src/HOL/List.ML
author paulson
Mon Jun 23 10:42:03 1997 +0200 (1997-06-23)
changeset 3457 a8ab7c64817c
parent 3383 7707cb7a5054
child 3465 e85c24717cad
permissions -rw-r--r--
Ran expandshort
clasohm@1465
     1
(*  Title:      HOL/List
clasohm@923
     2
    ID:         $Id$
clasohm@1465
     3
    Author:     Tobias Nipkow
clasohm@923
     4
    Copyright   1994 TU Muenchen
clasohm@923
     5
clasohm@923
     6
List lemmas
clasohm@923
     7
*)
clasohm@923
     8
nipkow@3011
     9
goal thy "!x. xs ~= x#xs";
nipkow@3040
    10
by (induct_tac "xs" 1);
clasohm@1264
    11
by (ALLGOALS Asm_simp_tac);
nipkow@2608
    12
qed_spec_mp "not_Cons_self";
nipkow@2512
    13
Addsimps [not_Cons_self];
clasohm@923
    14
nipkow@3011
    15
goal thy "(xs ~= []) = (? y ys. xs = y#ys)";
nipkow@3040
    16
by (induct_tac "xs" 1);
clasohm@1264
    17
by (Simp_tac 1);
clasohm@1264
    18
by (Asm_simp_tac 1);
clasohm@923
    19
qed "neq_Nil_conv";
clasohm@923
    20
clasohm@923
    21
paulson@3342
    22
(** List operator over sets **)
paulson@3342
    23
paulson@3342
    24
goalw thy lists.defs "!!A B. A<=B ==> lists A <= lists B";
paulson@3342
    25
by (rtac lfp_mono 1);
paulson@3342
    26
by (REPEAT (ares_tac basic_monos 1));
paulson@3342
    27
qed "lists_mono";
paulson@3196
    28
paulson@3196
    29
nipkow@2608
    30
(** list_case **)
nipkow@2608
    31
nipkow@3011
    32
goal thy
nipkow@2608
    33
 "P(list_case a f xs) = ((xs=[] --> P(a)) & \
paulson@2891
    34
\                        (!y ys. xs=y#ys --> P(f y ys)))";
nipkow@3040
    35
by (induct_tac "xs" 1);
nipkow@2608
    36
by (ALLGOALS Asm_simp_tac);
paulson@2891
    37
by (Blast_tac 1);
nipkow@2608
    38
qed "expand_list_case";
nipkow@2608
    39
nipkow@3011
    40
val prems = goal thy "[| P([]); !!x xs. P(x#xs) |] ==> P(xs)";
paulson@3457
    41
by (induct_tac "xs" 1);
paulson@3457
    42
by (REPEAT(resolve_tac prems 1));
nipkow@2608
    43
qed "list_cases";
nipkow@2608
    44
nipkow@3011
    45
goal thy  "(xs=[] --> P([])) & (!y ys. xs=y#ys --> P(y#ys)) --> P(xs)";
nipkow@3040
    46
by (induct_tac "xs" 1);
paulson@2891
    47
by (Blast_tac 1);
paulson@2891
    48
by (Blast_tac 1);
nipkow@2608
    49
bind_thm("list_eq_cases",
nipkow@2608
    50
  impI RSN (2,allI RSN (2,allI RSN (2,impI RS (conjI RS (result() RS mp))))));
nipkow@2608
    51
nipkow@2608
    52
clasohm@923
    53
(** @ - append **)
clasohm@923
    54
nipkow@3011
    55
goal thy "(xs@ys)@zs = xs@(ys@zs)";
nipkow@3040
    56
by (induct_tac "xs" 1);
clasohm@1264
    57
by (ALLGOALS Asm_simp_tac);
clasohm@923
    58
qed "append_assoc";
nipkow@2512
    59
Addsimps [append_assoc];
clasohm@923
    60
nipkow@3011
    61
goal thy "xs @ [] = xs";
nipkow@3040
    62
by (induct_tac "xs" 1);
clasohm@1264
    63
by (ALLGOALS Asm_simp_tac);
clasohm@923
    64
qed "append_Nil2";
nipkow@2512
    65
Addsimps [append_Nil2];
clasohm@923
    66
nipkow@3011
    67
goal thy "(xs@ys = []) = (xs=[] & ys=[])";
nipkow@3040
    68
by (induct_tac "xs" 1);
clasohm@1264
    69
by (ALLGOALS Asm_simp_tac);
nipkow@2608
    70
qed "append_is_Nil_conv";
nipkow@2608
    71
AddIffs [append_is_Nil_conv];
nipkow@2608
    72
nipkow@3011
    73
goal thy "([] = xs@ys) = (xs=[] & ys=[])";
nipkow@3040
    74
by (induct_tac "xs" 1);
nipkow@2608
    75
by (ALLGOALS Asm_simp_tac);
paulson@3457
    76
by (Blast_tac 1);
