author  webertj 
Fri, 19 Oct 2012 15:12:52 +0200  
changeset 49962  a8cc904a6820 
parent 47761  dfe747e72fa8 
child 50331  4b6dc5077e98 
permissions  rwrr 
10751  1 
(* Title : Series.thy 
2 
Author : Jacques D. Fleuriot 

3 
Copyright : 1998 University of Cambridge 

14416  4 

5 
Converted to Isar and polished by lcp 

15539  6 
Converted to setsum and polished yet more by TNN 
16819  7 
Additional contributions by Jeremy Avigad 
41970  8 
*) 
10751  9 

14416  10 
header{*Finite Summation and Infinite Series*} 
10751  11 

15131  12 
theory Series 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

13 
imports SEQ Deriv 
15131  14 
begin 
15561  15 

19765  16 
definition 
41970  17 
sums :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a \<Rightarrow> bool" 
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21141
diff
changeset

18 
(infixr "sums" 80) where 
19765  19 
"f sums s = (%n. setsum f {0..<n}) > s" 
10751  20 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21141
diff
changeset

21 
definition 
41970  22 
summable :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> bool" where 
19765  23 
"summable f = (\<exists>s. f sums s)" 
14416  24 

21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21141
diff
changeset

25 
definition 
41970  26 
suminf :: "(nat \<Rightarrow> 'a::{topological_space, comm_monoid_add}) \<Rightarrow> 'a" where 
20688  27 
"suminf f = (THE s. f sums s)" 
14416  28 

44289  29 
notation suminf (binder "\<Sum>" 10) 
15546  30 

14416  31 

32877
6f09346c7c08
New lemmas connected with the reals and infinite series
paulson
parents:
32707
diff
changeset

32 
lemma [trans]: "f=g ==> g sums z ==> f sums z" 
6f09346c7c08
New lemmas connected with the reals and infinite series
paulson
parents:
32707
diff
changeset

33 
by simp 
6f09346c7c08
New lemmas connected with the reals and infinite series
paulson
parents:
32707
diff
changeset

34 

15539  35 
lemma sumr_diff_mult_const: 
36 
"setsum f {0..<n}  (real n*r) = setsum (%i. f i  r) {0..<n::nat}" 

15536  37 
by (simp add: diff_minus setsum_addf real_of_nat_def) 
38 

15542  39 
lemma real_setsum_nat_ivl_bounded: 
40 
"(!!p. p < n \<Longrightarrow> f(p) \<le> K) 

41 
\<Longrightarrow> setsum f {0..<n::nat} \<le> real n * K" 

42 
using setsum_bounded[where A = "{0..<n}"] 

43 
by (auto simp:real_of_nat_def) 

14416  44 

15539  45 
(* Generalize from real to some algebraic structure? *) 
46 
lemma sumr_minus_one_realpow_zero [simp]: 

15543  47 
"(\<Sum>i=0..<2*n. (1) ^ Suc i) = (0::real)" 
15251  48 
by (induct "n", auto) 
14416  49 

15539  50 
(* FIXME this is an awful lemma! *) 
51 
lemma sumr_one_lb_realpow_zero [simp]: 

52 
"(\<Sum>n=Suc 0..<n. f(n) * (0::real) ^ n) = 0" 

20692  53 
by (rule setsum_0', simp) 
14416  54 

15543  55 
lemma sumr_group: 
15539  56 
"(\<Sum>m=0..<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {0 ..< n * k}" 
15543  57 
apply (subgoal_tac "k = 0  0 < k", auto) 
15251  58 
apply (induct "n") 
15539  59 
apply (simp_all add: setsum_add_nat_ivl add_commute) 
14416  60 
done 
15539  61 

20692  62 
lemma sumr_offset3: 
63 
"setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)) + setsum f {0..<k}" 

64 
apply (subst setsum_shift_bounds_nat_ivl [symmetric]) 

65 
apply (simp add: setsum_add_nat_ivl add_commute) 

66 
done 

67 

16819  68 
lemma sumr_offset: 
20692  69 
fixes f :: "nat \<Rightarrow> 'a::ab_group_add" 
70 
shows "(\<Sum>m=0..<n. f(m+k)) = setsum f {0..<n+k}  setsum f {0..<k}" 

71 
by (simp add: sumr_offset3) 

16819  72 

73 
lemma sumr_offset2: 

74 
"\<forall>f. (\<Sum>m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k}  setsum f {0..<k}" 

20692  75 
by (simp add: sumr_offset) 
16819  76 

77 
lemma sumr_offset4: 

20692  78 
"\<forall>n f. setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)::real) + setsum f {0..<k}" 
79 
by (clarify, rule sumr_offset3) 

16819  80 

14416  81 
subsection{* Infinite Sums, by the Properties of Limits*} 
82 

83 
(* 

41970  84 
suminf is the sum 
14416  85 
*) 
86 
lemma sums_summable: "f sums l ==> summable f" 

41970  87 
by (simp add: sums_def summable_def, blast) 
14416  88 

41970  89 
lemma summable_sums: 
46904  90 
fixes f :: "nat \<Rightarrow> 'a::{t2_space, comm_monoid_add}" 
91 
assumes "summable f" 

92 
shows "f sums (suminf f)" 

41970  93 
proof  
46904  94 
from assms obtain s where s: "(\<lambda>n. setsum f {0..<n}) > s" 
95 
unfolding summable_def sums_def [abs_def] .. 

