src/Pure/thm.ML
author wenzelm
Mon Sep 28 20:52:05 2009 +0200 (2009-09-28)
changeset 32726 a900d3cd47cc
parent 32725 57e29093ecfb
child 32784 1a5dde5079ac
permissions -rw-r--r--
fold_body_thms: pass pthm identifier;
fold_body_thms: dismiss path-etic attempt to check for cycles (cf. e24acd21e60e) -- could be masked by "seen";
fulfill_proof/thm_proof: check for thm cycles at the substitution point;
wenzelm@250
     1
(*  Title:      Pure/thm.ML
wenzelm@250
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@29269
     3
    Author:     Makarius
lcp@229
     4
wenzelm@16425
     5
The very core of Isabelle's Meta Logic: certified types and terms,
wenzelm@28321
     6
derivations, theorems, framework rules (including lifting and
wenzelm@28321
     7
resolution), oracles.
clasohm@0
     8
*)
clasohm@0
     9
wenzelm@6089
    10
signature BASIC_THM =
paulson@1503
    11
  sig
wenzelm@1160
    12
  (*certified types*)
wenzelm@387
    13
  type ctyp
wenzelm@16656
    14
  val rep_ctyp: ctyp ->
wenzelm@26631
    15
   {thy_ref: theory_ref,
wenzelm@16656
    16
    T: typ,
wenzelm@20512
    17
    maxidx: int,
wenzelm@28354
    18
    sorts: sort OrdList.T}
wenzelm@16425
    19
  val theory_of_ctyp: ctyp -> theory
wenzelm@16425
    20
  val typ_of: ctyp -> typ
wenzelm@16425
    21
  val ctyp_of: theory -> typ -> ctyp
wenzelm@1160
    22
wenzelm@1160
    23
  (*certified terms*)
wenzelm@1160
    24
  type cterm
wenzelm@22584
    25
  exception CTERM of string * cterm list
wenzelm@16601
    26
  val rep_cterm: cterm ->
wenzelm@26631
    27
   {thy_ref: theory_ref,
wenzelm@16656
    28
    t: term,
wenzelm@16656
    29
    T: typ,
wenzelm@16656
    30
    maxidx: int,
wenzelm@28354
    31
    sorts: sort OrdList.T}
wenzelm@28354
    32
  val crep_cterm: cterm ->
wenzelm@28354
    33
    {thy_ref: theory_ref, t: term, T: ctyp, maxidx: int, sorts: sort OrdList.T}
wenzelm@16425
    34
  val theory_of_cterm: cterm -> theory
wenzelm@16425
    35
  val term_of: cterm -> term
wenzelm@16425
    36
  val cterm_of: theory -> term -> cterm
wenzelm@16425
    37
  val ctyp_of_term: cterm -> ctyp
wenzelm@1160
    38
wenzelm@28321
    39
  (*theorems*)
wenzelm@1160
    40
  type thm
wenzelm@23601
    41
  type conv = cterm -> thm
wenzelm@23601
    42
  type attribute = Context.generic * thm -> Context.generic * thm
wenzelm@16425
    43
  val rep_thm: thm ->
wenzelm@26631
    44
   {thy_ref: theory_ref,
wenzelm@28017
    45
    tags: Properties.T,
wenzelm@16425
    46
    maxidx: int,
wenzelm@28354
    47
    shyps: sort OrdList.T,
wenzelm@28354
    48
    hyps: term OrdList.T,
wenzelm@16425
    49
    tpairs: (term * term) list,
wenzelm@16425
    50
    prop: term}
wenzelm@16425
    51
  val crep_thm: thm ->
wenzelm@26631
    52
   {thy_ref: theory_ref,
wenzelm@28017
    53
    tags: Properties.T,
wenzelm@16425
    54
    maxidx: int,
wenzelm@28354
    55
    shyps: sort OrdList.T,
wenzelm@28354
    56
    hyps: cterm OrdList.T,
wenzelm@16425
    57
    tpairs: (cterm * cterm) list,
wenzelm@16425
    58
    prop: cterm}
wenzelm@6089
    59
  exception THM of string * int * thm list
wenzelm@16425
    60
  val theory_of_thm: thm -> theory
wenzelm@16425
    61
  val prop_of: thm -> term
wenzelm@16425
