wenzelm@30122
|
1 |
(* Title: HOL/RComplete.thy
|
wenzelm@30122
|
2 |
Author: Jacques D. Fleuriot, University of Edinburgh
|
wenzelm@30122
|
3 |
Author: Larry Paulson, University of Cambridge
|
wenzelm@30122
|
4 |
Author: Jeremy Avigad, Carnegie Mellon University
|
wenzelm@30122
|
5 |
Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
|
wenzelm@16893
|
6 |
*)
|
paulson@5078
|
7 |
|
wenzelm@16893
|
8 |
header {* Completeness of the Reals; Floor and Ceiling Functions *}
|
paulson@14365
|
9 |
|
nipkow@15131
|
10 |
theory RComplete
|
nipkow@15140
|
11 |
imports Lubs RealDef
|
nipkow@15131
|
12 |
begin
|
paulson@14365
|
13 |
|
paulson@14365
|
14 |
lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
|
wenzelm@16893
|
15 |
by simp
|
paulson@14365
|
16 |
|
paulson@32707
|
17 |
lemma abs_diff_less_iff:
|
haftmann@35028
|
18 |
"(\<bar>x - a\<bar> < (r::'a::linordered_idom)) = (a - r < x \<and> x < a + r)"
|
paulson@32707
|
19 |
by auto
|
paulson@14365
|
20 |
|
wenzelm@16893
|
21 |
subsection {* Completeness of Positive Reals *}
|
wenzelm@16893
|
22 |
|
wenzelm@16893
|
23 |
text {*
|
wenzelm@16893
|
24 |
Supremum property for the set of positive reals
|
wenzelm@16893
|
25 |
|
wenzelm@16893
|
26 |
Let @{text "P"} be a non-empty set of positive reals, with an upper
|
wenzelm@16893
|
27 |
bound @{text "y"}. Then @{text "P"} has a least upper bound
|
wenzelm@16893
|
28 |
(written @{text "S"}).
|
paulson@14365
|
29 |
|
wenzelm@16893
|
30 |
FIXME: Can the premise be weakened to @{text "\<forall>x \<in> P. x\<le> y"}?
|
wenzelm@16893
|
31 |
*}
|
wenzelm@16893
|
32 |
|
huffman@36795
|
33 |
text {* Only used in HOL/Import/HOL4Compat.thy; delete? *}
|
huffman@36795
|
34 |
|
wenzelm@16893
|
35 |
lemma posreal_complete:
|
huffman@44690
|
36 |
fixes P :: "real set"
|
huffman@44690
|
37 |
assumes not_empty_P: "\<exists>x. x \<in> P"
|
wenzelm@16893
|
38 |
and upper_bound_Ex: "\<exists>y. \<forall>x \<in> P. x<y"
|
wenzelm@16893
|
39 |
shows "\<exists>S. \<forall>y. (\<exists>x \<in> P. y < x) = (y < S)"
|
huffman@36795
|
40 |
proof -
|
huffman@36795
|
41 |
from upper_bound_Ex have "\<exists>z. \<forall>x\<in>P. x \<le> z"
|
huffman@36795
|
42 |
by (auto intro: less_imp_le)
|
huffman@36795
|
43 |
from complete_real [OF not_empty_P this] obtain S
|
huffman@36795
|
44 |
where S1: "\<And>x. x \<in> P \<Longrightarrow> x \<le> S" and S2: "\<And>z. \<forall>x\<in>P. x \<le> z \<Longrightarrow> S \<le> z" by fast
|
huffman@36795
|
45 |
have "\<forall>y. (\<exists>x \<in> P. y < x) = (y < S)"
|
huffman@36795
|
46 |
proof
|
huffman@36795
|
47 |
fix y show "(\<exists>x\<in>P. y < x) = (y < S)"
|
huffman@36795
|
48 |
apply (cases "\<exists>x\<in>P. y < x", simp_all)
|
huffman@36795
|
49 |
apply (clarify, drule S1, simp)
|
huffman@36795
|
50 |
apply (simp add: not_less S2)
|
huffman@36795
|
51 |
done
|
wenzelm@16893
|
52 |
qed
|
huffman@36795
|
53 |
thus ?thesis ..
|
wenzelm@16893
|
54 |
qed
|
wenzelm@16893
|
55 |
|
wenzelm@16893
|
56 |
text {*
|
wenzelm@16893
|
57 |
\medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc.
|
wenzelm@16893
|
58 |
*}
|
paulson@14365
|
59 |
|
paulson@14365
|
60 |
lemma real_isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::real)"
|
wenzelm@16893
|
61 |
apply (frule isLub_isUb)
|
wenzelm@16893
|
62 |
apply (frule_tac x = y in isLub_isUb)
|
wenzelm@16893
|
63 |
apply (blast intro!: order_antisym dest!: isLub_le_isUb)
|
wenzelm@16893
|
64 |
done
|
paulson@14365
|
65 |
|
paulson@5078
|
66 |
|
wenzelm@16893
|
67 |
text {*
|
wenzelm@16893
|
68 |
\medskip reals Completeness (again!)