96 
then show ?thesis unfolding sums_def [abs_def] suminf_def 

41970  97 
by (rule theI, auto intro!: tendsto_unique[OF trivial_limit_sequentially]) 
98 
qed 

14416  99 

41970  100 
lemma summable_sumr_LIMSEQ_suminf: 
101 
fixes f :: "nat \<Rightarrow> 'a::{t2_space, comm_monoid_add}" 

102 
shows "summable f \<Longrightarrow> (\<lambda>n. setsum f {0..<n}) > suminf f" 

20688  103 
by (rule summable_sums [unfolded sums_def]) 
14416  104 

32707
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

105 
lemma suminf_eq_lim: "suminf f = lim (%n. setsum f {0..<n})" 
41970  106 
by (simp add: suminf_def sums_def lim_def) 
32707
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

107 

14416  108 
(* 
41970  109 
sum is unique 
14416  110 
*) 
41970  111 
lemma sums_unique: 
112 
fixes f :: "nat \<Rightarrow> 'a::{t2_space, comm_monoid_add}" 

113 
shows "f sums s \<Longrightarrow> (s = suminf f)" 

114 
apply (frule sums_summable[THEN summable_sums]) 

115 
apply (auto intro!: tendsto_unique[OF trivial_limit_sequentially] simp add: sums_def) 

14416  116 
done 
117 

41970  118 
lemma sums_iff: 
119 
fixes f :: "nat \<Rightarrow> 'a::{t2_space, comm_monoid_add}" 

120 
shows "f sums x \<longleftrightarrow> summable f \<and> (suminf f = x)" 

32707
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

121 
by (metis summable_sums sums_summable sums_unique) 
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

122 

47761  123 
lemma sums_finite: 
124 
assumes [simp]: "finite N" 

125 
assumes f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 0" 

126 
shows "f sums (\<Sum>n\<in>N. f n)" 

127 
proof  

128 
{ fix n 

129 
have "setsum f {..<n + Suc (Max N)} = setsum f N" 

130 
proof cases 

131 
assume "N = {}" 

132 
with f have "f = (\<lambda>x. 0)" by auto 

133 
then show ?thesis by simp 

134 
next 

135 
assume [simp]: "N \<noteq> {}" 

136 
show ?thesis 

137 
proof (safe intro!: setsum_mono_zero_right f) 

138 
fix i assume "i \<in> N" 

139 
then have "i \<le> Max N" by simp 

140 
then show "i < n + Suc (Max N)" by simp 

141 
qed 

142 
qed } 

143 
note eq = this 

144 
show ?thesis unfolding sums_def 

145 
by (rule LIMSEQ_offset[of _ "Suc (Max N)"]) 

146 
(simp add: eq atLeast0LessThan tendsto_const del: add_Suc_right) 

147 
qed 

148 

149 
lemma suminf_finite: 

150 
fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,t2_space}" 

151 
assumes N: "finite N" and f: "\<And>n. n \<notin> N \<Longrightarrow> f n = 0" 

152 
shows "suminf f = (\<Sum>n\<in>N. f n)" 

153 
using sums_finite[OF assms, THEN sums_unique] by simp 

154 

155 
lemma sums_If_finite_set: 

156 
"finite A \<Longrightarrow> (\<lambda>r. if r \<in> A then f r else 0 :: 'a::{comm_monoid_add,t2_space}) sums (\<Sum>r\<in>A. f r)" 

157 
using sums_finite[of A "(\<lambda>r. if r \<in> A then f r else 0)"] by simp 

158 

159 
lemma sums_If_finite: 

160 
"finite {r. P r} \<Longrightarrow> (\<lambda>r. if P r then f r else 0 :: 'a::{comm_monoid_add,t2_space}) sums (\<Sum>r  P r. f r)" 

161 
using sums_If_finite_set[of "{r. P r}" f] by simp 

162 

163 
lemma sums_single: 

164 
"(\<lambda>r. if r = i then f r else 0::'a::{comm_monoid_add,t2_space}) sums f i" 

165 
using sums_If_finite[of "\<lambda>r. r = i" f] by simp 

166 

41970  167 
lemma sums_split_initial_segment: 
168 
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" 

169 
shows "f sums s ==> (\<lambda>n. f(n + k)) sums (s  (SUM i = 0..< k. f i))" 

170 
apply (unfold sums_def) 

171 
apply (simp add: sumr_offset) 

44710  172 
apply (rule tendsto_diff [OF _ tendsto_const]) 
16819  173 
apply (rule LIMSEQ_ignore_initial_segment) 
174 
apply assumption 

175 
done 

176 

41970  177 
lemma summable_ignore_initial_segment: 
178 
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" 

179 
shows "summable f ==> summable (%n. f(n + k))" 

16819  180 
apply (unfold summable_def) 
181 
apply (auto intro: sums_split_initial_segment) 

182 
done 

183 

41970  184 
lemma suminf_minus_initial_segment: 
185 
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" 

186 
shows "summable f ==> 

16819  187 
suminf f = s ==> suminf (%n. f(n + k)) = s  (SUM i = 0..< k. f i)" 
188 
apply (frule summable_ignore_initial_segment) 

189 
apply (rule sums_unique [THEN sym]) 

190 
apply (frule summable_sums) 

191 
apply (rule sums_split_initial_segment) 

192 
apply auto 

193 
done 

194 

41970  195 
lemma suminf_split_initial_segment: 
196 
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" 

197 
shows "summable f ==> 

198 
suminf f = (SUM i = 0..< k. f i) + (\<Sum>n. f(n + k))" 

16819  199 
by (auto simp add: suminf_minus_initial_segment) 
200 

29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

201 
lemma suminf_exist_split: fixes r :: real assumes "0 < r" and "summable a" 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

202 
shows "\<exists> N. \<forall> n \<ge> N. \<bar> \<Sum> i. a (i + n) \<bar> < r" 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

203 
proof  
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

204 
from LIMSEQ_D[OF summable_sumr_LIMSEQ_suminf[OF `summable a`] `0 < r`] 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

205 
obtain N :: nat where "\<forall> n \<ge> N. norm (setsum a {0..<n}  suminf a) < r" by auto 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

206 
thus ?thesis unfolding suminf_minus_initial_segment[OF `summable a` refl] abs_minus_commute real_norm_def 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

207 
by auto 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

208 
qed 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

209 

41970  210 
lemma sums_Suc: 
211 
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" 

212 
assumes sumSuc: "(\<lambda> n. f (Suc n)) sums l" shows "f sums (l + f 0)" 

29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

213 
proof  
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

214 
from sumSuc[unfolded sums_def] 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

215 
have "(\<lambda>i. \<Sum>n = Suc 0..<Suc i. f n) > l" unfolding setsum_reindex[OF inj_Suc] image_Suc_atLeastLessThan[symmetric] comp_def . 
44710  216 
from tendsto_add[OF this tendsto_const, where b="f 0"] 
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

217 
have "(\<lambda>i. \<Sum>n = 0..<Suc i. f n) > l + f 0" unfolding add_commute setsum_head_upt_Suc[OF zero_less_Suc] . 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