    62
  val tpairs_of: thm -> (term * term) list
wenzelm@16656
    63
  val concl_of: thm -> term
wenzelm@16425
    64
  val prems_of: thm -> term list
wenzelm@16425
    65
  val nprems_of: thm -> int
wenzelm@16425
    66
  val cprop_of: thm -> cterm
wenzelm@18145
    67
  val cprem_of: thm -> int -> cterm
wenzelm@16656
    68
  val transfer: theory -> thm -> thm
wenzelm@16945
    69
  val weaken: cterm -> thm -> thm
wenzelm@28624
    70
  val weaken_sorts: sort list -> cterm -> cterm
wenzelm@16425
    71
  val extra_shyps: thm -> sort list
wenzelm@16425
    72
  val strip_shyps: thm -> thm
wenzelm@1160
    73
wenzelm@1160
    74
  (*meta rules*)
wenzelm@16425
    75
  val assume: cterm -> thm
wenzelm@16425
    76
  val implies_intr: cterm -> thm -> thm
wenzelm@16425
    77
  val implies_elim: thm -> thm -> thm
wenzelm@16425
    78
  val forall_intr: cterm -> thm -> thm
wenzelm@16425
    79
  val forall_elim: cterm -> thm -> thm
wenzelm@16425
    80
  val reflexive: cterm -> thm
wenzelm@16425
    81
  val symmetric: thm -> thm
wenzelm@16425
    82
  val transitive: thm -> thm -> thm
wenzelm@23601
    83
  val beta_conversion: bool -> conv
wenzelm@23601
    84
  val eta_conversion: conv
wenzelm@23601
    85
  val eta_long_conversion: conv
wenzelm@16425
    86
  val abstract_rule: string -> cterm -> thm -> thm
wenzelm@16425
    87
  val combination: thm -> thm -> thm
wenzelm@16425
    88
  val equal_intr: thm -> thm -> thm
wenzelm@16425
    89
  val equal_elim: thm -> thm -> thm
wenzelm@16425
    90
  val flexflex_rule: thm -> thm Seq.seq
wenzelm@19910
    91
  val generalize: string list * string list -> int -> thm -> thm
wenzelm@16425
    92
  val instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm
wenzelm@22584
    93
  val instantiate_cterm: (ctyp * ctyp) list * (cterm * cterm) list -> cterm -> cterm
wenzelm@16425
    94
  val trivial: cterm -> thm
wenzelm@31944
    95
  val of_class: ctyp * class -> thm
wenzelm@19505
    96
  val unconstrainT: ctyp -> thm -> thm
wenzelm@16425
    97
  val dest_state: thm * int -> (term * term) list * term list * term * term
wenzelm@18035
    98
  val lift_rule: cterm -> thm -> thm
wenzelm@16425
    99
  val incr_indexes: int -> thm -> thm
wenzelm@250
   100
end;
clasohm@0
   101
wenzelm@6089
   102
signature THM =
wenzelm@6089
   103
sig
wenzelm@6089
   104
  include BASIC_THM
wenzelm@16425
   105
  val dest_ctyp: ctyp -> ctyp list
wenzelm@16425
   106
  val dest_comb: cterm -> cterm * cterm
wenzelm@22909
   107
  val dest_fun: cterm -> cterm
wenzelm@20580
   108
  val dest_arg: cterm -> cterm
wenzelm@22909
   109
  val dest_fun2: cterm -> cterm
wenzelm@22909
   110
  val dest_arg1: cterm -> cterm
wenzelm@16425
   111
  val dest_abs: string option -> cterm -> cterm * cterm
wenzelm@16425
   112
  val capply: cterm -> cterm -> cterm
wenzelm@32198
   113
  val cabs_name: string * cterm -> cterm -> cterm
wenzelm@16425
   114
  val cabs: cterm -> cterm -> cterm
wenzelm@31945
   115
  val adjust_maxidx_cterm: int -> cterm -> cterm
wenzelm@31945
   116
  val incr_indexes_cterm: int -> cterm -> cterm
wenzelm@31945
   117
  val match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@31945
   118