|
wenzelm@16893
|
69 |
*}
|
paulson@14365
|
70 |
|
wenzelm@16893
|
71 |
lemma reals_complete:
|
wenzelm@16893
|
72 |
assumes notempty_S: "\<exists>X. X \<in> S"
|
wenzelm@16893
|
73 |
and exists_Ub: "\<exists>Y. isUb (UNIV::real set) S Y"
|
wenzelm@16893
|
74 |
shows "\<exists>t. isLub (UNIV :: real set) S t"
|
wenzelm@16893
|
75 |
proof -
|
huffman@36795
|
76 |
from assms have "\<exists>X. X \<in> S" and "\<exists>Y. \<forall>x\<in>S. x \<le> Y"
|
huffman@36795
|
77 |
unfolding isUb_def setle_def by simp_all
|
huffman@36795
|
78 |
from complete_real [OF this] show ?thesis
|
haftmann@45966
|
79 |
by (simp add: isLub_def leastP_def isUb_def setle_def setge_def)
|
wenzelm@16893
|
80 |
qed
|
paulson@14365
|
81 |
|
paulson@14365
|
82 |
|
wenzelm@16893
|
83 |
subsection {* The Archimedean Property of the Reals *}
|
wenzelm@16893
|
84 |
|
wenzelm@16893
|
85 |
theorem reals_Archimedean:
|
wenzelm@16893
|
86 |
assumes x_pos: "0 < x"
|
wenzelm@16893
|
87 |
shows "\<exists>n. inverse (real (Suc n)) < x"
|
huffman@36795
|
88 |
unfolding real_of_nat_def using x_pos
|
huffman@36795
|
89 |
by (rule ex_inverse_of_nat_Suc_less)
|
paulson@14365
|
90 |
|
paulson@14365
|
91 |
lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)"
|
huffman@36795
|
92 |
unfolding real_of_nat_def by (rule ex_less_of_nat)
|
huffman@30097
|
93 |
|
wenzelm@16893
|
94 |
lemma reals_Archimedean3:
|
wenzelm@16893
|
95 |
assumes x_greater_zero: "0 < x"
|
wenzelm@16893
|
96 |
shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x"
|
huffman@30097
|
97 |
unfolding real_of_nat_def using `0 < x`
|
huffman@30097
|
98 |
by (auto intro: ex_less_of_nat_mult)
|
paulson@14365
|
99 |
|
avigad@16819
|
100 |
|
nipkow@28091
|
101 |
subsection{*Density of the Rational Reals in the Reals*}
|
nipkow@28091
|
102 |
|
nipkow@28091
|
103 |
text{* This density proof is due to Stefan Richter and was ported by TN. The
|
nipkow@28091
|
104 |
original source is \emph{Real Analysis} by H.L. Royden.
|
nipkow@28091
|
105 |
It employs the Archimedean property of the reals. *}
|
nipkow@28091
|
106 |
|
huffman@44668
|
107 |
lemma Rats_dense_in_real:
|
huffman@44668
|
108 |
fixes x :: real
|
huffman@44668
|
109 |
assumes "x < y" shows "\<exists>r\<in>\<rat>. x < r \<and> r < y"
|
nipkow@28091
|
110 |
proof -
|
nipkow@28091
|
111 |
from `x<y` have "0 < y-x" by simp
|
nipkow@28091
|
112 |
with reals_Archimedean obtain q::nat
|
huffman@44668
|
113 |
where q: "inverse (real q) < y-x" and "0 < q" by auto
|
huffman@44668
|
114 |
def p \<equiv> "ceiling (y * real q) - 1"
|
huffman@44668
|
115 |
def r \<equiv> "of_int p / real q"
|
huffman@44668
|
116 |
from q have "x < y - inverse (real q)" by simp
|
huffman@44668
|
117 |
also have "y - inverse (real q) \<le> r"
|
huffman@44668
|
118 |
unfolding r_def p_def
|
huffman@44668
|
119 |
by (simp add: le_divide_eq left_diff_distrib le_of_int_ceiling `0 < q`)
|
huffman@44668
|
120 |
finally have "x < r" .