218 
thus ?thesis unfolding sums_def by (rule LIMSEQ_imp_Suc) 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

219 
qed 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29197
diff
changeset

220 

41970  221 
lemma series_zero: 
222 
fixes f :: "nat \<Rightarrow> 'a::{t2_space, comm_monoid_add}" 

223 
assumes "\<forall>m. n \<le> m \<longrightarrow> f m = 0" 

224 
shows "f sums (setsum f {0..<n})" 

225 
proof  

226 
{ fix k :: nat have "setsum f {0..<k + n} = setsum f {0..<n}" 

227 
using assms by (induct k) auto } 

228 
note setsum_const = this 

229 
show ?thesis 

230 
unfolding sums_def 

231 
apply (rule LIMSEQ_offset[of _ n]) 

232 
unfolding setsum_const 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

233 
apply (rule tendsto_const) 
41970  234 
done 
235 
qed 

14416  236 

41970  237 
lemma sums_zero[simp, intro]: "(\<lambda>n. 0) sums 0" 
44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

238 
unfolding sums_def by (simp add: tendsto_const) 
15539  239 

41970  240 
lemma summable_zero[simp, intro]: "summable (\<lambda>n. 0)" 
23121  241 
by (rule sums_zero [THEN sums_summable]) 
16819  242 

41970  243 
lemma suminf_zero[simp]: "suminf (\<lambda>n. 0::'a::{t2_space, comm_monoid_add}) = 0" 
23121  244 
by (rule sums_zero [THEN sums_unique, symmetric]) 
41970  245 

23119  246 
lemma (in bounded_linear) sums: 
247 
"(\<lambda>n. X n) sums a \<Longrightarrow> (\<lambda>n. f (X n)) sums (f a)" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

248 
unfolding sums_def by (drule tendsto, simp only: setsum) 
23119  249 

250 
lemma (in bounded_linear) summable: 

251 
"summable (\<lambda>n. X n) \<Longrightarrow> summable (\<lambda>n. f (X n))" 

252 
unfolding summable_def by (auto intro: sums) 

253 

254 
lemma (in bounded_linear) suminf: 

255 
"summable (\<lambda>n. X n) \<Longrightarrow> f (\<Sum>n. X n) = (\<Sum>n. f (X n))" 

23121  256 
by (intro sums_unique sums summable_sums) 
23119  257 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

258 
lemmas sums_of_real = bounded_linear.sums [OF bounded_linear_of_real] 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

259 
lemmas summable_of_real = bounded_linear.summable [OF bounded_linear_of_real] 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

260 
lemmas suminf_of_real = bounded_linear.suminf [OF bounded_linear_of_real] 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

261 

20692  262 
lemma sums_mult: 
263 
fixes c :: "'a::real_normed_algebra" 

264 
shows "f sums a \<Longrightarrow> (\<lambda>n. c * f n) sums (c * a)" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

265 
by (rule bounded_linear.sums [OF bounded_linear_mult_right]) 
14416  266 

20692  267 
lemma summable_mult: 
268 
fixes c :: "'a::real_normed_algebra" 

23121  269 
shows "summable f \<Longrightarrow> summable (%n. c * f n)" 
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

270 
by (rule bounded_linear.summable [OF bounded_linear_mult_right]) 
16819  271 

20692  272 
lemma suminf_mult: 
273 
fixes c :: "'a::real_normed_algebra" 

41970  274 
shows "summable f \<Longrightarrow> suminf (\<lambda>n. c * f n) = c * suminf f" 
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

275 
by (rule bounded_linear.suminf [OF bounded_linear_mult_right, symmetric]) 
16819  276 

20692  277 
lemma sums_mult2: 
278 
fixes c :: "'a::real_normed_algebra" 

279 
shows "f sums a \<Longrightarrow> (\<lambda>n. f n * c) sums (a * c)" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

280 
by (rule bounded_linear.sums [OF bounded_linear_mult_left]) 
16819  281 

20692  282 
lemma summable_mult2: 
283 
fixes c :: "'a::real_normed_algebra" 

284 
shows "summable f \<Longrightarrow> summable (\<lambda>n. f n * c)" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

285 
by (rule bounded_linear.summable [OF bounded_linear_mult_left]) 
16819  286 

20692  287 
lemma suminf_mult2: 
288 
fixes c :: "'a::real_normed_algebra" 

289 
shows "summable f \<Longrightarrow> suminf f * c = (\<Sum>n. f n * c)" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

290 
by (rule bounded_linear.suminf [OF bounded_linear_mult_left]) 
16819  291 

20692  292 
lemma sums_divide: 
293 
fixes c :: "'a::real_normed_field" 

294 
shows "f sums a \<Longrightarrow> (\<lambda>n. f n / c) sums (a / c)" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

295 
by (rule bounded_linear.sums [OF bounded_linear_divide]) 
14416  296 

20692  297 
lemma summable_divide: 
298 
fixes c :: "'a::real_normed_field" 

299 
shows "summable f \<Longrightarrow> summable (\<lambda>n. f n / c)" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

300 
by (rule bounded_linear.summable [OF bounded_linear_divide]) 
16819  301 

20692  302 
lemma suminf_divide: 
303 
fixes c :: "'a::real_normed_field" 

304 
shows "summable f \<Longrightarrow> suminf (\<lambda>n. f n / c) = suminf f / c" 

44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

305 
by (rule bounded_linear.suminf [OF bounded_linear_divide, symmetric]) 
16819  306 

41970  307 
lemma sums_add: 
308 
fixes a b :: "'a::real_normed_field" 

309 
shows "\<lbrakk>X sums a; Y sums b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n + Y n) sums (a + b)" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

310 
unfolding sums_def by (simp add: setsum_addf tendsto_add) 
16819  311 

41970  312 
lemma summable_add: 
313 
fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field" 

314 
shows "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> summable (\<lambda>n. X n + Y n)" 

23121  315 
unfolding summable_def by (auto intro: sums_add) 
16819  316 

317 
lemma suminf_add: 

41970  318 
fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field" 
319 
shows "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> suminf X + suminf Y = (\<Sum>n. X n + Y n)" 

