src/HOL/Extraction.thy
author wenzelm
Tue May 31 11:53:12 2005 +0200 (2005-05-31)
changeset 16121 a80aa66d2271
parent 15531 08c8dad8e399
child 16417 9bc16273c2d4
permissions -rw-r--r--
tuned;
berghofe@13403
     1
(*  Title:      HOL/Extraction.thy
berghofe@13403
     2
    ID:         $Id$
berghofe@13403
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13403
     4
*)
berghofe@13403
     5
berghofe@13403
     6
header {* Program extraction for HOL *}
berghofe@13403
     7
nipkow@15131
     8
theory Extraction
nipkow@15140
     9
imports Datatype
nipkow@15131
    10
files "Tools/rewrite_hol_proof.ML"
nipkow@15131
    11
begin
berghofe@13403
    12
berghofe@13403
    13
subsection {* Setup *}
berghofe@13403
    14
wenzelm@16121
    15
setup {*
wenzelm@16121
    16
let
berghofe@13725
    17
fun realizes_set_proc (Const ("realizes", Type ("fun", [Type ("Null", []), _])) $ r $
berghofe@13725
    18
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
skalberg@15531
    19
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, binder_types U @
berghofe@13725
    20
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
skalberg@15531
    21
      | (Free (s, U), ts) => SOME (list_comb (Free (s, binder_types U @
berghofe@13725
    22
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), ts @ [x]))
skalberg@15531
    23
      | _ => NONE)
berghofe@13725
    24
  | realizes_set_proc (Const ("realizes", Type ("fun", [T, _])) $ r $
berghofe@13725
    25
      (Const ("op :", _) $ x $ S)) = (case strip_comb S of
skalberg@15531
    26
        (Var (ixn, U), ts) => SOME (list_comb (Var (ixn, T :: binder_types U @
berghofe@13725
    27
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
skalberg@15531
    28
      | (Free (s, U), ts) => SOME (list_comb (Free (s, T :: binder_types U @
berghofe@13725
    29
           [HOLogic.dest_setT (body_type U)] ---> HOLogic.boolT), r :: ts @ [x]))
skalberg@15531
    30
      | _ => NONE)
skalberg@15531
    31
  | realizes_set_proc _ = NONE;
berghofe@13725
    32
berghofe@13725
    33
fun mk_realizes_set r rT s (setT as Type ("set", [elT])) =
berghofe@13725
    34
  Abs ("x", elT, Const ("realizes", rT --> HOLogic.boolT --> HOLogic.boolT) $
berghofe@13725
    35
    incr_boundvars 1 r $ (Const ("op :", elT --> setT --> HOLogic.boolT) $
berghofe@13725
    36
      Bound 0 $ incr_boundvars 1 s));
wenzelm@16121
    37
in
wenzelm@16121
    38
  [Extraction.add_types
skalberg@15531
    39
      [("bool", ([], NONE)),
wenzelm@16121
    40
       ("set", ([realizes_set_proc], SOME mk_realizes_set))],
berghofe@13403
    41
    Extraction.set_preprocessor (fn sg =>
berghofe@13403
    42
      Proofterm.rewrite_proof_notypes
berghofe@13403
    43
        ([], ("HOL/elim_cong", RewriteHOLProof.elim_cong) ::
berghofe@13403
    44
          ProofRewriteRules.rprocs true) o
berghofe@13403
    45
      Proofterm.rewrite_proof (Sign.tsig_of sg)
berghofe@13599
    46
        (RewriteHOLProof.rews, ProofRewriteRules.rprocs true) o
wenzelm@16121
    47
      ProofRewriteRules.elim_vars (curry Const "arbitrary"))]
wenzelm@16121
    48
end
berghofe@13403
    49
*}
berghofe@13403
    50
berghofe@13403
    51
lemmas [extraction_expand] =
berghofe@13468
    52
  atomize_eq atomize_all atomize_imp
berghofe@13403
    53
  allE rev_mp conjE Eq_TrueI Eq_FalseI eqTrueI eqTrueE eq_cong2
berghofe@13403
    54
  notE' impE' impE iffE imp_cong simp_thms
berghofe@13403
    55
  induct_forall_eq induct_implies_eq induct_equal_eq
berghofe@13942
    56
  induct_forall_def induct_implies_def induct_impliesI
berghofe@13403
    57
  induct_atomize induct_rulify1 induct_rulify2
berghofe@13403
    58
berghofe@13403
    59
datatype sumbool = Left | Right
berghofe@13403
    60