  val first_order_match: cterm * cterm -> (ctyp * ctyp) list * (cterm * cterm) list
wenzelm@31947
   119
  val fold_terms: (term -> 'a -> 'a) -> thm -> 'a -> 'a
wenzelm@16945
   120
  val terms_of_tpairs: (term * term) list -> term list
wenzelm@31945
   121
  val full_prop_of: thm -> term
wenzelm@19881
   122
  val maxidx_of: thm -> int
wenzelm@19910
   123
  val maxidx_thm: thm -> int -> int
wenzelm@19881
   124
  val hyps_of: thm -> term list
wenzelm@31945
   125
  val no_prems: thm -> bool
wenzelm@31945
   126
  val major_prem_of: thm -> term
wenzelm@32725
   127
  val join_proofs: thm list -> unit
wenzelm@32725
   128
  val proof_body_of: thm -> proof_body
wenzelm@32725
   129
  val proof_of: thm -> proof
wenzelm@32725
   130
  val status_of: thm -> {oracle: bool, unfinished: bool, failed: bool}
wenzelm@32725
   131
  val future: thm future -> cterm -> thm
wenzelm@32725
   132
  val get_name: thm -> string
wenzelm@32725
   133
  val put_name: string -> thm -> thm
wenzelm@28675
   134
  val axiom: theory -> string -> thm
wenzelm@28675
   135
  val axioms_of: theory -> (string * thm) list
wenzelm@28017
   136
  val get_tags: thm -> Properties.T
wenzelm@28017
   137
  val map_tags: (Properties.T -> Properties.T) -> thm -> thm
berghofe@23781
   138
  val norm_proof: thm -> thm
wenzelm@20261
   139
  val adjust_maxidx_thm: int -> thm -> thm
wenzelm@20002
   140
  val varifyT: thm -> thm
wenzelm@20002
   141
  val varifyT': (string * sort) list -> thm -> ((string * sort) * indexname) list * thm
wenzelm@19881
   142
  val freezeT: thm -> thm
wenzelm@31945
   143
  val assumption: int -> thm -> thm Seq.seq
wenzelm@31945
   144
  val eq_assumption: int -> thm -> thm
wenzelm@31945
   145
  val rotate_rule: int -> int -> thm -> thm
wenzelm@31945
   146
  val permute_prems: int -> int -> thm -> thm
wenzelm@31945
   147
  val rename_params_rule: string list * int -> thm -> thm
wenzelm@31945
   148
  val compose_no_flatten: bool -> thm * int -> int -> thm -> thm Seq.seq
wenzelm@31945
   149
  val bicompose: bool -> bool * thm * int -> int -> thm -> thm Seq.seq
wenzelm@31945
   150
  val biresolution: bool -> (bool * thm) list -> int -> thm -> thm Seq.seq
wenzelm@31945
   151
  val rename_boundvars: term -> term -> thm -> thm
wenzelm@28330
   152
  val extern_oracles: theory -> xstring list
wenzelm@30288
   153
  val add_oracle: binding * ('a -> cterm) -> theory -> (string * ('a -> thm)) * theory
wenzelm@6089
   154
end;
wenzelm@6089
   155
wenzelm@32590
   156
structure Thm: THM =
clasohm@0
   157
struct
wenzelm@250
   158
wenzelm@22237
   159
structure Pt = Proofterm;
wenzelm@22237
   160
wenzelm@16656
   161
wenzelm@387
   162
(*** Certified terms and types ***)
wenzelm@387
   163
wenzelm@250
   164
(** certified types **)
wenzelm@250
   165
wenzelm@32590
   166
abstype ctyp = Ctyp of
wenzelm@20512
   167
 {thy_ref: theory_ref,
wenzelm@20512
   168
  T: typ,
wenzelm@20512
   169
  maxidx: int,
wenzelm@32590
   170
  sorts: sort OrdList.T}
wenzelm@32590
   171
with
wenzelm@250
   172
wenzelm@26631
   173
fun rep_ctyp (Ctyp args) = args;
wenzelm@16656
   174
fun theory_of_ctyp (Ctyp {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@250
   175
fun typ_of (Ctyp {T, ...}) = T;
wenzelm@250
   176
wenzelm@16656