nipkow@2608
    77
qed "Nil_is_append_conv";
nipkow@2608
    78
AddIffs [Nil_is_append_conv];
clasohm@923
    79
nipkow@3011
    80
goal thy "(xs @ ys = xs @ zs) = (ys=zs)";
nipkow@3040
    81
by (induct_tac "xs" 1);
clasohm@1264
    82
by (ALLGOALS Asm_simp_tac);
clasohm@923
    83
qed "same_append_eq";
nipkow@2608
    84
AddIffs [same_append_eq];
nipkow@2608
    85
nipkow@3011
    86
goal thy "!ys. (xs @ [x] = ys @ [y]) = (xs = ys & x = y)"; 
paulson@3457
    87
by (induct_tac "xs" 1);
paulson@3457
    88
 by (rtac allI 1);
paulson@3457
    89
 by (induct_tac "ys" 1);
paulson@3457
    90
  by (ALLGOALS Asm_simp_tac);
paulson@3457
    91
by (rtac allI 1);
paulson@3457
    92
by (induct_tac "ys" 1);
paulson@3457
    93
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
    94
qed_spec_mp "append1_eq_conv";
nipkow@2608
    95
AddIffs [append1_eq_conv];
nipkow@2608
    96
nipkow@3011
    97
goal thy "xs ~= [] --> hd xs # tl xs = xs";
paulson@3457
    98
by (induct_tac "xs" 1);
paulson@3457
    99
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   100
qed_spec_mp "hd_Cons_tl";
nipkow@2608
   101
Addsimps [hd_Cons_tl];
clasohm@923
   102
nipkow@3011
   103
goal thy "hd(xs@ys) = (if xs=[] then hd ys else hd xs)";
nipkow@3040
   104
by (induct_tac "xs" 1);
nipkow@1327
   105
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   106
qed "hd_append";
clasohm@923
   107
nipkow@3011
   108
goal thy "tl(xs@ys) = (case xs of [] => tl(ys) | z#zs => zs@ys)";
paulson@3457
   109
by (simp_tac (!simpset setloop(split_tac[expand_list_case])) 1);
nipkow@2608
   110
qed "tl_append";
nipkow@2608
   111
nipkow@2608
   112
(** map **)
nipkow@2608
   113
nipkow@3011
   114
goal thy
nipkow@2608
   115
  "(!x. x : set_of_list xs --> f x = g x) --> map f xs = map g xs";
paulson@3457
   116
by (induct_tac "xs" 1);
paulson@3457
   117
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   118
bind_thm("map_ext", impI RS (allI RS (result() RS mp)));
nipkow@2608
   119
nipkow@3011
   120
goal thy "map (%x.x) = (%xs.xs)";
nipkow@2608
   121
by (rtac ext 1);
nipkow@3040
   122
by (induct_tac "xs" 1);
nipkow@2608
   123
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   124
qed "map_ident";
nipkow@2608
   125
Addsimps[map_ident];
nipkow@2608
   126
nipkow@3011
   127
goal thy "map f (xs@ys) = map f xs @ map f ys";
nipkow@3040
   128
by (induct_tac "xs" 1);
nipkow@2608
   129
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   130
qed "map_append";
nipkow@2608
   131
Addsimps[map_append];
nipkow@2608
   132
nipkow@3011
   133
goalw thy [o_def] "map (f o g) xs = map f (map g xs)";
nipkow@3040
   134
by (induct_tac "xs" 1);
nipkow@2608
   135
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   136
qed "map_compose";
nipkow@2608
   137
Addsimps[map_compose];
nipkow@2608
   138
nipkow@3011
   139
goal thy "rev(map f xs) = map f (rev xs)";
nipkow@3040
   140
by (induct_tac "xs" 1);
nipkow@2608
   141
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   142
qed "rev_map";
nipkow@2608
   143
lcp@1169
   144
(** rev **)
lcp@1169
   145
nipkow@3011
   146
goal thy "rev(xs@ys) = rev(ys) @ rev(xs)";
nipkow@3040
   147
by (induct_tac "xs" 1);
nipkow@2512
   148
by (ALLGOALS Asm_simp_tac);
lcp@1169
   149
qed "rev_append";
nipkow@2512
   150
Addsimps[rev_append];
lcp@1169
   151
nipkow@3011
   152
goal thy "rev(rev l) = l";