|
huffman@44668
|
121 |
moreover have "r < y"
|
huffman@44668
|
122 |
unfolding r_def p_def
|
huffman@44668
|
123 |
by (simp add: divide_less_eq diff_less_eq `0 < q`
|
huffman@44668
|
124 |
less_ceiling_iff [symmetric])
|
huffman@44668
|
125 |
moreover from r_def have "r \<in> \<rat>" by simp
|
nipkow@28091
|
126 |
ultimately show ?thesis by fast
|
nipkow@28091
|
127 |
qed
|
nipkow@28091
|
128 |
|
nipkow@28091
|
129 |
|
paulson@14641
|
130 |
subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
|
paulson@14641
|
131 |
|
huffman@47108
|
132 |
(* FIXME: theorems for negative numerals *)
|
huffman@47108
|
133 |
lemma numeral_less_real_of_int_iff [simp]:
|
huffman@47108
|
134 |
"((numeral n) < real (m::int)) = (numeral n < m)"
|
paulson@14641
|
135 |
apply auto
|
paulson@14641
|
136 |
apply (rule real_of_int_less_iff [THEN iffD1])
|
paulson@14641
|
137 |
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
|
paulson@14641
|
138 |
done
|
paulson@14641
|
139 |
|
huffman@47108
|
140 |
lemma numeral_less_real_of_int_iff2 [simp]:
|
huffman@47108
|
141 |
"(real (m::int) < (numeral n)) = (m < numeral n)"
|
paulson@14641
|
142 |
apply auto
|
paulson@14641
|
143 |
apply (rule real_of_int_less_iff [THEN iffD1])
|
paulson@14641
|
144 |
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
|
paulson@14641
|
145 |
done
|
paulson@14641
|
146 |
|
huffman@47108
|
147 |
lemma numeral_le_real_of_int_iff [simp]:
|
huffman@47108
|
148 |
"((numeral n) \<le> real (m::int)) = (numeral n \<le> m)"
|
paulson@14641
|
149 |
by (simp add: linorder_not_less [symmetric])
|
paulson@14641
|
150 |
|
huffman@47108
|
151 |
lemma numeral_le_real_of_int_iff2 [simp]:
|
huffman@47108
|
152 |
"(real (m::int) \<le> (numeral n)) = (m \<le> numeral n)"
|
paulson@14641
|
153 |
by (simp add: linorder_not_less [symmetric])
|
paulson@14641
|
154 |
|
huffman@24355
|
155 |
lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
|
huffman@30097
|
156 |
unfolding real_of_nat_def by simp
|
paulson@14641
|
157 |
|
huffman@24355
|
158 |
lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
|
huffman@30102
|
159 |
unfolding real_of_nat_def by (simp add: floor_minus)
|
paulson@14641
|
160 |
|
paulson@14641
|
161 |
lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
|
huffman@30097
|
162 |
unfolding real_of_int_def by simp
|
paulson@14641
|
163 |
|
paulson@14641
|
164 |
lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
|
huffman@30102
|
165 |
unfolding real_of_int_def by (simp add: floor_minus)
|
paulson@14641
|
166 |
|
paulson@14641
|
167 |
lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)"
|
huffman@30097
|
168 |
unfolding real_of_int_def by (rule floor_exists)
|
paulson@14641
|
169 |
|
paulson@14641
|
170 |
lemma lemma_floor:
|
paulson@14641
|
171 |
assumes a1: "real m \<le> r" and a2: "r < real n + 1"
|
paulson@14641
|
172 |
shows "m \<le> (n::int)"
|
paulson@14641
|
173 |
proof -
|
wenzelm@23389
|
174 |
have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
|
wenzelm@23389
|
175 |
also have "... = real (n + 1)" by simp
|
wenzelm@23389
|
176 |
finally have "m < n + 1" by (simp only: real_of_int_less_iff)
|
paulson@14641
|
177 |
thus ?thesis by arith
|
paulson@14641
|
178 |
qed
|
paulson@14641
|
179 |
|
paulson@14641
|
180 |
lemma real_of_int_floor_le [simp]: "real (floor r) \<le> r"
|
huffman@30097
|
181 |
unfolding real_of_int_def by (rule of_int_floor_le)
|
paulson@14641
|
182 |
|
paulson@14641
|
183 |
lemma lemma_floor2: "real n < real (x::int) + 1 ==> n \<le> x"
|
paulson@14641
|
184 |
by (auto intro: lemma_floor)
|
paulson@14641
|
185 |
|
paulson@14641
|
186 |
lemma real_of_int_floor_cancel [simp]:
|
paulson@14641
|
187 |
"(real (floor x) = x) = (\<exists>n::int. x = real n)"
|
huffman@30097
|
188 |
using floor_real_of_int by metis
|
paulson@14641
|
189 |
|
paulson@14641
|
190 |
lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
|
huffman@30097
|
191 |