berghofe@13403
    61
subsection {* Type of extracted program *}
berghofe@13403
    62
berghofe@13403
    63
extract_type
berghofe@13403
    64
  "typeof (Trueprop P) \<equiv> typeof P"
berghofe@13403
    65
berghofe@13403
    66
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    67
     typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('Q))"
berghofe@13403
    68
berghofe@13403
    69
  "typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE(Null))"
berghofe@13403
    70
berghofe@13403
    71
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    72
     typeof (P \<longrightarrow> Q) \<equiv> Type (TYPE('P \<Rightarrow> 'Q))"
berghofe@13403
    73
berghofe@13403
    74
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
    75
     typeof (\<forall>x. P x) \<equiv> Type (TYPE(Null))"
berghofe@13403
    76
berghofe@13403
    77
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
    78
     typeof (\<forall>x::'a. P x) \<equiv> Type (TYPE('a \<Rightarrow> 'P))"
berghofe@13403
    79
berghofe@13403
    80
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
    81
     typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a))"
berghofe@13403
    82
berghofe@13403
    83
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
    84
     typeof (\<exists>x::'a. P x) \<equiv> Type (TYPE('a \<times> 'P))"
berghofe@13403
    85
berghofe@13403
    86
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
    87
     typeof (P \<or> Q) \<equiv> Type (TYPE(sumbool))"
berghofe@13403
    88
berghofe@13403
    89
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    90
     typeof (P \<or> Q) \<equiv> Type (TYPE('Q option))"
berghofe@13403
    91
berghofe@13403
    92
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
    93
     typeof (P \<or> Q) \<equiv> Type (TYPE('P option))"
berghofe@13403
    94
berghofe@13403
    95
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    96
     typeof (P \<or> Q) \<equiv> Type (TYPE('P + 'Q))"
berghofe@13403
    97
berghofe@13403
    98
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
    99
     typeof (P \<and> Q) \<equiv> Type (TYPE('Q))"
berghofe@13403
   100
berghofe@13403
   101
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   102
     typeof (P \<and> Q) \<equiv> Type (TYPE('P))"
berghofe@13403
   103
berghofe@13403
   104
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow> typeof Q \<equiv> Type (TYPE('Q)) \<Longrightarrow>
berghofe@13403
   105
     typeof (P \<and> Q) \<equiv> Type (TYPE('P \<times> 'Q))"
berghofe@13403
   106
berghofe@13403
   107
  "typeof (P = Q) \<equiv> typeof ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P))"
berghofe@13403
   108
berghofe@13403
   109
  "typeof (x \<in> P) \<equiv> typeof P"
berghofe@13403
   110
berghofe@13403
   111
subsection {* Realizability *}
berghofe@13403
   112
berghofe@13403
   113
realizability
berghofe@13403
   114
  "(realizes t (Trueprop P)) \<equiv> (Trueprop (realizes t P))"
berghofe@13403
   115
berghofe@13403
   116
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   117
     (realizes t (P \<longrightarrow> Q)) \<equiv> (realizes Null P \<longrightarrow> realizes t Q)"
berghofe@13403
   118
berghofe@13403
   119
  "(typeof P) \<equiv> (Type (TYPE('P))) \<Longrightarrow>
berghofe@13403
   120
   (typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   121
     (realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x::'P. realizes x P \<longrightarrow> realizes Null Q)"
berghofe@13403
   122
berghofe@13403
   123
  "(realizes t (P \<longrightarrow> Q)) \<equiv> (\<forall>x. realizes x P \<longrightarrow> realizes (t x) Q)"
berghofe@13403
   124
berghofe@13403
   125
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   126