23121  320 
by (intro sums_unique sums_add summable_sums) 
14416  321 

41970  322 
lemma sums_diff: 
323 
fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field" 

324 
shows "\<lbrakk>X sums a; Y sums b\<rbrakk> \<Longrightarrow> (\<lambda>n. X n  Y n) sums (a  b)" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

325 
unfolding sums_def by (simp add: setsum_subtractf tendsto_diff) 
23121  326 

41970  327 
lemma summable_diff: 
328 
fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field" 

329 
shows "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> summable (\<lambda>n. X n  Y n)" 

23121  330 
unfolding summable_def by (auto intro: sums_diff) 
14416  331 

332 
lemma suminf_diff: 

41970  333 
fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field" 
334 
shows "\<lbrakk>summable X; summable Y\<rbrakk> \<Longrightarrow> suminf X  suminf Y = (\<Sum>n. X n  Y n)" 

23121  335 
by (intro sums_unique sums_diff summable_sums) 
14416  336 

41970  337 
lemma sums_minus: 
338 
fixes X :: "nat \<Rightarrow> 'a::real_normed_field" 

339 
shows "X sums a ==> (\<lambda>n.  X n) sums ( a)" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

340 
unfolding sums_def by (simp add: setsum_negf tendsto_minus) 
16819  341 

41970  342 
lemma summable_minus: 
343 
fixes X :: "nat \<Rightarrow> 'a::real_normed_field" 

344 
shows "summable X \<Longrightarrow> summable (\<lambda>n.  X n)" 

23121  345 
unfolding summable_def by (auto intro: sums_minus) 
16819  346 

41970  347 
lemma suminf_minus: 
348 
fixes X :: "nat \<Rightarrow> 'a::real_normed_field" 

349 
shows "summable X \<Longrightarrow> (\<Sum>n.  X n) =  (\<Sum>n. X n)" 

23121  350 
by (intro sums_unique [symmetric] sums_minus summable_sums) 
14416  351 

352 
lemma sums_group: 

41970  353 
fixes f :: "nat \<Rightarrow> 'a::real_normed_field" 
44727
d45acd50a894
modify lemma sums_group, and shorten proofs that use it
huffman
parents:
44726
diff
changeset

354 
shows "\<lbrakk>f sums s; 0 < k\<rbrakk> \<Longrightarrow> (\<lambda>n. setsum f {n*k..<n*k+k}) sums s" 
20692  355 
apply (simp only: sums_def sumr_group) 
31336
e17f13cd1280
generalize constants in SEQ.thy to class metric_space
huffman
parents:
31017
diff
changeset

356 
apply (unfold LIMSEQ_iff, safe) 
20692  357 
apply (drule_tac x="r" in spec, safe) 
358 
apply (rule_tac x="no" in exI, safe) 

359 
apply (drule_tac x="n*k" in spec) 

360 
apply (erule mp) 

361 
apply (erule order_trans) 

362 
apply simp 

14416  363 
done 
364 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

365 
text{*A summable series of positive terms has limit that is at least as 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

366 
great as any partial sum.*} 
14416  367 

33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

368 
lemma pos_summable: 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

369 
fixes f:: "nat \<Rightarrow> real" 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

370 
assumes pos: "!!n. 0 \<le> f n" and le: "!!n. setsum f {0..<n} \<le> x" 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

371 
shows "summable f" 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

372 
proof  
41970  373 
have "convergent (\<lambda>n. setsum f {0..<n})" 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

374 
proof (rule Bseq_mono_convergent) 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

375 
show "Bseq (\<lambda>n. setsum f {0..<n})" 
33536  376 
by (rule f_inc_g_dec_Beq_f [of "(\<lambda>n. setsum f {0..<n})" "\<lambda>n. x"]) 
41970  377 
(auto simp add: le pos) 
378 
next 

33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

379 
show "\<forall>m n. m \<le> n \<longrightarrow> setsum f {0..<m} \<le> setsum f {0..<n}" 
41970  380 
by (auto intro: setsum_mono2 pos) 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

381 
qed 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

382 
then obtain L where "(%n. setsum f {0..<n}) > L" 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

383 
by (blast dest: convergentD) 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

384 
thus ?thesis 
41970  385 
by (force simp add: summable_def sums_def) 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

386 
qed 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

387 

20692  388 
lemma series_pos_le: 
389 
fixes f :: "nat \<Rightarrow> real" 

390 
shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 \<le> f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} \<le> suminf f" 

14416  391 
apply (drule summable_sums) 
392 
apply (simp add: sums_def) 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

393 
apply (cut_tac k = "setsum f {0..<n}" in tendsto_const) 
15539  394 
apply (erule LIMSEQ_le, blast) 
20692  395 
apply (rule_tac x="n" in exI, clarify) 
15539  396 
apply (rule setsum_mono2) 
397 
apply auto 

14416  398 
done 
399 

400 
lemma series_pos_less: 

20692  401 
fixes f :: "nat \<Rightarrow> real" 
402 
shows "\<lbrakk>summable f; \<forall>m\<ge>n. 0 < f m\<rbrakk> \<Longrightarrow> setsum f {0..<n} < suminf f" 

403 
apply (rule_tac y="setsum f {0..<Suc n}" in order_less_le_trans) 

404 
apply simp 

405 
apply (erule series_pos_le) 

406 
apply (simp add: order_less_imp_le) 

407 
done 

408 

409 
lemma suminf_gt_zero: 

410 
fixes f :: "nat \<Rightarrow> real" 

411 
shows "\<lbrakk>summable f; \<forall>n. 0 < f n\<rbrakk> \<Longrightarrow> 0 < suminf f" 

412 
by (drule_tac n="0" in series_pos_less, simp_all) 

413 

414 
lemma suminf_ge_zero: 

415 
fixes f :: "nat \<Rightarrow> real" 

416 
shows "\<lbrakk>summable f; \<forall>n. 0 \<le> f n\<rbrakk> \<Longrightarrow> 0 \<le> suminf f" 

417 
by (drule_tac n="0" in series_pos_le, simp_all) 

418 

419 
lemma sumr_pos_lt_pair: 

420 
fixes f :: "nat \<Rightarrow> real" 

421 
shows "\<lbrakk>summable f; 