unfolding real_of_int_def using floor_unique [of n x] by simp
|
paulson@14641
|
192 |
|
paulson@14641
|
193 |
lemma floor_eq2: "[| real n \<le> x; x < real n + 1 |] ==> floor x = n"
|
huffman@30097
|
194 |
unfolding real_of_int_def by (rule floor_unique)
|
paulson@14641
|
195 |
|
paulson@14641
|
196 |
lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
|
paulson@14641
|
197 |
apply (rule inj_int [THEN injD])
|
paulson@14641
|
198 |
apply (simp add: real_of_nat_Suc)
|
nipkow@15539
|
199 |
apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
|
paulson@14641
|
200 |
done
|
paulson@14641
|
201 |
|
paulson@14641
|
202 |
lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat(floor x) = n"
|
paulson@14641
|
203 |
apply (drule order_le_imp_less_or_eq)
|
paulson@14641
|
204 |
apply (auto intro: floor_eq3)
|
paulson@14641
|
205 |
done
|
paulson@14641
|
206 |
|
paulson@14641
|
207 |
lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real(floor r)"
|
huffman@30097
|
208 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
avigad@16819
|
209 |
|
avigad@16819
|
210 |
lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
|
huffman@30097
|
211 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
paulson@14641
|
212 |
|
paulson@14641
|
213 |
lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real(floor r) + 1"
|
huffman@30097
|
214 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
paulson@14641
|
215 |
|
avigad@16819
|
216 |
lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
|
huffman@30097
|
217 |
unfolding real_of_int_def using floor_correct [of r] by simp
|
paulson@14641
|
218 |
|
avigad@16819
|
219 |
lemma le_floor: "real a <= x ==> a <= floor x"
|
huffman@30097
|
220 |
unfolding real_of_int_def by (simp add: le_floor_iff)
|
avigad@16819
|
221 |
|
avigad@16819
|
222 |
lemma real_le_floor: "a <= floor x ==> real a <= x"
|
huffman@30097
|
223 |
unfolding real_of_int_def by (simp add: le_floor_iff)
|
avigad@16819
|
224 |
|
avigad@16819
|
225 |
lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
|
huffman@30097
|
226 |
unfolding real_of_int_def by (rule le_floor_iff)
|
avigad@16819
|
227 |
|
avigad@16819
|
228 |
lemma floor_less_eq: "(floor x < a) = (x < real a)"
|
huffman@30097
|
229 |
unfolding real_of_int_def by (rule floor_less_iff)
|
avigad@16819
|
230 |
|
avigad@16819
|
231 |
lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
|
huffman@30097
|
232 |
unfolding real_of_int_def by (rule less_floor_iff)
|
avigad@16819
|
233 |
|
avigad@16819
|
234 |
lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
|
huffman@30097
|
235 |
unfolding real_of_int_def by (rule floor_le_iff)
|
avigad@16819
|
236 |
|
avigad@16819
|
237 |
lemma floor_add [simp]: "floor (x + real a) = floor x + a"
|
huffman@30097
|
238 |
unfolding real_of_int_def by (rule floor_add_of_int)
|
avigad@16819
|
239 |
|
avigad@16819
|
240 |
lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
|
huffman@30097
|
241 |
unfolding real_of_int_def by (rule floor_diff_of_int)
|
avigad@16819
|
242 |
|
hoelzl@35578
|
243 |
lemma le_mult_floor:
|
hoelzl@35578
|
244 |
assumes "0 \<le> (a :: real)" and "0 \<le> b"
|
hoelzl@35578
|
245 |
shows "floor a * floor b \<le> floor (a * b)"
|
hoelzl@35578
|
246 |
proof -
|
hoelzl@35578
|
247 |
have "real (floor a) \<le> a"
|
hoelzl@35578
|
248 |
and "real (floor b) \<le> b" by auto
|
hoelzl@35578
|
249 |
hence "real (floor a * floor b) \<le> a * b"
|
hoelzl@35578
|
250 |
using assms by (auto intro!: mult_mono)
|
hoelzl@35578
|
251 |
also have "a * b < real (floor (a * b) + 1)" by auto
|
hoelzl@35578
|
252 |
finally show ?thesis unfolding real_of_int_less_iff by simp
|
hoelzl@35578
|
253 |
qed
|
hoelzl@35578
|
254 |
|
hoelzl@47596
|
255 |
lemma floor_divide_eq_div:
|
hoelzl@47596
|
256 |
"floor (real a / real b) = a div b"
|
hoelzl@47596
|
257 |
proof cases
|
hoelzl@47596
|
258 |
assume "b \<noteq> 0 \<or> b dvd a"
|
hoelzl@47596
|
259 |
with real_of_int_div3[of a b] show ?thesis