     (realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes Null (P x))"
berghofe@13403
   127
berghofe@13403
   128
  "(realizes t (\<forall>x. P x)) \<equiv> (\<forall>x. realizes (t x) (P x))"
berghofe@13403
   129
berghofe@13403
   130
  "(\<lambda>x. typeof (P x)) \<equiv> (\<lambda>x. Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   131
     (realizes t (\<exists>x. P x)) \<equiv> (realizes Null (P t))"
berghofe@13403
   132
berghofe@13403
   133
  "(realizes t (\<exists>x. P x)) \<equiv> (realizes (snd t) (P (fst t)))"
berghofe@13403
   134
berghofe@13403
   135
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   136
   (typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   137
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   138
     (case t of Left \<Rightarrow> realizes Null P | Right \<Rightarrow> realizes Null Q)"
berghofe@13403
   139
berghofe@13403
   140
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   141
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   142
     (case t of None \<Rightarrow> realizes Null P | Some q \<Rightarrow> realizes q Q)"
berghofe@13403
   143
berghofe@13403
   144
  "(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   145
     (realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   146
     (case t of None \<Rightarrow> realizes Null Q | Some p \<Rightarrow> realizes p P)"
berghofe@13403
   147
berghofe@13403
   148
  "(realizes t (P \<or> Q)) \<equiv>
berghofe@13403
   149
   (case t of Inl p \<Rightarrow> realizes p P | Inr q \<Rightarrow> realizes q Q)"
berghofe@13403
   150
berghofe@13403
   151
  "(typeof P) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   152
     (realizes t (P \<and> Q)) \<equiv> (realizes Null P \<and> realizes t Q)"
berghofe@13403
   153
berghofe@13403
   154
  "(typeof Q) \<equiv> (Type (TYPE(Null))) \<Longrightarrow>
berghofe@13403
   155
     (realizes t (P \<and> Q)) \<equiv> (realizes t P \<and> realizes Null Q)"
berghofe@13403
   156
berghofe@13403
   157
  "(realizes t (P \<and> Q)) \<equiv> (realizes (fst t) P \<and> realizes (snd t) Q)"
berghofe@13403
   158
berghofe@13403
   159
  "typeof P \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   160
     realizes t (\<not> P) \<equiv> \<not> realizes Null P"
berghofe@13403
   161
berghofe@13403
   162
  "typeof P \<equiv> Type (TYPE('P)) \<Longrightarrow>
berghofe@13403
   163
     realizes t (\<not> P) \<equiv> (\<forall>x::'P. \<not> realizes x P)"
berghofe@13403
   164
berghofe@13403
   165
  "typeof (P::bool) \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   166
   typeof Q \<equiv> Type (TYPE(Null)) \<Longrightarrow>
berghofe@13403
   167
     realizes t (P = Q) \<equiv> realizes Null P = realizes Null Q"
berghofe@13403
   168
berghofe@13403
   169
  "(realizes t (P = Q)) \<equiv> (realizes t ((P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)))"
berghofe@13403
   170
berghofe@13403
   171
subsection {* Computational content of basic inference rules *}
berghofe@13403
   172
berghofe@13403
   173
theorem disjE_realizer:
berghofe@13403
   174
  assumes r: "case x of Inl p \<Rightarrow> P p | Inr q \<Rightarrow> Q q"
berghofe@13403
   175
  and r1: "\<And>p. P p \<Longrightarrow> R (f p)" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
berghofe@13403
   176
  shows "R (case x of Inl p \<Rightarrow> f p | Inr q \<Rightarrow> g q)"
berghofe@13403
   177
proof (cases x)
berghofe@13403
   178
  case Inl
berghofe@13403
   179
  with r show ?thesis by simp (rule r1)
berghofe@13403
   180
next
berghofe@13403
   181
  case Inr
berghofe@13403
   182
  with r show ?thesis by simp (rule r2)
berghofe@13403
   183
qed
berghofe@13403
   184
berghofe@13403
   185