   177
fun ctyp_of thy raw_T =
wenzelm@24143
   178
  let
wenzelm@24143
   179
    val T = Sign.certify_typ thy raw_T;
wenzelm@24143
   180
    val maxidx = Term.maxidx_of_typ T;
wenzelm@26640
   181
    val sorts = Sorts.insert_typ T [];
wenzelm@24143
   182
  in Ctyp {thy_ref = Theory.check_thy thy, T = T, maxidx = maxidx, sorts = sorts} end;
wenzelm@250
   183
wenzelm@20512
   184
fun dest_ctyp (Ctyp {thy_ref, T = Type (s, Ts), maxidx, sorts}) =
wenzelm@20512
   185
      map (fn T => Ctyp {thy_ref = thy_ref, T = T, maxidx = maxidx, sorts = sorts}) Ts
wenzelm@16679
   186
  | dest_ctyp cT = raise TYPE ("dest_ctyp", [typ_of cT], []);
berghofe@15087
   187
lcp@229
   188
lcp@229
   189
wenzelm@250
   190
(** certified terms **)
lcp@229
   191
wenzelm@16601
   192
(*certified terms with checked typ, maxidx, and sorts*)
wenzelm@32590
   193
abstype cterm = Cterm of
wenzelm@16601
   194
 {thy_ref: theory_ref,
wenzelm@16601
   195
  t: term,
wenzelm@16601
   196
  T: typ,
wenzelm@16601
   197
  maxidx: int,
wenzelm@32590
   198
  sorts: sort OrdList.T}
wenzelm@32590
   199
with
wenzelm@16425
   200
wenzelm@22584
   201
exception CTERM of string * cterm list;
wenzelm@16679
   202
wenzelm@26631
   203
fun rep_cterm (Cterm args) = args;
lcp@229
   204
wenzelm@16601
   205
fun crep_cterm (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@26631
   206
  {thy_ref = thy_ref, t = t, maxidx = maxidx, sorts = sorts,
wenzelm@26631
   207
    T = Ctyp {thy_ref = thy_ref, T = T, maxidx = maxidx, sorts = sorts}};
wenzelm@3967
   208
wenzelm@16425
   209
fun theory_of_cterm (Cterm {thy_ref, ...}) = Theory.deref thy_ref;
wenzelm@250
   210
fun term_of (Cterm {t, ...}) = t;
lcp@229
   211
wenzelm@20512
   212
fun ctyp_of_term (Cterm {thy_ref, T, maxidx, sorts, ...}) =
wenzelm@20512
   213
  Ctyp {thy_ref = thy_ref, T = T, maxidx = maxidx, sorts = sorts};
paulson@2671
   214
wenzelm@16425
   215
fun cterm_of thy tm =
wenzelm@16601
   216
  let
wenzelm@18969
   217
    val (t, T, maxidx) = Sign.certify_term thy tm;
wenzelm@26640
   218
    val sorts = Sorts.insert_term t [];
wenzelm@24143
   219
  in Cterm {thy_ref = Theory.check_thy thy, t = t, T = T, maxidx = maxidx, sorts = sorts} end;
lcp@229
   220
wenzelm@20057
   221
fun merge_thys0 (Cterm {thy_ref = r1, t = t1, ...}) (Cterm {thy_ref = r2, t = t2, ...}) =
wenzelm@23601
   222
  Theory.merge_refs (r1, r2);
wenzelm@16656
   223
wenzelm@20580
   224
wenzelm@22909
   225
(* destructors *)
wenzelm@22909
   226
wenzelm@22909
   227
fun dest_comb (ct as Cterm {t = c $ a, T, thy_ref, maxidx, sorts}) =
wenzelm@22909
   228
      let val A = Term.argument_type_of c 0 in
wenzelm@22909
   229
        (Cterm {t = c, T = A --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@22909
   230
         Cterm {t = a, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   231
      end
wenzelm@22584
   232
  | dest_comb ct = raise CTERM ("dest_comb", [ct]);
clasohm@1493
   233
wenzelm@22909
   234
fun dest_fun (ct as Cterm {t = c $ _, T, thy_ref, maxidx, sorts}) =
wenzelm@22909
   235
      let val A = Term.argument_type_of c 0
wenzelm@22909
   236
      in Cterm {t = c, T = A --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts} end