nipkow@3040
   153
by (induct_tac "l" 1);
nipkow@2512
   154
by (ALLGOALS Asm_simp_tac);
lcp@1169
   155
qed "rev_rev_ident";
nipkow@2512
   156
Addsimps[rev_rev_ident];
lcp@1169
   157
nipkow@2608
   158
clasohm@923
   159
(** mem **)
clasohm@923
   160
nipkow@3011
   161
goal thy "x mem (xs@ys) = (x mem xs | x mem ys)";
nipkow@3040
   162
by (induct_tac "xs" 1);
clasohm@1264
   163
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
clasohm@923
   164
qed "mem_append";
nipkow@2512
   165
Addsimps[mem_append];
clasohm@923
   166
nipkow@3011
   167
goal thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
nipkow@3040
   168
by (induct_tac "xs" 1);
clasohm@1264
   169
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
clasohm@923
   170
qed "mem_filter";
nipkow@2512
   171
Addsimps[mem_filter];
clasohm@923
   172
paulson@1908
   173
(** set_of_list **)
paulson@1812
   174
paulson@1908
   175
goal thy "set_of_list (xs@ys) = (set_of_list xs Un set_of_list ys)";
nipkow@3040
   176
by (induct_tac "xs" 1);
paulson@1812
   177
by (ALLGOALS Asm_simp_tac);
paulson@1908
   178
qed "set_of_list_append";
nipkow@2512
   179
Addsimps[set_of_list_append];
paulson@1812
   180
paulson@1908
   181
goal thy "(x mem xs) = (x: set_of_list xs)";
nipkow@3040
   182
by (induct_tac "xs" 1);
paulson@1812
   183
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
paulson@2891
   184
by (Blast_tac 1);
paulson@1908
   185
qed "set_of_list_mem_eq";
paulson@1812
   186
nipkow@3011
   187
goal thy "set_of_list l <= set_of_list (x#l)";
paulson@1936
   188
by (Simp_tac 1);
paulson@2891
   189
by (Blast_tac 1);
paulson@1936
   190
qed "set_of_list_subset_Cons";
paulson@1936
   191
nipkow@3011
   192
goal thy "(set_of_list xs = {}) = (xs = [])";
paulson@3457
   193
by (induct_tac "xs" 1);
paulson@3457
   194
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   195
qed "set_of_list_empty";
nipkow@2608
   196
Addsimps [set_of_list_empty];
nipkow@2608
   197
nipkow@3011
   198
goal thy "set_of_list(rev xs) = set_of_list(xs)";
paulson@3457
   199
by (induct_tac "xs" 1);
paulson@3457
   200
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   201
qed "set_of_list_rev";
nipkow@2608
   202
Addsimps [set_of_list_rev];
nipkow@2608
   203
nipkow@3011
   204
goal thy "set_of_list(map f xs) = f``(set_of_list xs)";
paulson@3457
   205
by (induct_tac "xs" 1);
paulson@3457
   206
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   207
qed "set_of_list_map";
nipkow@2608
   208
Addsimps [set_of_list_map];
nipkow@2608
   209
paulson@1812
   210
clasohm@923
   211
(** list_all **)
clasohm@923
   212
nipkow@3011
   213
goal thy "list_all (%x.True) xs = True";
nipkow@3040
   214
by (induct_tac "xs" 1);
clasohm@1264
   215
by (ALLGOALS Asm_simp_tac);
clasohm@923
   216
qed "list_all_True";
nipkow@2512
   217
Addsimps [list_all_True];
clasohm@923
   218
nipkow@3011
   219
goal thy "list_all p (xs@ys) = (list_all p xs & list_all p ys)";
nipkow@3040
   220
by (induct_tac "xs" 1);
clasohm@1264
   221
by (ALLGOALS Asm_simp_tac);
nipkow@2512
   222
qed "list_all_append";
nipkow@2512
   223
Addsimps [list_all_append];
clasohm@923
   224
nipkow@3011
   225
goal thy "list_all P xs = (!x. x mem xs --> P(x))";
nipkow@3040
   226
by (induct_tac "xs" 1);
clasohm@1264
   227
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