theorem disjE_realizer2:
berghofe@13403
   186
  assumes r: "case x of None \<Rightarrow> P | Some q \<Rightarrow> Q q"
berghofe@13403
   187
  and r1: "P \<Longrightarrow> R f" and r2: "\<And>q. Q q \<Longrightarrow> R (g q)"
berghofe@13403
   188
  shows "R (case x of None \<Rightarrow> f | Some q \<Rightarrow> g q)"
berghofe@13403
   189
proof (cases x)
berghofe@13403
   190
  case None
berghofe@13403
   191
  with r show ?thesis by simp (rule r1)
berghofe@13403
   192
next
berghofe@13403
   193
  case Some
berghofe@13403
   194
  with r show ?thesis by simp (rule r2)
berghofe@13403
   195
qed
berghofe@13403
   196
berghofe@13403
   197
theorem disjE_realizer3:
berghofe@13403
   198
  assumes r: "case x of Left \<Rightarrow> P | Right \<Rightarrow> Q"
berghofe@13403
   199
  and r1: "P \<Longrightarrow> R f" and r2: "Q \<Longrightarrow> R g"
berghofe@13403
   200
  shows "R (case x of Left \<Rightarrow> f | Right \<Rightarrow> g)"
berghofe@13403
   201
proof (cases x)
berghofe@13403
   202
  case Left
berghofe@13403
   203
  with r show ?thesis by simp (rule r1)
berghofe@13403
   204
next
berghofe@13403
   205
  case Right
berghofe@13403
   206
  with r show ?thesis by simp (rule r2)
berghofe@13403
   207
qed
berghofe@13403
   208
berghofe@13403
   209
theorem conjI_realizer:
berghofe@13403
   210
  "P p \<Longrightarrow> Q q \<Longrightarrow> P (fst (p, q)) \<and> Q (snd (p, q))"
berghofe@13403
   211
  by simp
berghofe@13403
   212
berghofe@13403
   213
theorem exI_realizer:
berghofe@13918
   214
  "P y x \<Longrightarrow> P (snd (x, y)) (fst (x, y))" by simp
berghofe@13918
   215
berghofe@13918
   216
theorem exE_realizer: "P (snd p) (fst p) \<Longrightarrow>
berghofe@15393
   217
  (\<And>x y. P y x \<Longrightarrow> Q (f x y)) \<Longrightarrow> Q (let (x, y) = p in f x y)"
berghofe@15393
   218
  by (cases p) (simp add: Let_def)
berghofe@13918
   219
berghofe@13918
   220
theorem exE_realizer': "P (snd p) (fst p) \<Longrightarrow>
berghofe@13918
   221
  (\<And>x y. P y x \<Longrightarrow> Q) \<Longrightarrow> Q" by (cases p) simp
berghofe@13403
   222
berghofe@13403
   223
realizers
berghofe@13725
   224
  impI (P, Q): "\<lambda>pq. pq"
skalberg@14168
   225
    "\<Lambda> P Q pq (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   226
berghofe@13403
   227
  impI (P): "Null"
skalberg@14168
   228
    "\<Lambda> P Q (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   229
skalberg@14168
   230
  impI (Q): "\<lambda>q. q" "\<Lambda> P Q q. impI \<cdot> _ \<cdot> _"
berghofe@13403
   231
berghofe@13725
   232
  impI: "Null" "impI"
berghofe@13403
   233
berghofe@13725
   234
  mp (P, Q): "\<lambda>pq. pq"
skalberg@14168
   235
    "\<Lambda> P Q pq (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   236
berghofe@13403
   237
  mp (P): "Null"
skalberg@14168
   238
    "\<Lambda> P Q (h: _) p. mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   239
skalberg@14168
   240
  mp (Q): "\<lambda>q. q" "\<Lambda> P Q q. mp \<cdot> _ \<cdot> _"
berghofe@13403
   241
berghofe@13725
   242
  mp: "Null" "mp"
berghofe@13403
   243
skalberg@14168
   244
  allI (P): "\<lambda>p. p" "\<Lambda> P p. allI \<cdot> _"
berghofe@13403
   245
berghofe@13725
   246
  allI: "Null" "allI"
berghofe@13403
   247
skalberg@14168
   248
  spec (P): "\<lambda>x p. p x" "\<Lambda> P x p. spec \<cdot> _ \<cdot> x"
berghofe@13403
   249
berghofe@13725
   250
  spec: "Null" "spec"
berghofe@13403
   251
skalberg@14168
   252
  exI (P): "\<lambda>x p. (x, p)" "\<Lambda> P x p. exI_realizer \<cdot> P \<cdot> p \<cdot> x"
berghofe@13403
   253
skalberg@14168
   254
  exI: "\<lambda>x. x" "\<Lambda> P x (h: _). h"
berghofe@13403
   255
berghofe@15393
   256
  exE (P, Q): "\<lambda>p pq. let (x, y) = p in pq x y"