|
hoelzl@47596
|
260 |
by (auto simp: real_of_int_div[symmetric] intro!: floor_eq2 real_of_int_div4 neq_le_trans)
|
hoelzl@47596
|
261 |
(metis add_left_cancel zero_neq_one real_of_int_div_aux real_of_int_inject
|
hoelzl@47596
|
262 |
real_of_int_zero_cancel right_inverse_eq div_self mod_div_trivial)
|
hoelzl@47596
|
263 |
qed (auto simp: real_of_int_div)
|
hoelzl@47596
|
264 |
|
huffman@24355
|
265 |
lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
|
huffman@30097
|
266 |
unfolding real_of_nat_def by simp
|
paulson@14641
|
267 |
|
paulson@14641
|
268 |
lemma real_of_int_ceiling_ge [simp]: "r \<le> real (ceiling r)"
|
huffman@30097
|
269 |
unfolding real_of_int_def by (rule le_of_int_ceiling)
|
paulson@14641
|
270 |
|
huffman@30097
|
271 |
lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
|
huffman@30097
|
272 |
unfolding real_of_int_def by simp
|
paulson@14641
|
273 |
|
paulson@14641
|
274 |
lemma real_of_int_ceiling_cancel [simp]:
|
paulson@14641
|
275 |
"(real (ceiling x) = x) = (\<exists>n::int. x = real n)"
|
huffman@30097
|
276 |
using ceiling_real_of_int by metis
|
paulson@14641
|
277 |
|
paulson@14641
|
278 |
lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
|
huffman@30097
|
279 |
unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
|
paulson@14641
|
280 |
|
paulson@14641
|
281 |
lemma ceiling_eq2: "[| real n < x; x \<le> real n + 1 |] ==> ceiling x = n + 1"
|
huffman@30097
|
282 |
unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp
|
paulson@14641
|
283 |
|
paulson@14641
|
284 |
lemma ceiling_eq3: "[| real n - 1 < x; x \<le> real n |] ==> ceiling x = n"
|
huffman@30097
|
285 |
unfolding real_of_int_def using ceiling_unique [of n x] by simp
|
paulson@14641
|
286 |
|
paulson@14641
|
287 |
lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 \<le> r"
|
huffman@30097
|
288 |
unfolding real_of_int_def using ceiling_correct [of r] by simp
|
paulson@14641
|
289 |
|
paulson@14641
|
290 |
lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) \<le> r + 1"
|
huffman@30097
|
291 |
unfolding real_of_int_def using ceiling_correct [of r] by simp
|
paulson@14641
|
292 |
|
avigad@16819
|
293 |
lemma ceiling_le: "x <= real a ==> ceiling x <= a"
|
huffman@30097
|
294 |
unfolding real_of_int_def by (simp add: ceiling_le_iff)
|
avigad@16819
|
295 |
|
avigad@16819
|
296 |
lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
|
huffman@30097
|
297 |
unfolding real_of_int_def by (simp add: ceiling_le_iff)
|
avigad@16819
|
298 |
|
avigad@16819
|
299 |
lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
|
huffman@30097
|
300 |
unfolding real_of_int_def by (rule ceiling_le_iff)
|
avigad@16819
|
301 |
|
avigad@16819
|
302 |
lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
|
huffman@30097
|
303 |
unfolding real_of_int_def by (rule less_ceiling_iff)
|
avigad@16819
|
304 |
|
avigad@16819
|
305 |
lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
|
huffman@30097
|
306 |
unfolding real_of_int_def by (rule ceiling_less_iff)
|
avigad@16819
|
307 |
|
avigad@16819
|
308 |
lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
|
huffman@30097
|
309 |
unfolding real_of_int_def by (rule le_ceiling_iff)
|
avigad@16819
|
310 |
|
avigad@16819
|
311 |
lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
|
huffman@30097
|
312 |
unfolding real_of_int_def by (rule ceiling_add_of_int)
|
avigad@16819
|
313 |
|
avigad@16819
|
314 |
lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
|
huffman@30097
|
315 |
unfolding real_of_int_def by (rule ceiling_diff_of_int)
|
avigad@16819
|
316 |
|
avigad@16819
|
317 |
|
avigad@16819
|
318 |
subsection {* Versions for the natural numbers *}
|
avigad@16819
|
319 |
|
wenzelm@19765
|
320 |
definition
|
wenzelm@21404
|
321 |
natfloor :: "real => nat" where
|
wenzelm@19765
|
322 |
"natfloor x = nat(floor x)"
|
wenzelm@21404
|
323 |
|
wenzelm@21404
|
324 |
definition
|
wenzelm@21404
|
325 |