wenzelm@22909
   237
  | dest_fun ct = raise CTERM ("dest_fun", [ct]);
wenzelm@22909
   238
wenzelm@22909
   239
fun dest_arg (ct as Cterm {t = c $ a, T = _, thy_ref, maxidx, sorts}) =
wenzelm@22909
   240
      let val A = Term.argument_type_of c 0
wenzelm@22909
   241
      in Cterm {t = a, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts} end
wenzelm@22584
   242
  | dest_arg ct = raise CTERM ("dest_arg", [ct]);
wenzelm@20580
   243
wenzelm@22909
   244
wenzelm@22909
   245
fun dest_fun2 (Cterm {t = c $ a $ b, T, thy_ref, maxidx, sorts}) =
wenzelm@22909
   246
      let
wenzelm@22909
   247
        val A = Term.argument_type_of c 0;
wenzelm@22909
   248
        val B = Term.argument_type_of c 1;
wenzelm@22909
   249
      in Cterm {t = c, T = A --> B --> T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts} end
wenzelm@22909
   250
  | dest_fun2 ct = raise CTERM ("dest_fun2", [ct]);
wenzelm@22909
   251
wenzelm@22909
   252
fun dest_arg1 (Cterm {t = c $ a $ _, T = _, thy_ref, maxidx, sorts}) =
wenzelm@22909
   253
      let val A = Term.argument_type_of c 0
wenzelm@22909
   254
      in Cterm {t = a, T = A, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts} end
wenzelm@22909
   255
  | dest_arg1 ct = raise CTERM ("dest_arg1", [ct]);
wenzelm@20673
   256
wenzelm@22584
   257
fun dest_abs a (ct as
wenzelm@22584
   258
        Cterm {t = Abs (x, T, t), T = Type ("fun", [_, U]), thy_ref, maxidx, sorts}) =
wenzelm@18944
   259
      let val (y', t') = Term.dest_abs (the_default x a, T, t) in
wenzelm@16679
   260
        (Cterm {t = Free (y', T), T = T, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts},
wenzelm@16679
   261
          Cterm {t = t', T = U, thy_ref = thy_ref, maxidx = maxidx, sorts = sorts})
clasohm@1493
   262
      end
wenzelm@22584
   263
  | dest_abs _ ct = raise CTERM ("dest_abs", [ct]);
clasohm@1493
   264
wenzelm@22909
   265
wenzelm@22909
   266
(* constructors *)
wenzelm@22909
   267
wenzelm@16601
   268
fun capply
wenzelm@16656
   269
  (cf as Cterm {t = f, T = Type ("fun", [dty, rty]), maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   270
  (cx as Cterm {t = x, T, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@16601
   271
    if T = dty then
wenzelm@16656
   272
      Cterm {thy_ref = merge_thys0 cf cx,
wenzelm@16656
   273
        t = f $ x,
wenzelm@16656
   274
        T = rty,
wenzelm@16656
   275
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16601
   276
        sorts = Sorts.union sorts1 sorts2}
wenzelm@22584
   277
      else raise CTERM ("capply: types don't agree", [cf, cx])
wenzelm@22584
   278
  | capply cf cx = raise CTERM ("capply: first arg is not a function", [cf, cx]);
wenzelm@250
   279
wenzelm@32198
   280
fun cabs_name
wenzelm@32198
   281
  (x, ct1 as Cterm {t = t1, T = T1, maxidx = maxidx1, sorts = sorts1, ...})
wenzelm@16656
   282
  (ct2 as Cterm {t = t2, T = T2, maxidx = maxidx2, sorts = sorts2, ...}) =
wenzelm@32198
   283
    let val t = Term.lambda_name (x, t1) t2 in
wenzelm@16656
   284
      Cterm {thy_ref = merge_thys0 ct1 ct2,
wenzelm@16656
   285
        t = t, T = T1 --> T2,
wenzelm@16656
   286
        maxidx = Int.max (maxidx1, maxidx2),
wenzelm@16656
   287