skalberg@14168
   257
    "\<Lambda> P Q p (h: _) pq. exE_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> pq \<bullet> h"
berghofe@13403
   258
berghofe@13403
   259
  exE (P): "Null"
skalberg@14168
   260
    "\<Lambda> P Q p. exE_realizer' \<cdot> _ \<cdot> _ \<cdot> _"
berghofe@13403
   261
berghofe@13725
   262
  exE (Q): "\<lambda>x pq. pq x"
skalberg@14168
   263
    "\<Lambda> P Q x (h1: _) pq (h2: _). h2 \<cdot> x \<bullet> h1"
berghofe@13403
   264
berghofe@13403
   265
  exE: "Null"
skalberg@14168
   266
    "\<Lambda> P Q x (h1: _) (h2: _). h2 \<cdot> x \<bullet> h1"
berghofe@13403
   267
berghofe@13725
   268
  conjI (P, Q): "Pair"
skalberg@14168
   269
    "\<Lambda> P Q p (h: _) q. conjI_realizer \<cdot> P \<cdot> p \<cdot> Q \<cdot> q \<bullet> h"
berghofe@13403
   270
berghofe@13725
   271
  conjI (P): "\<lambda>p. p"
skalberg@14168
   272
    "\<Lambda> P Q p. conjI \<cdot> _ \<cdot> _"
berghofe@13403
   273
berghofe@13725
   274
  conjI (Q): "\<lambda>q. q"
skalberg@14168
   275
    "\<Lambda> P Q (h: _) q. conjI \<cdot> _ \<cdot> _ \<bullet> h"
berghofe@13403
   276
berghofe@13725
   277
  conjI: "Null" "conjI"
berghofe@13403
   278
berghofe@13725
   279
  conjunct1 (P, Q): "fst"
skalberg@14168
   280
    "\<Lambda> P Q pq. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   281
berghofe@13725
   282
  conjunct1 (P): "\<lambda>p. p"
skalberg@14168
   283
    "\<Lambda> P Q p. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   284
berghofe@13403
   285
  conjunct1 (Q): "Null"
skalberg@14168
   286
    "\<Lambda> P Q q. conjunct1 \<cdot> _ \<cdot> _"
berghofe@13403
   287
berghofe@13725
   288
  conjunct1: "Null" "conjunct1"
berghofe@13403
   289
berghofe@13725
   290
  conjunct2 (P, Q): "snd"
skalberg@14168
   291
    "\<Lambda> P Q pq. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   292
berghofe@13403
   293
  conjunct2 (P): "Null"
skalberg@14168
   294
    "\<Lambda> P Q p. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   295
berghofe@13725
   296
  conjunct2 (Q): "\<lambda>p. p"
skalberg@14168
   297
    "\<Lambda> P Q p. conjunct2 \<cdot> _ \<cdot> _"
berghofe@13403
   298
berghofe@13725
   299
  conjunct2: "Null" "conjunct2"
berghofe@13725
   300
berghofe@13725
   301
  disjI1 (P, Q): "Inl"
skalberg@14168
   302
    "\<Lambda> P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_1 \<cdot> P \<cdot> _ \<cdot> p)"
berghofe@13403
   303
berghofe@13725
   304
  disjI1 (P): "Some"
skalberg@14168
   305
    "\<Lambda> P Q p. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> P \<cdot> p)"
berghofe@13403
   306
berghofe@13725
   307
  disjI1 (Q): "None"
skalberg@14168
   308
    "\<Lambda> P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   309
berghofe@13725
   310
  disjI1: "Left"
skalberg@14168
   311
    "\<Lambda> P Q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   312
berghofe@13725
   313
  disjI2 (P, Q): "Inr"
skalberg@14168
   314
    "\<Lambda> Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sum.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
berghofe@13403
   315
berghofe@13725
   316
  disjI2 (P): "None"
skalberg@14168
   317
    "\<Lambda> Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_1 \<cdot> _ \<cdot> _)"
berghofe@13403
   318
berghofe@13725
   319
  disjI2 (Q): "Some"
skalberg@14168
   320
    "\<Lambda> Q P q. iffD2 \<cdot> _ \<cdot> _ \<bullet> (option.cases_2 \<cdot> _ \<cdot> Q \<cdot> q)"
berghofe@13403
   321
berghofe@13725
   322
  disjI2: "Right"
skalberg@14168
   323
    "\<Lambda> Q P. iffD2 \<cdot> _ \<cdot> _ \<bullet> (sumbool.cases_2 \<cdot> _ \<cdot> _)"
berghofe@13403
   324
berghofe@13725
   325
  disjE (P, Q, R): "\<lambda>pq pr qr.