paulson@2891
   228
by (Blast_tac 1);
clasohm@923
   229
qed "list_all_mem_conv";
clasohm@923
   230
clasohm@923
   231
nipkow@2608
   232
(** filter **)
clasohm@923
   233
paulson@3383
   234
goal thy "filter P (xs@ys) = filter P xs @ filter P ys";
paulson@3457
   235
by (induct_tac "xs" 1);
paulson@3457
   236
 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
nipkow@2608
   237
qed "filter_append";
nipkow@2608
   238
Addsimps [filter_append];
nipkow@2608
   239
paulson@3383
   240
goal thy "size (filter P xs) <= size xs";
paulson@3457
   241
by (induct_tac "xs" 1);
paulson@3457
   242
 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
paulson@3383
   243
qed "filter_size";
paulson@3383
   244
nipkow@2608
   245
nipkow@2608
   246
(** concat **)
nipkow@2608
   247
nipkow@3011
   248
goal thy  "concat(xs@ys) = concat(xs)@concat(ys)";
nipkow@3040
   249
by (induct_tac "xs" 1);
clasohm@1264
   250
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   251
qed"concat_append";
nipkow@2608
   252
Addsimps [concat_append];
nipkow@2512
   253
nipkow@3011
   254
goal thy "rev(concat ls) = concat (map rev (rev ls))";
nipkow@3040
   255
by (induct_tac "ls" 1);
nipkow@2512
   256
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   257
qed "rev_concat";
clasohm@923
   258
nipkow@962
   259
(** length **)
nipkow@962
   260
nipkow@3011
   261
goal thy "length(xs@ys) = length(xs)+length(ys)";
nipkow@3040
   262
by (induct_tac "xs" 1);
clasohm@1264
   263
by (ALLGOALS Asm_simp_tac);
nipkow@962
   264
qed"length_append";
nipkow@1301
   265
Addsimps [length_append];
nipkow@1301
   266
nipkow@3011
   267
goal thy "length (map f l) = length l";
nipkow@3040
   268
by (induct_tac "l" 1);
nipkow@1301
   269
by (ALLGOALS Simp_tac);
nipkow@1301
   270
qed "length_map";
nipkow@1301
   271
Addsimps [length_map];
nipkow@962
   272
nipkow@3011
   273
goal thy "length(rev xs) = length(xs)";
nipkow@3040
   274
by (induct_tac "xs" 1);
nipkow@1301
   275
by (ALLGOALS Asm_simp_tac);
lcp@1169
   276
qed "length_rev";
nipkow@1301
   277
Addsimps [length_rev];
lcp@1169
   278
nipkow@3011
   279
goal thy "(length xs = 0) = (xs = [])";
paulson@3457
   280
by (induct_tac "xs" 1);
paulson@3457
   281
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   282
qed "length_0_conv";
nipkow@2608
   283
AddIffs [length_0_conv];
nipkow@2608
   284
nipkow@3011
   285
goal thy "(0 < length xs) = (xs ~= [])";
paulson@3457
   286
by (induct_tac "xs" 1);
paulson@3457
   287
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   288
qed "length_greater_0_conv";
nipkow@2608
   289
AddIffs [length_greater_0_conv];
nipkow@2608
   290
nipkow@2608
   291
clasohm@923
   292
(** nth **)
clasohm@923
   293
nipkow@3011
   294
goal thy
nipkow@2608
   295
  "!xs. nth n (xs@ys) = \
nipkow@2608
   296
\          (if n < length xs then nth n xs else nth (n - length xs) ys)";
paulson@3457
   297
by (nat_ind_tac "n" 1);
paulson@3457
   298
 by (Asm_simp_tac 1);
paulson@3457
   299
 by (rtac allI 1);
paulson@3457
   300
 by (exhaust_tac "xs" 1);
paulson@3457
   301
  by (ALLGOALS Asm_simp_tac);
paulson@3457
   302
by (rtac allI 1);
paulson@3457
   303
by (exhaust_tac "xs" 1);
paulson@3457
   304
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   305
qed_spec_mp "nth_append";
nipkow@2608
   306
nipkow@3011
   307