422 
\<forall>d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc(Suc 0) * d) + 1))\<rbrakk> 

423 
\<Longrightarrow> setsum f {0..<k} < suminf f" 

30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
29803
diff
changeset

424 
unfolding One_nat_def 
20692  425 
apply (subst suminf_split_initial_segment [where k="k"]) 
426 
apply assumption 

427 
apply simp 

428 
apply (drule_tac k="k" in summable_ignore_initial_segment) 

44727
d45acd50a894
modify lemma sums_group, and shorten proofs that use it
huffman
parents:
44726
diff
changeset

429 
apply (drule_tac k="Suc (Suc 0)" in sums_group [OF summable_sums], simp) 
20692  430 
apply simp 
431 
apply (frule sums_unique) 

432 
apply (drule sums_summable) 

433 
apply simp 

434 
apply (erule suminf_gt_zero) 

435 
apply (simp add: add_ac) 

14416  436 
done 
437 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

438 
text{*Sum of a geometric progression.*} 
14416  439 

17149
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
ballarin
parents:
16819
diff
changeset

440 
lemmas sumr_geometric = geometric_sum [where 'a = real] 
14416  441 

20692  442 
lemma geometric_sums: 
31017  443 
fixes x :: "'a::{real_normed_field}" 
20692  444 
shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) sums (1 / (1  x))" 
445 
proof  

446 
assume less_1: "norm x < 1" 

447 
hence neq_1: "x \<noteq> 1" by auto 

448 
hence neq_0: "x  1 \<noteq> 0" by simp 

449 
from less_1 have lim_0: "(\<lambda>n. x ^ n) > 0" 

450 
by (rule LIMSEQ_power_zero) 

22719
c51667189bd3
lemma geometric_sum no longer needs class division_by_zero
huffman
parents:
21404
diff
changeset

451 
hence "(\<lambda>n. x ^ n / (x  1)  1 / (x  1)) > 0 / (x  1)  1 / (x  1)" 
44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

452 
using neq_0 by (intro tendsto_intros) 
20692  453 
hence "(\<lambda>n. (x ^ n  1) / (x  1)) > 1 / (1  x)" 
454 
by (simp add: nonzero_minus_divide_right [OF neq_0] diff_divide_distrib) 

455 
thus "(\<lambda>n. x ^ n) sums (1 / (1  x))" 

456 
by (simp add: sums_def geometric_sum neq_1) 

457 
qed 

458 

459 
lemma summable_geometric: 

31017  460 
fixes x :: "'a::{real_normed_field}" 
20692  461 
shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)" 
462 
by (rule geometric_sums [THEN sums_summable]) 

14416  463 

47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46904
diff
changeset

464 
lemma half: "0 < 1 / (2::'a::linordered_field)" 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46904
diff
changeset

465 
by simp 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

466 

7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

467 
lemma power_half_series: "(\<lambda>n. (1/2::real)^Suc n) sums 1" 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

468 
proof  
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

469 
have 2: "(\<lambda>n. (1/2::real)^n) sums 2" using geometric_sums [of "1/2::real"] 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

470 
by auto 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

471 
have "(\<lambda>n. (1/2::real)^Suc n) = (\<lambda>n. (1 / 2) ^ n / 2)" 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

472 
by simp 
44282
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents:
41970
diff
changeset

473 
thus ?thesis using sums_divide [OF 2, of 2] 
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

474 
by simp 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

475 
qed 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
32877
diff
changeset

476 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

477 
text{*Cauchytype criterion for convergence of series (c.f. Harrison)*} 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

478 

15539  479 
lemma summable_convergent_sumr_iff: 
480 
"summable f = convergent (%n. setsum f {0..<n})" 

14416  481 
by (simp add: summable_def sums_def convergent_def) 
482 

41970  483 
lemma summable_LIMSEQ_zero: 
44726  484 
fixes f :: "nat \<Rightarrow> 'a::real_normed_vector" 
41970  485 
shows "summable f \<Longrightarrow> f > 0" 
20689  486 
apply (drule summable_convergent_sumr_iff [THEN iffD1]) 
20692  487 
apply (drule convergent_Cauchy) 
31336
e17f13cd1280
generalize constants in SEQ.thy to class metric_space
huffman
parents:
31017
diff
changeset

488 
apply (simp only: Cauchy_iff LIMSEQ_iff, safe) 
20689  489 
apply (drule_tac x="r" in spec, safe) 
490 
apply (rule_tac x="M" in exI, safe) 

491 
apply (drule_tac x="Suc n" in spec, simp) 

492 
apply (drule_tac x="n" in spec, simp) 

493 
done 

494 

32707
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

495 
lemma suminf_le: 
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

496 
fixes x :: real 
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

497 
shows "summable f \<Longrightarrow> (!!n. setsum f {0..<n} \<le> x) \<Longrightarrow> suminf f \<le> x" 
41970  498 
by (simp add: summable_convergent_sumr_iff suminf_eq_lim lim_le) 
32707
836ec9d0a0c8
New lemmas involving the real numbers, especially limits and series
paulson
parents:
31336
diff
changeset

499 

14416  500 
lemma summable_Cauchy: 
41970  501 
"summable (f::nat \<Rightarrow> 'a::banach) = 
20848  502 
(\<forall>e > 0. \<exists>N. \<forall>m \<ge> N. \<forall>n. norm (setsum f {m..<n}) < e)" 
31336
e17f13cd1280
generalize constants in SEQ.thy to class metric_space
huffman
parents:
31017
diff
changeset

503 
apply (simp only: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_iff, safe) 
20410  504 
apply (drule spec, drule (1) mp) 
505 
apply (erule exE, rule_tac x="M" in exI, clarify) 

506 
apply (rule_tac x="m" and y="n" in linorder_le_cases) 

507 
apply (frule (1) order_trans) 

508 
apply (drule_tac x="n" in spec, drule (1) mp) 

509 
apply (drule_tac x="m" in spec, drule (1) mp) 

510 
apply (simp add: setsum_diff [symmetric]) 

511 
apply simp 

512 
apply (drule spec, drule (1) mp) 

513 
apply (erule exE, rule_tac x="N" in exI, clarify) 

514 
apply (rule_tac x="m" and y="n" in linorder_le_cases) 

