923
   518
val prems = goal Set.thy
clasohm@923
   519
    "[| A=B;  !!x. x:B ==> C(x) = D(x) |] ==> \
clasohm@923
   520
\    (INT x:A. C(x)) = (INT x:B. D(x))";
clasohm@923
   521
by (REPEAT_FIRST (resolve_tac [INT_I,equalityI,subsetI]));
clasohm@923
   522
by (REPEAT (dtac INT_D 1
clasohm@923
   523
     ORELSE ares_tac (prems RL [equalityD1,equalityD2] RL [subsetD]) 1));
clasohm@923
   524
qed "INT_cong";
clasohm@923
   525
clasohm@923
   526
nipkow@1548
   527
section "Union";
clasohm@923
   528
paulson@2499
   529
goalw Set.thy [Union_def] "(A : Union(C)) = (EX X:C. A:X)";
paulson@2891
   530
by (Blast_tac 1);
paulson@2499
   531
qed "Union_iff";
paulson@2499
   532
paulson@2499
   533
Addsimps [Union_iff];
paulson@2499
   534
clasohm@923
   535
(*The order of the premises presupposes that C is rigid; A may be flexible*)
paulson@2499
   536
goal Set.thy "!!X. [| X:C;  A:X |] ==> A : Union(C)";
paulson@2499
   537
by (Auto_tac());
clasohm@923
   538
qed "UnionI";
clasohm@923
   539
clasohm@923
   540
val major::prems = goalw Set.thy [Union_def]
clasohm@923
   541
    "[| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R";
clasohm@923
   542
by (rtac (major RS UN_E) 1);
clasohm@923
   543
by (REPEAT (ares_tac prems 1));
clasohm@923
   544
qed "UnionE";
clasohm@923
   545
paulson@2499
   546
AddIs  [UnionI];
paulson@2499
   547
AddSEs [UnionE];
paulson@2499
   548
paulson@2499
   549
nipkow@1548
   550
section "Inter";
clasohm@923
   551
paulson@2499
   552
goalw Set.thy [Inter_def] "(A : Inter(C)) = (ALL X:C. A:X)";
paulson@2891
   553
by (Blast_tac 1);
paulson@2499
   554
qed "Inter_iff";
paulson@2499
   555
paulson@2499
   556
Addsimps [Inter_iff];
paulson@2499
   557
clasohm@923
   558
val prems = goalw Set.thy [Inter_def]
clasohm@923
   559
    "[| !!X. X:C ==> A:X |] ==> A : Inter(C)";
clasohm@923
   560
by (REPEAT (ares_tac ([INT_I] @ prems) 1));
clasohm@923
   561
qed "InterI";
clasohm@923
   562
clasohm@923
   563
(*A "destruct" rule -- every X in C contains A as an element, but
clasohm@923
   564
  A:X can hold when X:C does not!  This rule is analogous to "spec". *)
paulson@2499
   565
goal Set.thy "!!X. [| A : Inter(C);  X:C |] ==> A:X";
paulson@2499
   566
by (Auto_tac());
clasohm@923
   567
qed "InterD";
clasohm@923
   568
clasohm@923
   569
(*"Classical" elimination rule -- does not require proving X:C *)
clasohm@923
   570
val major::prems = goalw Set.thy [Inter_def]
paulson@2721
   571
    "[| A : Inter(C);  X~:C ==> R;  A:X ==> R |] ==> R";
clasohm@923
   572
by (rtac (major RS INT_E) 1);
clasohm@923
   573
by (REPEAT (eresolve_tac prems 1));
clasohm@923
   574
qed "InterE";
clasohm@923
   575
paulson@2499
   576
AddSIs [InterI];
paulson@2499
   577
AddEs  [InterD, InterE];
paulson@2499
   578
paulson@2499
   579
nipkow@2912
   580
(*** Image of a set under a function ***)
nipkow@2912
   581
nipkow@2912
   582
(*Frequently b does not have the syntactic form of f(x).*)
nipkow@2912
   583
val prems = goalw thy [image_def] "[| b=f(x);  x:A |] ==> b : f``A";
nipkow@2912
   584
by (REPEAT (resolve_tac (prems @ [CollectI,bexI,prem]) 1));
nipkow@2912
   585
qed "image_eqI";
nipkow@3909
   586
Addsimps [image_eqI];
nipkow@2912
   587
nipkow@2912
   588
bind_thm ("imageI", refl RS image_eqI);
nipkow@2912
   589
nipkow@2912
   590
(*The eta-expansion gives variable-name preservation.*)
nipkow@2912
   591
val major::prems = goalw thy [image_def]
wenzelm@3842
   592
    "[| b : (%x. f(x))``A;  !!x.[| b=f(x);  x:A |] ==> P |] ==> P"; 
nipkow@2912
   593
by (rtac (major RS CollectD RS bexE) 1);
nipkow@2912
   594
by (REPEAT (ares_tac prems 1));
nipkow@2912
   595
qed "imageE";
nipkow@2912
   596
nipkow@2912
   597