goal thy "!n. n < length xs --> nth n (map f xs) = f (nth n xs)";
nipkow@3040
   308
by (induct_tac "xs" 1);
nipkow@1301
   309
(* case [] *)
nipkow@1301
   310
by (Asm_full_simp_tac 1);
nipkow@1301
   311
(* case x#xl *)
nipkow@1301
   312
by (rtac allI 1);
nipkow@1301
   313
by (nat_ind_tac "n" 1);
nipkow@1301
   314
by (ALLGOALS Asm_full_simp_tac);
nipkow@1485
   315
qed_spec_mp "nth_map";
nipkow@1301
   316
Addsimps [nth_map];
nipkow@1301
   317
nipkow@3011
   318
goal thy "!n. n < length xs --> list_all P xs --> P(nth n xs)";
nipkow@3040
   319
by (induct_tac "xs" 1);
nipkow@1301
   320
(* case [] *)
nipkow@1301
   321
by (Simp_tac 1);
nipkow@1301
   322
(* case x#xl *)
nipkow@1301
   323
by (rtac allI 1);
nipkow@1301
   324
by (nat_ind_tac "n" 1);
nipkow@1301
   325
by (ALLGOALS Asm_full_simp_tac);
nipkow@1485
   326
qed_spec_mp "list_all_nth";
nipkow@1301
   327
nipkow@3011
   328
goal thy "!n. n < length xs --> (nth n xs) mem xs";
nipkow@3040
   329
by (induct_tac "xs" 1);
nipkow@1301
   330
(* case [] *)
nipkow@1301
   331
by (Simp_tac 1);
nipkow@1301
   332
(* case x#xl *)
nipkow@1301
   333
by (rtac allI 1);
nipkow@1301
   334
by (nat_ind_tac "n" 1);
nipkow@1301
   335
(* case 0 *)
nipkow@1301
   336
by (Asm_full_simp_tac 1);
nipkow@1301
   337
(* case Suc x *)
nipkow@1301
   338
by (asm_full_simp_tac (!simpset setloop (split_tac [expand_if])) 1);
nipkow@1485
   339
qed_spec_mp "nth_mem";
nipkow@1301
   340
Addsimps [nth_mem];
nipkow@1301
   341
nipkow@1327
   342
nipkow@2608
   343
(** take  & drop **)
nipkow@2608
   344
section "take & drop";
nipkow@1327
   345
nipkow@1419
   346
goal thy "take 0 xs = []";
nipkow@3040
   347
by (induct_tac "xs" 1);
nipkow@1419
   348
by (ALLGOALS Asm_simp_tac);
nipkow@1327
   349
qed "take_0";
nipkow@1327
   350
nipkow@2608
   351
goal thy "drop 0 xs = xs";
nipkow@3040
   352
by (induct_tac "xs" 1);
nipkow@2608
   353
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   354
qed "drop_0";
nipkow@2608
   355
nipkow@1419
   356
goal thy "take (Suc n) (x#xs) = x # take n xs";
paulson@1552
   357
by (Simp_tac 1);
nipkow@1419
   358
qed "take_Suc_Cons";
nipkow@1327
   359
nipkow@2608
   360
goal thy "drop (Suc n) (x#xs) = drop n xs";
nipkow@2608
   361
by (Simp_tac 1);
nipkow@2608
   362
qed "drop_Suc_Cons";
nipkow@2608
   363
nipkow@2608
   364
Delsimps [take_Cons,drop_Cons];
nipkow@2608
   365
Addsimps [take_0,take_Suc_Cons,drop_0,drop_Suc_Cons];
nipkow@2608
   366
nipkow@3011
   367
goal thy "!xs. length(take n xs) = min (length xs) n";
paulson@3457
   368
by (nat_ind_tac "n" 1);
paulson@3457
   369
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   370
by (rtac allI 1);
paulson@3457
   371
by (exhaust_tac "xs" 1);
paulson@3457
   372
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   373
qed_spec_mp "length_take";
nipkow@2608
   374
Addsimps [length_take];
clasohm@923
   375
nipkow@3011
   376
goal thy "!xs. length(drop n xs) = (length xs - n)";
paulson@3457
   377
by (nat_ind_tac "n" 1);
paulson@3457
   378
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   379
by (rtac allI 1);
paulson@3457
   380
by (exhaust_tac "xs" 1);
paulson@3457
   381
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   382
qed_spec_mp "length_drop";
nipkow@2608
   383
Addsimps [length_drop];
nipkow@2608
   384
nipkow@3011
   385
goal thy "!xs. length xs <= n --> take n xs = xs";