20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20432
diff
changeset

515 
apply (subst norm_minus_commute) 
20410  516 
apply (simp add: setsum_diff [symmetric]) 
517 
apply (simp add: setsum_diff [symmetric]) 

14416  518 
done 
519 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

520 
text{*Comparison test*} 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

521 

20692  522 
lemma norm_setsum: 
523 
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" 

524 
shows "norm (setsum f A) \<le> (\<Sum>i\<in>A. norm (f i))" 

525 
apply (case_tac "finite A") 

526 
apply (erule finite_induct) 

527 
apply simp 

528 
apply simp 

529 
apply (erule order_trans [OF norm_triangle_ineq add_left_mono]) 

530 
apply simp 

531 
done 

532 

14416  533 
lemma summable_comparison_test: 
20848  534 
fixes f :: "nat \<Rightarrow> 'a::banach" 
535 
shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f" 

20692  536 
apply (simp add: summable_Cauchy, safe) 
537 
apply (drule_tac x="e" in spec, safe) 

538 
apply (rule_tac x = "N + Na" in exI, safe) 

14416  539 
apply (rotate_tac 2) 
540 
apply (drule_tac x = m in spec) 

541 
apply (auto, rotate_tac 2, drule_tac x = n in spec) 

20848  542 
apply (rule_tac y = "\<Sum>k=m..<n. norm (f k)" in order_le_less_trans) 
543 
apply (rule norm_setsum) 

15539  544 
apply (rule_tac y = "setsum g {m..<n}" in order_le_less_trans) 
22998  545 
apply (auto intro: setsum_mono simp add: abs_less_iff) 
14416  546 
done 
547 

20848  548 
lemma summable_norm_comparison_test: 
549 
fixes f :: "nat \<Rightarrow> 'a::banach" 

550 
shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. norm (f n) \<le> g n; summable g\<rbrakk> 

551 
\<Longrightarrow> summable (\<lambda>n. norm (f n))" 

552 
apply (rule summable_comparison_test) 

553 
apply (auto) 

554 
done 

555 

14416  556 
lemma summable_rabs_comparison_test: 
20692  557 
fixes f :: "nat \<Rightarrow> real" 
558 
shows "\<lbrakk>\<exists>N. \<forall>n\<ge>N. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable (\<lambda>n. \<bar>f n\<bar>)" 

14416  559 
apply (rule summable_comparison_test) 
15543  560 
apply (auto) 
14416  561 
done 
562 

23084  563 
text{*Summability of geometric series for real algebras*} 
564 

565 
lemma complete_algebra_summable_geometric: 

31017  566 
fixes x :: "'a::{real_normed_algebra_1,banach}" 
23084  567 
shows "norm x < 1 \<Longrightarrow> summable (\<lambda>n. x ^ n)" 
568 
proof (rule summable_comparison_test) 

569 
show "\<exists>N. \<forall>n\<ge>N. norm (x ^ n) \<le> norm x ^ n" 

570 
by (simp add: norm_power_ineq) 

571 
show "norm x < 1 \<Longrightarrow> summable (\<lambda>n. norm x ^ n)" 

572 
by (simp add: summable_geometric) 

573 
qed 

574 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

575 
text{*Limit comparison property for series (c.f. jrh)*} 
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

576 

14416  577 
lemma summable_le: 
20692  578 
fixes f g :: "nat \<Rightarrow> real" 
579 
shows "\<lbrakk>\<forall>n. f n \<le> g n; summable f; summable g\<rbrakk> \<Longrightarrow> suminf f \<le> suminf g" 

14416  580 
apply (drule summable_sums)+ 
20692  581 
apply (simp only: sums_def, erule (1) LIMSEQ_le) 
14416  582 
apply (rule exI) 
15539  583 
apply (auto intro!: setsum_mono) 
14416  584 
done 
585 

586 
lemma summable_le2: 

20692  587 
fixes f g :: "nat \<Rightarrow> real" 
588 
shows "\<lbrakk>\<forall>n. \<bar>f n\<bar> \<le> g n; summable g\<rbrakk> \<Longrightarrow> summable f \<and> suminf f \<le> suminf g" 

20848  589 
apply (subgoal_tac "summable f") 
590 
apply (auto intro!: summable_le) 

22998  591 
apply (simp add: abs_le_iff) 
20848  592 
apply (rule_tac g="g" in summable_comparison_test, simp_all) 
14416  593 
done 
594 

19106
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

595 
(* specialisation for the common 0 case *) 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

596 
lemma suminf_0_le: 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

597 
fixes f::"nat\<Rightarrow>real" 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

598 
assumes gt0: "\<forall>n. 0 \<le> f n" and sm: "summable f" 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

599 
shows "0 \<le> suminf f" 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

600 
proof  
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

601 
let ?g = "(\<lambda>n. (0::real))" 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

602 
from gt0 have "\<forall>n. ?g n \<le> f n" by simp 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

603 
moreover have "summable ?g" by (rule summable_zero) 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

604 
moreover from sm have "summable f" . 
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

605 
ultimately have "suminf ?g \<le> suminf f" by (rule summable_le) 
44289  606 
then show "0 \<le> suminf f" by simp 
41970  607 
qed 
19106
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

608 

6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset

609 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

610 
text{*Absolute convergence imples normal convergence*} 
20848  611 
lemma summable_norm_cancel: 
612 
fixes f :: "nat \<Rightarrow> 'a::banach" 

613 
shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> summable f" 

20692  614 
apply (simp only: summable_Cauchy, safe) 
615 
apply (drule_tac x="e" in spec, safe) 

616 
apply (rule_tac x="N" in exI, safe) 

617 
apply (drule_tac x="m" in spec, safe) 

20848  618 
apply (rule order_le_less_trans [OF norm_setsum]) 
619 
apply (rule order_le_less_trans [OF abs_ge_self]) 

20692  620 
apply simp 
14416  621 
done 
622 

20848  623 
lemma summable_rabs_cancel: 
624 
fixes f :: "nat \<Rightarrow> real" 

625 
shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> summable f" 

626 
by (rule summable_norm_cancel, simp) 

627 

15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset

628 
text{*Absolute convergence of series*} 
20848  629 
lemma summable_norm: 
630 
fixes f :: "nat \<Rightarrow> 'a::banach" 