natceiling :: "real => nat" where
|
wenzelm@19765
|
326 |
"natceiling x = nat(ceiling x)"
|
avigad@16819
|
327 |
|
avigad@16819
|
328 |
lemma natfloor_zero [simp]: "natfloor 0 = 0"
|
avigad@16819
|
329 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
330 |
|
avigad@16819
|
331 |
lemma natfloor_one [simp]: "natfloor 1 = 1"
|
avigad@16819
|
332 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
333 |
|
avigad@16819
|
334 |
lemma zero_le_natfloor [simp]: "0 <= natfloor x"
|
avigad@16819
|
335 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
336 |
|
huffman@47108
|
337 |
lemma natfloor_numeral_eq [simp]: "natfloor (numeral n) = numeral n"
|
avigad@16819
|
338 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
339 |
|
avigad@16819
|
340 |
lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
|
avigad@16819
|
341 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
342 |
|
avigad@16819
|
343 |
lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
|
avigad@16819
|
344 |
by (unfold natfloor_def, simp)
|
avigad@16819
|
345 |
|
avigad@16819
|
346 |
lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
|
huffman@44679
|
347 |
unfolding natfloor_def by simp
|
huffman@44679
|
348 |
|
avigad@16819
|
349 |
lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
|
huffman@44679
|
350 |
unfolding natfloor_def by (intro nat_mono floor_mono)
|
avigad@16819
|
351 |
|
avigad@16819
|
352 |
lemma le_natfloor: "real x <= a ==> x <= natfloor a"
|
avigad@16819
|
353 |
apply (unfold natfloor_def)
|
avigad@16819
|
354 |
apply (subst nat_int [THEN sym])
|
huffman@44679
|
355 |
apply (rule nat_mono)
|
avigad@16819
|
356 |
apply (rule le_floor)
|
avigad@16819
|
357 |
apply simp
|
avigad@16819
|
358 |
done
|
avigad@16819
|
359 |
|
huffman@44679
|
360 |
lemma natfloor_less_iff: "0 \<le> x \<Longrightarrow> natfloor x < n \<longleftrightarrow> x < real n"
|
huffman@44679
|
361 |
unfolding natfloor_def real_of_nat_def
|
huffman@44679
|
362 |
by (simp add: nat_less_iff floor_less_iff)
|
huffman@44679
|
363 |
|
hoelzl@35578
|
364 |
lemma less_natfloor:
|
hoelzl@35578
|
365 |
assumes "0 \<le> x" and "x < real (n :: nat)"
|
hoelzl@35578
|
366 |
shows "natfloor x < n"
|
huffman@44679
|
367 |
using assms by (simp add: natfloor_less_iff)
|
hoelzl@35578
|
368 |
|
avigad@16819
|
369 |
lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
|
avigad@16819
|
370 |
apply (rule iffI)
|
avigad@16819
|
371 |
apply (rule order_trans)
|
avigad@16819
|
372 |
prefer 2
|
avigad@16819
|
373 |
apply (erule real_natfloor_le)
|
avigad@16819
|
374 |
apply (subst real_of_nat_le_iff)
|
avigad@16819
|
375 |
apply assumption
|
avigad@16819
|
376 |
apply (erule le_natfloor)
|
avigad@16819
|
377 |
done
|
avigad@16819
|
378 |
|
huffman@47108
|
379 |
lemma le_natfloor_eq_numeral [simp]:
|
huffman@47108
|
380 |
"~ neg((numeral n)::int) ==> 0 <= x ==>
|
huffman@47108
|
381 |
(numeral n <= natfloor x) = (numeral n <= x)"
|
avigad@16819
|
382 |
apply (subst le_natfloor_eq, assumption)
|
avigad@16819
|
383 |
apply simp
|
avigad@16819
|
384 |
done
|
avigad@16819
|
385 |
|
avigad@16820
|
386 |
lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
|
avigad@16819
|
387 |
apply (case_tac "0 <= x")
|
avigad@16819
|
388 |
apply (subst le_natfloor_eq, assumption, simp)
|
avigad@16819
|
389 |
apply (rule iffI)
|
wenzelm@16893
|
390 |
apply (subgoal_tac "natfloor x <= natfloor 0")
|
avigad@16819
|
391 |
apply simp
|
avigad@16819
|
392 |
apply (rule natfloor_mono)
|
avigad@16819
|
393 |
apply simp
|
avigad@16819
|
394 |
apply simp
|
avigad@16819
|
395 |
done
|
avigad@16819
|
396 |
|
avigad@16819
|
397 |
lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
|
huffman@44679
|
398 |
unfolding natfloor_def by (simp add: floor_eq2 [where n="int n"])
|
avigad@16819
|
399 |
|
avigad@16819
|
400 |
lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
|
avigad@16819
|
401 |
apply (case_tac "0 <= x")
|
avigad@16819
|
402 |