paulson@3457
   386
by (nat_ind_tac "n" 1);
paulson@3457
   387
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   388
by (rtac allI 1);
paulson@3457
   389
by (exhaust_tac "xs" 1);
paulson@3457
   390
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   391
qed_spec_mp "take_all";
clasohm@923
   392
nipkow@3011
   393
goal thy "!xs. length xs <= n --> drop n xs = []";
paulson@3457
   394
by (nat_ind_tac "n" 1);
paulson@3457
   395
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   396
by (rtac allI 1);
paulson@3457
   397
by (exhaust_tac "xs" 1);
paulson@3457
   398
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   399
qed_spec_mp "drop_all";
nipkow@2608
   400
nipkow@3011
   401
goal thy 
nipkow@2608
   402
  "!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)";
paulson@3457
   403
by (nat_ind_tac "n" 1);
paulson@3457
   404
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   405
by (rtac allI 1);
paulson@3457
   406
by (exhaust_tac "xs" 1);
paulson@3457
   407
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   408
qed_spec_mp "take_append";
nipkow@2608
   409
Addsimps [take_append];
nipkow@2608
   410
nipkow@3011
   411
goal thy "!xs. drop n (xs@ys) = drop n xs @ drop (n - length xs) ys"; 
paulson@3457
   412
by (nat_ind_tac "n" 1);
paulson@3457
   413
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   414
by (rtac allI 1);
paulson@3457
   415
by (exhaust_tac "xs" 1);
paulson@3457
   416
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   417
qed_spec_mp "drop_append";
nipkow@2608
   418
Addsimps [drop_append];
nipkow@2608
   419
nipkow@3011
   420
goal thy "!xs n. take n (take m xs) = take (min n m) xs"; 
paulson@3457
   421
by (nat_ind_tac "m" 1);
paulson@3457
   422
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   423
by (rtac allI 1);
paulson@3457
   424
by (exhaust_tac "xs" 1);
paulson@3457
   425
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   426
by (rtac allI 1);
paulson@3457
   427
by (exhaust_tac "n" 1);
paulson@3457
   428
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   429
qed_spec_mp "take_take";
nipkow@2608
   430
nipkow@3011
   431
goal thy "!xs. drop n (drop m xs) = drop (n + m) xs"; 
paulson@3457
   432
by (nat_ind_tac "m" 1);
paulson@3457
   433
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   434
by (rtac allI 1);
paulson@3457
   435
by (exhaust_tac "xs" 1);
paulson@3457
   436
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   437
qed_spec_mp "drop_drop";
clasohm@923
   438
nipkow@3011
   439
goal thy "!xs n. take n (drop m xs) = drop m (take (n + m) xs)"; 
paulson@3457
   440
by (nat_ind_tac "m" 1);
paulson@3457
   441
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   442
by (rtac allI 1);
paulson@3457
   443
by (exhaust_tac "xs" 1);
paulson@3457
   444
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   445
qed_spec_mp "take_drop";
nipkow@2608
   446
nipkow@3011
   447
goal thy "!xs. take n (map f xs) = map f (take n xs)"; 
paulson@3457
   448
by (nat_ind_tac "n" 1);
paulson@3457
   449
by (ALLGOALS Asm_simp_tac);
paulson@3457
   450
by (rtac allI 1);
paulson@3457
   451
by (exhaust_tac "xs" 1);
paulson@3457
   452
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   453
qed_spec_mp "take_map"; 
nipkow@2608
   454
nipkow@3011
   455
goal thy "!xs. drop n (map f xs) = map f (drop n xs)"; 