631 
shows "summable (\<lambda>n. norm (f n)) \<Longrightarrow> norm (suminf f) \<le> (\<Sum>n. norm (f n))" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

632 
by (auto intro: LIMSEQ_le tendsto_norm summable_norm_cancel 
20848  633 
summable_sumr_LIMSEQ_suminf norm_setsum) 
634 

14416  635 
lemma summable_rabs: 
20692  636 
fixes f :: "nat \<Rightarrow> real" 
637 
shows "summable (\<lambda>n. \<bar>f n\<bar>) \<Longrightarrow> \<bar>suminf f\<bar> \<le> (\<Sum>n. \<bar>f n\<bar>)" 

20848  638 
by (fold real_norm_def, rule summable_norm) 
14416  639 

640 
subsection{* The Ratio Test*} 

641 

20848  642 
lemma norm_ratiotest_lemma: 
22852  643 
fixes x y :: "'a::real_normed_vector" 
20848  644 
shows "\<lbrakk>c \<le> 0; norm x \<le> c * norm y\<rbrakk> \<Longrightarrow> x = 0" 
645 
apply (subgoal_tac "norm x \<le> 0", simp) 

646 
apply (erule order_trans) 

647 
apply (simp add: mult_le_0_iff) 

648 
done 

649 

14416  650 
lemma rabs_ratiotest_lemma: "[ c \<le> 0; abs x \<le> c * abs y ] ==> x = (0::real)" 
20848  651 
by (erule norm_ratiotest_lemma, simp) 
14416  652 

653 
lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)" 

654 
apply (drule le_imp_less_or_eq) 

655 
apply (auto dest: less_imp_Suc_add) 

656 
done 

657 

658 
lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)" 

659 
by (auto simp add: le_Suc_ex) 

660 

661 
(*All this trouble just to get 0<c *) 

662 
lemma ratio_test_lemma2: 

20848  663 
fixes f :: "nat \<Rightarrow> 'a::banach" 
664 
shows "\<lbrakk>\<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> 0 < c \<or> summable f" 

14416  665 
apply (simp (no_asm) add: linorder_not_le [symmetric]) 
666 
apply (simp add: summable_Cauchy) 

15543  667 
apply (safe, subgoal_tac "\<forall>n. N < n > f (n) = 0") 
668 
prefer 2 

669 
apply clarify 

30082
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
huffman
parents:
29803
diff
changeset

670 
apply(erule_tac x = "n  Suc 0" in allE) 
15543  671 
apply (simp add:diff_Suc split:nat.splits) 
20848  672 
apply (blast intro: norm_ratiotest_lemma) 
14416  673 
apply (rule_tac x = "Suc N" in exI, clarify) 
44710  674 
apply(simp cong del: setsum_cong cong: setsum_ivl_cong) 
14416  675 
done 
676 

677 
lemma ratio_test: 

20848  678 
fixes f :: "nat \<Rightarrow> 'a::banach" 
679 
shows "\<lbrakk>c < 1; \<forall>n\<ge>N. norm (f (Suc n)) \<le> c * norm (f n)\<rbrakk> \<Longrightarrow> summable f" 

14416  680 
apply (frule ratio_test_lemma2, auto) 
41970  681 
apply (rule_tac g = "%n. (norm (f N) / (c ^ N))*c ^ n" 
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset

682 
in summable_comparison_test) 
14416  683 
apply (rule_tac x = N in exI, safe) 
684 
apply (drule le_Suc_ex_iff [THEN iffD1]) 

22959  685 
apply (auto simp add: power_add field_power_not_zero) 
15539  686 
apply (induct_tac "na", auto) 
20848  687 
apply (rule_tac y = "c * norm (f (N + n))" in order_trans) 
14416  688 
apply (auto intro: mult_right_mono simp add: summable_def) 
20848  689 
apply (rule_tac x = "norm (f N) * (1/ (1  c)) / (c ^ N)" in exI) 
41970  690 
apply (rule sums_divide) 
27108  691 
apply (rule sums_mult) 
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset

692 
apply (auto intro!: geometric_sums) 
14416  693 
done 
694 

23111  695 
subsection {* Cauchy Product Formula *} 
696 

697 
(* Proof based on Analysis WebNotes: Chapter 07, Class 41 

698 
http://www.math.unl.edu/~webnotes/classes/class41/prp77.htm *) 

699 

700 
lemma setsum_triangle_reindex: 

701 
fixes n :: nat 

702 
shows "(\<Sum>(i,j)\<in>{(i,j). i+j < n}. f i j) = (\<Sum>k=0..<n. \<Sum>i=0..k. f i (k  i))" 

703 
proof  

704 
have "(\<Sum>(i, j)\<in>{(i, j). i + j < n}. f i j) = 

705 
(\<Sum>(k, i)\<in>(SIGMA k:{0..<n}. {0..k}). f i (k  i))" 

706 
proof (rule setsum_reindex_cong) 

707 
show "inj_on (\<lambda>(k,i). (i, k  i)) (SIGMA k:{0..<n}. {0..k})" 

708 
by (rule inj_on_inverseI [where g="\<lambda>(i,j). (i+j, i)"], auto) 

709 
show "{(i,j). i + j < n} = (\<lambda>(k,i). (i, k  i)) ` (SIGMA k:{0..<n}. {0..k})" 

710 
by (safe, rule_tac x="(a+b,a)" in image_eqI, auto) 

711 
show "\<And>a. (\<lambda>(k, i). f i (k  i)) a = split f ((\<lambda>(k, i). (i, k  i)) a)" 

712 
by clarify 

713 
qed 

714 
thus ?thesis by (simp add: setsum_Sigma) 

715 
qed 

716 

717 
lemma Cauchy_product_sums: 

718 
fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}" 

719 
assumes a: "summable (\<lambda>k. norm (a k))" 

720 
assumes b: "summable (\<lambda>k. norm (b k))" 

721 
shows "(\<lambda>k. \<Sum>i=0..k. a i * b (k  i)) sums ((\<Sum>k. a k) * (\<Sum>k. b k))" 

722 
proof  

723 
let ?S1 = "\<lambda>n::nat. {0..<n} \<times> {0..<n}" 