        sorts = Sorts.union sorts1 sorts2}
wenzelm@16601
   288
    end;
lcp@229
   289
wenzelm@32198
   290
fun cabs t u = cabs_name ("", t) u;
wenzelm@32198
   291
wenzelm@20580
   292
wenzelm@22909
   293
(* indexes *)
wenzelm@22909
   294
wenzelm@20580
   295
fun adjust_maxidx_cterm i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@20580
   296
  if maxidx = i then ct
wenzelm@20580
   297
  else if maxidx < i then
wenzelm@20580
   298
    Cterm {maxidx = i, thy_ref = thy_ref, t = t, T = T, sorts = sorts}
wenzelm@20580
   299
  else
wenzelm@20580
   300
    Cterm {maxidx = Int.max (maxidx_of_term t, i), thy_ref = thy_ref, t = t, T = T, sorts = sorts};
wenzelm@20580
   301
wenzelm@22909
   302
fun incr_indexes_cterm i (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@22909
   303
  if i < 0 then raise CTERM ("negative increment", [ct])
wenzelm@22909
   304
  else if i = 0 then ct
wenzelm@22909
   305
  else Cterm {thy_ref = thy_ref, t = Logic.incr_indexes ([], i) t,
wenzelm@22909
   306
    T = Logic.incr_tvar i T, maxidx = maxidx + i, sorts = sorts};
wenzelm@22909
   307
wenzelm@22909
   308
wenzelm@22909
   309
(* matching *)
wenzelm@22909
   310
wenzelm@22909
   311
local
wenzelm@22909
   312
wenzelm@22909
   313
fun gen_match match
wenzelm@20512
   314
    (ct1 as Cterm {t = t1, sorts = sorts1, ...},
wenzelm@20815
   315
     ct2 as Cterm {t = t2, sorts = sorts2, maxidx = maxidx2, ...}) =
berghofe@10416
   316
  let
wenzelm@24143
   317
    val thy = Theory.deref (merge_thys0 ct1 ct2);
wenzelm@24143
   318
    val (Tinsts, tinsts) = match thy (t1, t2) (Vartab.empty, Vartab.empty);
wenzelm@16601
   319
    val sorts = Sorts.union sorts1 sorts2;
wenzelm@20512
   320
    fun mk_cTinst ((a, i), (S, T)) =
wenzelm@24143
   321
      (Ctyp {T = TVar ((a, i), S), thy_ref = Theory.check_thy thy, maxidx = i, sorts = sorts},
wenzelm@24143
   322
       Ctyp {T = T, thy_ref = Theory.check_thy thy, maxidx = maxidx2, sorts = sorts});
wenzelm@20512
   323
    fun mk_ctinst ((x, i), (T, t)) =
wenzelm@32035
   324
      let val T = Envir.subst_type Tinsts T in
wenzelm@24143
   325
        (Cterm {t = Var ((x, i), T), T = T, thy_ref = Theory.check_thy thy,
wenzelm@24143
   326
          maxidx = i, sorts = sorts},
wenzelm@24143
   327
         Cterm {t = t, T = T, thy_ref = Theory.check_thy thy, maxidx = maxidx2, sorts = sorts})
berghofe@10416
   328
      end;
wenzelm@16656
   329
  in (Vartab.fold (cons o mk_cTinst) Tinsts [], Vartab.fold (cons o mk_ctinst) tinsts []) end;
berghofe@10416
   330
wenzelm@22909
   331
in
berghofe@10416
   332
wenzelm@22909
   333
val match = gen_match Pattern.match;
wenzelm@22909
   334
val first_order_match = gen_match Pattern.first_order_match;
wenzelm@22909
   335
wenzelm@22909
   336
end;
berghofe@10416
   337
wenzelm@2509
   338
wenzelm@2509
   339
wenzelm@28321
   340
(*** Derivations and Theorems ***)
lcp@229
   341
wenzelm@32590
   342
abstype thm = Thm of
wenzelm@28378
   343
 deriv *                                        (*derivation*)
wenzelm@28378
   344
 {thy_ref: theory_ref,                          (*dynamic reference to theory*)
wenzelm@28378
   345
  tags: Properties.T,                           (*additional annotations/comments*)