paulson@3457
   456
by (nat_ind_tac "n" 1);
paulson@3457
   457
by (ALLGOALS Asm_simp_tac);
paulson@3457
   458
by (rtac allI 1);
paulson@3457
   459
by (exhaust_tac "xs" 1);
paulson@3457
   460
by (ALLGOALS Asm_simp_tac);
nipkow@2608
   461
qed_spec_mp "drop_map";
nipkow@2608
   462
nipkow@3283
   463
goal thy "!n i. i < n --> nth i (take n xs) = nth i xs";
paulson@3457
   464
by (induct_tac "xs" 1);
paulson@3457
   465
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   466
by (strip_tac 1);
paulson@3457
   467
by (exhaust_tac "n" 1);
paulson@3457
   468
 by (Blast_tac 1);
paulson@3457
   469
by (exhaust_tac "i" 1);
paulson@3457
   470
by (ALLGOALS Asm_full_simp_tac);
nipkow@2608
   471
qed_spec_mp "nth_take";
nipkow@2608
   472
Addsimps [nth_take];
clasohm@923
   473
nipkow@3283
   474
goal thy  "!xs i. n + i < length xs --> nth i (drop n xs) = nth (n + i) xs";
paulson@3457
   475
by (nat_ind_tac "n" 1);
paulson@3457
   476
 by (ALLGOALS Asm_simp_tac);
paulson@3457
   477
by (rtac allI 1);
paulson@3457
   478
by (exhaust_tac "xs" 1);
paulson@3457
   479
 by (ALLGOALS Asm_simp_tac);
nipkow@2608
   480
qed_spec_mp "nth_drop";
nipkow@2608
   481
Addsimps [nth_drop];
nipkow@2608
   482
nipkow@2608
   483
(** takeWhile & dropWhile **)
nipkow@2608
   484
nipkow@3011
   485
goal thy
nipkow@2608
   486
  "x:set_of_list xs & ~P(x) --> takeWhile P (xs @ ys) = takeWhile P xs";
paulson@3457
   487
by (induct_tac "xs" 1);
paulson@3457
   488
 by (Simp_tac 1);
paulson@3457
   489
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
paulson@3457
   490
by (Blast_tac 1);
nipkow@2608
   491
bind_thm("takeWhile_append1", conjI RS (result() RS mp));
nipkow@2608
   492
Addsimps [takeWhile_append1];
clasohm@923
   493
nipkow@3011
   494
goal thy
nipkow@2608
   495
  "(!x:set_of_list xs.P(x)) --> takeWhile P (xs @ ys) = xs @ takeWhile P ys";
paulson@3457
   496
by (induct_tac "xs" 1);
paulson@3457
   497
 by (Simp_tac 1);
paulson@3457
   498
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   499
bind_thm("takeWhile_append2", ballI RS (result() RS mp));
nipkow@2608
   500
Addsimps [takeWhile_append2];
lcp@1169
   501
nipkow@3011
   502
goal thy
nipkow@2608
   503
  "x:set_of_list xs & ~P(x) --> dropWhile P (xs @ ys) = (dropWhile P xs)@ys";
paulson@3457
   504
by (induct_tac "xs" 1);
paulson@3457
   505
 by (Simp_tac 1);
paulson@3457
   506
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
paulson@3457
   507
by (Blast_tac 1);
nipkow@2608
   508
bind_thm("dropWhile_append1", conjI RS (result() RS mp));
nipkow@2608
   509
Addsimps [dropWhile_append1];
nipkow@2608
   510
nipkow@3011
   511
goal thy
nipkow@2608
   512
  "(!x:set_of_list xs.P(x)) --> dropWhile P (xs @ ys) = dropWhile P ys";
paulson@3457
   513
by (induct_tac "xs" 1);
paulson@3457
   514
 by (Simp_tac 1);
paulson@3457
   515
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   516
bind_thm("dropWhile_append2", ballI RS (result() RS mp));
nipkow@2608
   517
Addsimps [dropWhile_append2];
nipkow@2608
   518
nipkow@3011
   519
goal thy "x:set_of_list(takeWhile P xs) --> x:set_of_list xs & P x";
paulson@3457
   520
by (induct_tac "xs" 1);
paulson@3457
   521
 by (Simp_tac 1);
paulson@3457
   522
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
nipkow@2608
   523
qed_spec_mp"set_of_list_take_whileD";
nipkow@2608
   524