724 
let ?S2 = "\<lambda>n::nat. {(i,j). i + j < n}" 

725 
have S1_mono: "\<And>m n. m \<le> n \<Longrightarrow> ?S1 m \<subseteq> ?S1 n" by auto 

726 
have S2_le_S1: "\<And>n. ?S2 n \<subseteq> ?S1 n" by auto 

727 
have S1_le_S2: "\<And>n. ?S1 (n div 2) \<subseteq> ?S2 n" by auto 

728 
have finite_S1: "\<And>n. finite (?S1 n)" by simp 

729 
with S2_le_S1 have finite_S2: "\<And>n. finite (?S2 n)" by (rule finite_subset) 

730 

731 
let ?g = "\<lambda>(i,j). a i * b j" 

732 
let ?f = "\<lambda>(i,j). norm (a i) * norm (b j)" 

733 
have f_nonneg: "\<And>x. 0 \<le> ?f x" 

734 
by (auto simp add: mult_nonneg_nonneg) 

735 
hence norm_setsum_f: "\<And>A. norm (setsum ?f A) = setsum ?f A" 

736 
unfolding real_norm_def 

737 
by (simp only: abs_of_nonneg setsum_nonneg [rule_format]) 

738 

739 
have "(\<lambda>n. (\<Sum>k=0..<n. a k) * (\<Sum>k=0..<n. b k)) 

740 
> (\<Sum>k. a k) * (\<Sum>k. b k)" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

741 
by (intro tendsto_mult summable_sumr_LIMSEQ_suminf 
23111  742 
summable_norm_cancel [OF a] summable_norm_cancel [OF b]) 
743 
hence 1: "(\<lambda>n. setsum ?g (?S1 n)) > (\<Sum>k. a k) * (\<Sum>k. b k)" 

744 
by (simp only: setsum_product setsum_Sigma [rule_format] 

745 
finite_atLeastLessThan) 

746 

747 
have "(\<lambda>n. (\<Sum>k=0..<n. norm (a k)) * (\<Sum>k=0..<n. norm (b k))) 

748 
> (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))" 

44568
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents:
44289
diff
changeset

749 
using a b by (intro tendsto_mult summable_sumr_LIMSEQ_suminf) 
23111  750 
hence "(\<lambda>n. setsum ?f (?S1 n)) > (\<Sum>k. norm (a k)) * (\<Sum>k. norm (b k))" 
751 
by (simp only: setsum_product setsum_Sigma [rule_format] 

752 
finite_atLeastLessThan) 

753 
hence "convergent (\<lambda>n. setsum ?f (?S1 n))" 

754 
by (rule convergentI) 

755 
hence Cauchy: "Cauchy (\<lambda>n. setsum ?f (?S1 n))" 

756 
by (rule convergent_Cauchy) 

36657  757 
have "Zfun (\<lambda>n. setsum ?f (?S1 n  ?S2 n)) sequentially" 
758 
proof (rule ZfunI, simp only: eventually_sequentially norm_setsum_f) 

23111  759 
fix r :: real 
760 
assume r: "0 < r" 

761 
from CauchyD [OF Cauchy r] obtain N 

762 
where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (setsum ?f (?S1 m)  setsum ?f (?S1 n)) < r" .. 

763 
hence "\<And>m n. \<lbrakk>N \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> norm (setsum ?f (?S1 m  ?S1 n)) < r" 

764 
by (simp only: setsum_diff finite_S1 S1_mono) 

765 
hence N: "\<And>m n. \<lbrakk>N \<le> n; n \<le> m\<rbrakk> \<Longrightarrow> setsum ?f (?S1 m  ?S1 n) < r" 

766 
by (simp only: norm_setsum_f) 

767 
show "\<exists>N. \<forall>n\<ge>N. setsum ?f (?S1 n  ?S2 n) < r" 

768 
proof (intro exI allI impI) 

769 
fix n assume "2 * N \<le> n" 

770 
hence n: "N \<le> n div 2" by simp 

771 
have "setsum ?f (?S1 n  ?S2 n) \<le> setsum ?f (?S1 n  ?S1 (n div 2))" 

772 
by (intro setsum_mono2 finite_Diff finite_S1 f_nonneg 

773 
Diff_mono subset_refl S1_le_S2) 

774 
also have "\<dots> < r" 

775 
using n div_le_dividend by (rule N) 

776 
finally show "setsum ?f (?S1 n  ?S2 n) < r" . 

777 
qed 

778 
qed 

36657  779 
hence "Zfun (\<lambda>n. setsum ?g (?S1 n  ?S2 n)) sequentially" 
780 
apply (rule Zfun_le [rule_format]) 

23111  781 
apply (simp only: norm_setsum_f) 
782 
apply (rule order_trans [OF norm_setsum setsum_mono]) 

783 
apply (auto simp add: norm_mult_ineq) 

784 
done 

785 
hence 2: "(\<lambda>n. setsum ?g (?S1 n)  setsum ?g (?S2 n)) > 0" 

36660
1cc4ab4b7ff7
make (X > L) an abbreviation for (X > L) sequentially
huffman
parents:
36657
diff
changeset

786 
unfolding tendsto_Zfun_iff diff_0_right 
36657  787 
by (simp only: setsum_diff finite_S1 S2_le_S1) 
23111  788 

789 
with 1 have "(\<lambda>n. setsum ?g (?S2 n)) > (\<Sum>k. a k) * (\<Sum>k. b k)" 

790 
by (rule LIMSEQ_diff_approach_zero2) 

791 
thus ?thesis by (simp only: sums_def setsum_triangle_reindex) 

792 
qed 

793 

794 
lemma Cauchy_product: 

795 
fixes a b :: "nat \<Rightarrow> 'a::{real_normed_algebra,banach}" 

796 
assumes a: "summable (\<lambda>k. norm (a k))" 

797 
assumes b: "summable (\<lambda>k. norm (b k))" 

798 
shows "(\<Sum>k. a k) * (\<Sum>k. b k) = (\<Sum>k. \<Sum>i=0..k. a i * b (k  i))" 

23441  799 
using a b 
23111  800 
by (rule Cauchy_product_sums [THEN sums_unique]) 
801 

14416  802 
end 