apply (unfold natfloor_def)
|
avigad@16819
|
403 |
apply simp
|
avigad@16819
|
404 |
apply simp_all
|
avigad@16819
|
405 |
done
|
avigad@16819
|
406 |
|
avigad@16819
|
407 |
lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
|
nipkow@29667
|
408 |
using real_natfloor_add_one_gt by (simp add: algebra_simps)
|
avigad@16819
|
409 |
|
avigad@16819
|
410 |
lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
|
avigad@16819
|
411 |
apply (subgoal_tac "z < real(natfloor z) + 1")
|
avigad@16819
|
412 |
apply arith
|
avigad@16819
|
413 |
apply (rule real_natfloor_add_one_gt)
|
avigad@16819
|
414 |
done
|
avigad@16819
|
415 |
|
avigad@16819
|
416 |
lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
|
huffman@44679
|
417 |
unfolding natfloor_def
|
huffman@44679
|
418 |
unfolding real_of_int_of_nat_eq [symmetric] floor_add
|
huffman@44679
|
419 |
by (simp add: nat_add_distrib)
|
avigad@16819
|
420 |
|
huffman@47108
|
421 |
lemma natfloor_add_numeral [simp]:
|
huffman@47108
|
422 |
"~neg ((numeral n)::int) ==> 0 <= x ==>
|
huffman@47108
|
423 |
natfloor (x + numeral n) = natfloor x + numeral n"
|
huffman@44679
|
424 |
by (simp add: natfloor_add [symmetric])
|
avigad@16819
|
425 |
|
avigad@16819
|
426 |
lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
|
huffman@44679
|
427 |
by (simp add: natfloor_add [symmetric] del: One_nat_def)
|
avigad@16819
|
428 |
|
bulwahn@46671
|
429 |
lemma natfloor_subtract [simp]:
|
bulwahn@46671
|
430 |
"natfloor(x - real a) = natfloor x - a"
|
bulwahn@46671
|
431 |
unfolding natfloor_def real_of_int_of_nat_eq [symmetric] floor_subtract
|
huffman@44679
|
432 |
by simp
|
avigad@16819
|
433 |
|
wenzelm@41550
|
434 |
lemma natfloor_div_nat:
|
wenzelm@41550
|
435 |
assumes "1 <= x" and "y > 0"
|
wenzelm@41550
|
436 |
shows "natfloor (x / real y) = natfloor x div y"
|
huffman@44679
|
437 |
proof (rule natfloor_eq)
|
huffman@44679
|
438 |
have "(natfloor x) div y * y \<le> natfloor x"
|
huffman@44679
|
439 |
by (rule add_leD1 [where k="natfloor x mod y"], simp)
|
huffman@44679
|
440 |
thus "real (natfloor x div y) \<le> x / real y"
|
huffman@44679
|
441 |
using assms by (simp add: le_divide_eq le_natfloor_eq)
|
huffman@44679
|
442 |
have "natfloor x < (natfloor x) div y * y + y"
|
huffman@44679
|
443 |
apply (subst mod_div_equality [symmetric])
|
huffman@44679
|
444 |
apply (rule add_strict_left_mono)
|
huffman@44679
|
445 |
apply (rule mod_less_divisor)
|
huffman@44679
|
446 |
apply fact
|
hoelzl@35578
|
447 |
done
|
huffman@44679
|
448 |
thus "x / real y < real (natfloor x div y) + 1"
|
huffman@44679
|
449 |
using assms
|
webertj@49962
|
450 |
by (simp add: divide_less_eq natfloor_less_iff distrib_right)
|
hoelzl@35578
|
451 |
qed
|
hoelzl@35578
|
452 |
|
hoelzl@35578
|
453 |
lemma le_mult_natfloor:
|
hoelzl@35578
|
454 |
shows "natfloor a * natfloor b \<le> natfloor (a * b)"
|
bulwahn@46671
|
455 |
by (cases "0 <= a & 0 <= b")
|
bulwahn@46671
|
456 |
(auto simp add: le_natfloor_eq mult_nonneg_nonneg mult_mono' real_natfloor_le natfloor_neg)
|
hoelzl@35578
|
457 |
|
avigad@16819
|
458 |
lemma natceiling_zero [simp]: "natceiling 0 = 0"
|
avigad@16819
|
459 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
460 |
|
avigad@16819
|
461 |
lemma natceiling_one [simp]: "natceiling 1 = 1"
|
avigad@16819
|
462 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
463 |
|
avigad@16819
|
464 |
lemma zero_le_natceiling [simp]: "0 <= natceiling x"
|
avigad@16819
|
465 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
466 |
|
huffman@47108
|
467 |
lemma natceiling_numeral_eq [simp]: "natceiling (numeral n) = numeral n"
|
avigad@16819
|
468 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
469 |
|
avigad@16819
|
470 |
lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
|
avigad@16819
|
471 |
by (unfold natceiling_def, simp)
|
avigad@16819
|
472 |
|
avigad@16819
|
473 |
lemma real_natceiling_ge: "x <= real(natceiling x)"