berghofe@13403
   326
     (case pq of Inl p \<Rightarrow> pr p | Inr q \<Rightarrow> qr q)"
skalberg@14168
   327
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   328
       disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   329
berghofe@13725
   330
  disjE (Q, R): "\<lambda>pq pr qr.
berghofe@13403
   331
     (case pq of None \<Rightarrow> pr | Some q \<Rightarrow> qr q)"
skalberg@14168
   332
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   333
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   334
berghofe@13725
   335
  disjE (P, R): "\<lambda>pq pr qr.
berghofe@13403
   336
     (case pq of None \<Rightarrow> qr | Some p \<Rightarrow> pr p)"
skalberg@14168
   337
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr (h3: _).
berghofe@13725
   338
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> qr \<cdot> pr \<bullet> h1 \<bullet> h3 \<bullet> h2"
berghofe@13403
   339
berghofe@13725
   340
  disjE (R): "\<lambda>pq pr qr.
berghofe@13403
   341
     (case pq of Left \<Rightarrow> pr | Right \<Rightarrow> qr)"
skalberg@14168
   342
    "\<Lambda> P Q R pq (h1: _) pr (h2: _) qr.
berghofe@13725
   343
       disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> R \<cdot> pr \<cdot> qr \<bullet> h1 \<bullet> h2"
berghofe@13403
   344
berghofe@13403
   345
  disjE (P, Q): "Null"
skalberg@14168
   346
    "\<Lambda> P Q R pq. disjE_realizer \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   347
berghofe@13403
   348
  disjE (Q): "Null"
skalberg@14168
   349
    "\<Lambda> P Q R pq. disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   350
berghofe@13403
   351
  disjE (P): "Null"
skalberg@14168
   352
    "\<Lambda> P Q R pq (h1: _) (h2: _) (h3: _).
berghofe@13725
   353
       disjE_realizer2 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _ \<bullet> h1 \<bullet> h3 \<bullet> h2"
berghofe@13403
   354
berghofe@13403
   355
  disjE: "Null"
skalberg@14168
   356
    "\<Lambda> P Q R pq. disjE_realizer3 \<cdot> _ \<cdot> _ \<cdot> pq \<cdot> (\<lambda>x. R) \<cdot> _ \<cdot> _"
berghofe@13403
   357
berghofe@13725
   358
  FalseE (P): "arbitrary"
skalberg@14168
   359
    "\<Lambda> P. FalseE \<cdot> _"
berghofe@13403
   360
berghofe@13725
   361
  FalseE: "Null" "FalseE"
berghofe@13403
   362
berghofe@13403
   363
  notI (P): "Null"
skalberg@14168
   364
    "\<Lambda> P (h: _). allI \<cdot> _ \<bullet> (\<Lambda> x. notI \<cdot> _ \<bullet> (h \<cdot> x))"
berghofe@13403
   365
berghofe@13725
   366
  notI: "Null" "notI"
berghofe@13403
   367
berghofe@13725
   368
  notE (P, R): "\<lambda>p. arbitrary"
skalberg@14168
   369
    "\<Lambda> P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   370
berghofe@13403
   371
  notE (P): "Null"
skalberg@14168
   372
    "\<Lambda> P R (h: _) p. notE \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> h)"
berghofe@13403
   373
berghofe@13725
   374
  notE (R): "arbitrary"
skalberg@14168
   375
    "\<Lambda> P R. notE \<cdot> _ \<cdot> _"
berghofe@13403
   376
berghofe@13725
   377
  notE: "Null" "notE"
berghofe@13403
   378
berghofe@13725
   379
  subst (P): "\<lambda>s t ps. ps"
skalberg@14168
   380
    "\<Lambda> s t P (h: _) ps. subst \<cdot> s \<cdot> t \<cdot> P ps \<bullet> h"
berghofe@13403
   381
berghofe@13725
   382
  subst: "Null" "subst"
berghofe@13725
   383
berghofe@13725
   384
  iffD1 (P, Q): "fst"
skalberg@14168
   385
    "\<Lambda> Q P pq (h: _) p.