AddIs  [image_eqI];
nipkow@2912
   598
AddSEs [imageE]; 
nipkow@2912
   599
nipkow@2912
   600
goalw thy [o_def] "(f o g)``r = f``(g``r)";
paulson@2935
   601
by (Blast_tac 1);
nipkow@2912
   602
qed "image_compose";
nipkow@2912
   603
nipkow@2912
   604
goal thy "f``(A Un B) = f``A Un f``B";
paulson@2935
   605
by (Blast_tac 1);
nipkow@2912
   606
qed "image_Un";
nipkow@2912
   607
paulson@3960
   608
goal Set.thy "(z : f``A) = (EX x:A. z = f x)";
paulson@3960
   609
by (Blast_tac 1);
paulson@3960
   610
qed "image_iff";
paulson@3960
   611
nipkow@2912
   612
nipkow@2912
   613
(*** Range of a function -- just a translation for image! ***)
nipkow@2912
   614
nipkow@2912
   615
goal thy "!!b. b=f(x) ==> b : range(f)";
nipkow@2912
   616
by (EVERY1 [etac image_eqI, rtac UNIV_I]);
nipkow@2912
   617
bind_thm ("range_eqI", UNIV_I RSN (2,image_eqI));
nipkow@2912
   618
nipkow@2912
   619
bind_thm ("rangeI", UNIV_I RS imageI);
nipkow@2912
   620
nipkow@2912
   621
val [major,minor] = goal thy 
wenzelm@3842
   622
    "[| b : range(%x. f(x));  !!x. b=f(x) ==> P |] ==> P"; 
nipkow@2912
   623
by (rtac (major RS imageE) 1);
nipkow@2912
   624
by (etac minor 1);
nipkow@2912
   625
qed "rangeE";
nipkow@2912
   626
oheimb@1776
   627
oheimb@1776
   628
(*** Set reasoning tools ***)
oheimb@1776
   629
oheimb@1776
   630
paulson@3912
   631
(** Rewrite rules for boolean case-splitting: faster than 
nipkow@3919
   632
	addsplits[expand_if]
paulson@3912
   633
**)
paulson@3912
   634
paulson@3912
   635
bind_thm ("expand_if_eq1", read_instantiate [("P", "%x. x = ?b")] expand_if);
paulson@3912
   636
bind_thm ("expand_if_eq2", read_instantiate [("P", "%x. ?a = x")] expand_if);
paulson@3912
   637
paulson@3912
   638
bind_thm ("expand_if_mem1", 
paulson@3912
   639
    read_instantiate_sg (sign_of Set.thy) [("P", "%x. x : ?b")] expand_if);
paulson@3912
   640
bind_thm ("expand_if_mem2", 
paulson@3912
   641
    read_instantiate_sg (sign_of Set.thy) [("P", "%x. ?a : x")] expand_if);
paulson@3912
   642
paulson@3912
   643
val expand_ifs = [if_bool_eq, expand_if_eq1, expand_if_eq2,
paulson@3912
   644
		  expand_if_mem1, expand_if_mem2];
paulson@3912
   645
paulson@3912
   646
wenzelm@4089
   647
(*Each of these has ALREADY been added to simpset() above.*)
paulson@2024
   648
val mem_simps = [insert_iff, empty_iff, Un_iff, Int_iff, Compl_iff, Diff_iff, 
paulson@4159
   649
                 mem_Collect_eq, UN_iff, Union_iff, INT_iff, Inter_iff];
oheimb@1776
   650
paulson@1937
   651
(*Not for Addsimps -- it can cause goals to blow up!*)
paulson@1937
   652
goal Set.thy "(a : (if Q then x else y)) = ((Q --> a:x) & (~Q --> a : y))";
wenzelm@4089
   653
by (simp_tac (simpset() addsplits [expand_if]) 1);
paulson@1937
   654
qed "mem_if";
paulson@1937
   655
oheimb@1776
   656
val mksimps_pairs = ("Ball",[bspec]) :: mksimps_pairs;
oheimb@1776
   657
wenzelm@4089
   658
simpset_ref() := simpset() addcongs [ball_cong,bex_cong]
oheimb@1776
   659
                    setmksimps (mksimps mksimps_pairs);
nipkow@3222
   660
nipkow@3222
   661
Addsimps[subset_UNIV, empty_subsetI, subset_refl];
nipkow@3222
   662
nipkow@3222
   663
nipkow@3222
   664
(*** < ***)
nipkow@3222
   665
nipkow@3222
   666
goalw Set.thy [psubset_def] "!!A::'a set. [| A <= B; A ~= B |] ==> A<B";
nipkow@3222
   667
by (Blast_tac 1);
nipkow@3222
   668
qed "psubsetI";
nipkow@3222
   669
nipkow@3222
   670
goalw Set.thy [psubset_def]
nipkow@3222
   671
    "!!x. A < insert x B ==> (x ~: A) & A<=B | x:A & A-{x}<B";
nipkow@3222
   672
by (Auto_tac());
nipkow@3222
   673
qed "psubset_insertD";
paulson@4059
   674
paulson@4059
   675
bind_thm ("psubset_eq", psubset_def RS meta_eq_to_obj_eq);