|
huffman@44679
|
474 |
unfolding natceiling_def by (cases "x < 0", simp_all)
|
avigad@16819
|
475 |
|
avigad@16819
|
476 |
lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
|
huffman@44679
|
477 |
unfolding natceiling_def by simp
|
avigad@16819
|
478 |
|
avigad@16819
|
479 |
lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
|
huffman@44679
|
480 |
unfolding natceiling_def by (intro nat_mono ceiling_mono)
|
huffman@44679
|
481 |
|
avigad@16819
|
482 |
lemma natceiling_le: "x <= real a ==> natceiling x <= a"
|
huffman@44679
|
483 |
unfolding natceiling_def real_of_nat_def
|
huffman@44679
|
484 |
by (simp add: nat_le_iff ceiling_le_iff)
|
avigad@16819
|
485 |
|
huffman@44708
|
486 |
lemma natceiling_le_eq: "(natceiling x <= a) = (x <= real a)"
|
huffman@44708
|
487 |
unfolding natceiling_def real_of_nat_def
|
huffman@44679
|
488 |
by (simp add: nat_le_iff ceiling_le_iff)
|
avigad@16819
|
489 |
|
huffman@47108
|
490 |
lemma natceiling_le_eq_numeral [simp]:
|
huffman@47108
|
491 |
"~ neg((numeral n)::int) ==>
|
huffman@47108
|
492 |
(natceiling x <= numeral n) = (x <= numeral n)"
|
huffman@44679
|
493 |
by (simp add: natceiling_le_eq)
|
avigad@16819
|
494 |
|
avigad@16820
|
495 |
lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
|
huffman@44679
|
496 |
unfolding natceiling_def
|
huffman@44679
|
497 |
by (simp add: nat_le_iff ceiling_le_iff)
|
avigad@16819
|
498 |
|
avigad@16819
|
499 |
lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
|
huffman@44679
|
500 |
unfolding natceiling_def
|
huffman@44679
|
501 |
by (simp add: ceiling_eq2 [where n="int n"])
|
avigad@16819
|
502 |
|
wenzelm@16893
|
503 |
lemma natceiling_add [simp]: "0 <= x ==>
|
avigad@16819
|
504 |
natceiling (x + real a) = natceiling x + a"
|
huffman@44679
|
505 |
unfolding natceiling_def
|
huffman@44679
|
506 |
unfolding real_of_int_of_nat_eq [symmetric] ceiling_add
|
huffman@44679
|
507 |
by (simp add: nat_add_distrib)
|
avigad@16819
|
508 |
|
huffman@47108
|
509 |
lemma natceiling_add_numeral [simp]:
|
huffman@47108
|
510 |
"~ neg ((numeral n)::int) ==> 0 <= x ==>
|
huffman@47108
|
511 |
natceiling (x + numeral n) = natceiling x + numeral n"
|
huffman@44679
|
512 |
by (simp add: natceiling_add [symmetric])
|
avigad@16819
|
513 |
|
avigad@16819
|
514 |
lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
|
huffman@44679
|
515 |
by (simp add: natceiling_add [symmetric] del: One_nat_def)
|
avigad@16819
|
516 |
|
bulwahn@46671
|
517 |
lemma natceiling_subtract [simp]: "natceiling(x - real a) = natceiling x - a"
|
bulwahn@46671
|
518 |
unfolding natceiling_def real_of_int_of_nat_eq [symmetric] ceiling_subtract
|
huffman@44679
|
519 |
by simp
|
avigad@16819
|
520 |
|
huffman@36826
|
521 |
subsection {* Exponentiation with floor *}
|
huffman@36826
|
522 |
|
huffman@36826
|
523 |
lemma floor_power:
|
huffman@36826
|
524 |
assumes "x = real (floor x)"
|
huffman@36826
|
525 |
shows "floor (x ^ n) = floor x ^ n"
|
huffman@36826
|
526 |
proof -
|
huffman@36826
|
527 |
have *: "x ^ n = real (floor x ^ n)"
|
huffman@36826
|
528 |
using assms by (induct n arbitrary: x) simp_all
|
huffman@36826
|
529 |
show ?thesis unfolding real_of_int_inject[symmetric]
|
huffman@36826
|
530 |
unfolding * floor_real_of_int ..
|
huffman@36826
|
531 |
qed
|
huffman@36826
|
532 |
|
huffman@36826
|
533 |
lemma natfloor_power:
|
huffman@36826
|
534 |
assumes "x = real (natfloor x)"
|
huffman@36826
|
535 |
shows "natfloor (x ^ n) = natfloor x ^ n"
|
huffman@36826
|
536 |
proof -
|
huffman@36826
|
537 |
from assms have "0 \<le> floor x" by auto
|
huffman@36826
|
538 |
note assms[unfolded natfloor_def real_nat_eq_real[OF `0 \<le> floor x`]]
|
huffman@36826
|
539 |
from floor_power[OF this]
|
huffman@36826
|
540 |
show ?thesis unfolding natfloor_def nat_power_eq[OF `0 \<le> floor x`, symmetric]
|
huffman@36826
|
541 |
by simp
|
huffman@36826
|
542 |
qed
|
avigad@16819
|
543 |
|
paulson@14365
|
544 |
end
|