berghofe@13403
   386
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> p \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   387
berghofe@13725
   388
  iffD1 (P): "\<lambda>p. p"
skalberg@14168
   389
    "\<Lambda> Q P p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h)"
berghofe@13403
   390
berghofe@13403
   391
  iffD1 (Q): "Null"
skalberg@14168
   392
    "\<Lambda> Q P q1 (h: _) q2.
berghofe@13403
   393
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct1 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   394
berghofe@13725
   395
  iffD1: "Null" "iffD1"
berghofe@13403
   396
berghofe@13725
   397
  iffD2 (P, Q): "snd"
skalberg@14168
   398
    "\<Lambda> P Q pq (h: _) q.
berghofe@13403
   399
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   400
berghofe@13725
   401
  iffD2 (P): "\<lambda>p. p"
skalberg@14168
   402
    "\<Lambda> P Q p (h: _). mp \<cdot> _ \<cdot> _ \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h)"
berghofe@13403
   403
berghofe@13403
   404
  iffD2 (Q): "Null"
skalberg@14168
   405
    "\<Lambda> P Q q1 (h: _) q2.
berghofe@13403
   406
       mp \<cdot> _ \<cdot> _ \<bullet> (spec \<cdot> _ \<cdot> q2 \<bullet> (conjunct2 \<cdot> _ \<cdot> _ \<bullet> h))"
berghofe@13403
   407
berghofe@13725
   408
  iffD2: "Null" "iffD2"
berghofe@13403
   409
berghofe@13725
   410
  iffI (P, Q): "Pair"
skalberg@14168
   411
    "\<Lambda> P Q pq (h1 : _) qp (h2 : _). conjI_realizer \<cdot>
berghofe@13725
   412
       (\<lambda>pq. \<forall>x. P x \<longrightarrow> Q (pq x)) \<cdot> pq \<cdot>
berghofe@13725
   413
       (\<lambda>qp. \<forall>x. Q x \<longrightarrow> P (qp x)) \<cdot> qp \<bullet>
skalberg@14168
   414
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
skalberg@14168
   415
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
berghofe@13403
   416
berghofe@13725
   417
  iffI (P): "\<lambda>p. p"
skalberg@14168
   418
    "\<Lambda> P Q (h1 : _) p (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
skalberg@14168
   419
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h1 \<cdot> x))) \<bullet>
berghofe@13403
   420
       (impI \<cdot> _ \<cdot> _ \<bullet> h2)"
berghofe@13403
   421
berghofe@13725
   422
  iffI (Q): "\<lambda>q. q"
skalberg@14168
   423
    "\<Lambda> P Q q (h1 : _) (h2 : _). conjI \<cdot> _ \<cdot> _ \<bullet>
berghofe@13403
   424
       (impI \<cdot> _ \<cdot> _ \<bullet> h1) \<bullet>
skalberg@14168
   425
       (allI \<cdot> _ \<bullet> (\<Lambda> x. impI \<cdot> _ \<cdot> _ \<bullet> (h2 \<cdot> x)))"
berghofe@13403
   426
berghofe@13725
   427
  iffI: "Null" "iffI"
berghofe@13403
   428
berghofe@13725
   429
(*
berghofe@13403
   430
  classical: "Null"
skalberg@14168
   431
    "\<Lambda> P. classical \<cdot> _"
berghofe@13725
   432
*)
berghofe@13403
   433
berghofe@13403
   434
end