wenzelm@28378
   346
  maxidx: int,                                  (*maximum index of any Var or TVar*)
wenzelm@28378
   347
  shyps: sort OrdList.T,                        (*sort hypotheses*)
wenzelm@28378
   348
  hyps: term OrdList.T,                         (*hypotheses*)
wenzelm@28378
   349
  tpairs: (term * term) list,                   (*flex-flex pairs*)
wenzelm@28378
   350
  prop: term}                                   (*conclusion*)
wenzelm@28624
   351
and deriv = Deriv of
wenzelm@32059
   352
 {promises: (serial * thm future) OrdList.T,
wenzelm@32590
   353
  body: Pt.proof_body}
wenzelm@32590
   354
with
clasohm@0
   355
wenzelm@23601
   356
type conv = cterm -> thm;
wenzelm@23601
   357
wenzelm@22365
   358
(*attributes subsume any kind of rules or context modifiers*)
wenzelm@22365
   359
type attribute = Context.generic * thm -> Context.generic * thm;
wenzelm@22365
   360
wenzelm@16725
   361
(*errors involving theorems*)
wenzelm@16725
   362
exception THM of string * int * thm list;
berghofe@13658
   363
wenzelm@28321
   364
fun rep_thm (Thm (_, args)) = args;
clasohm@0
   365
wenzelm@28321
   366
fun crep_thm (Thm (_, {thy_ref, tags, maxidx, shyps, hyps, tpairs, prop})) =
wenzelm@26631
   367
  let fun cterm max t = Cterm {thy_ref = thy_ref, t = t, T = propT, maxidx = max, sorts = shyps} in
wenzelm@28321
   368
   {thy_ref = thy_ref, tags = tags, maxidx = maxidx, shyps = shyps,
wenzelm@16425
   369
    hyps = map (cterm ~1) hyps,
wenzelm@16425
   370
    tpairs = map (pairself (cterm maxidx)) tpairs,
wenzelm@16425
   371
    prop = cterm maxidx prop}
clasohm@1517
   372
  end;
clasohm@1517
   373
wenzelm@31947
   374
fun fold_terms f (Thm (_, {tpairs, prop, hyps, ...})) =
wenzelm@31947
   375
  fold (fn (t, u) => f t #> f u) tpairs #> f prop #> fold f hyps;
wenzelm@31947
   376
wenzelm@16725
   377
fun terms_of_tpairs tpairs = fold_rev (fn (t, u) => cons t o cons u) tpairs [];
wenzelm@16725
   378
wenzelm@16725
   379
fun eq_tpairs ((t, u), (t', u')) = t aconv t' andalso u aconv u';
wenzelm@18944
   380
fun union_tpairs ts us = Library.merge eq_tpairs (ts, us);
wenzelm@16884
   381
val maxidx_tpairs = fold (fn (t, u) => Term.maxidx_term t #> Term.maxidx_term u);
wenzelm@16725
   382
wenzelm@16725
   383
fun attach_tpairs tpairs prop =
wenzelm@16725
   384
  Logic.list_implies (map Logic.mk_equals tpairs, prop);
wenzelm@16725
   385
wenzelm@28321
   386
fun full_prop_of (Thm (_, {tpairs, prop, ...})) = attach_tpairs tpairs prop;
wenzelm@16945
   387
wenzelm@29269
   388
val union_hyps = OrdList.union TermOrd.fast_term_ord;
wenzelm@29269
   389
val insert_hyps = OrdList.insert TermOrd.fast_term_ord;
wenzelm@29269
   390
val remove_hyps = OrdList.remove TermOrd.fast_term_ord;
wenzelm@22365
   391
wenzelm@16945
   392
wenzelm@24143
   393
(* merge theories of cterms/thms -- trivial absorption only *)
wenzelm@16945
   394
wenzelm@28321
   395
fun merge_thys1 (Cterm {thy_ref = r1, ...}) (th as Thm (_, {thy_ref = r2, ...})) =
wenzelm@23601
   396
  Theory.merge_refs (r1, r2);
wenzelm@16945
   397
wenzelm@28321
   398
fun merge_thys2 (th1 as Thm (_, {thy_ref = r1, ...})) (th2 as Thm (_, {thy_ref = r2, ...})) =
wenzelm@23601
   399
  Theory.merge_refs (r1, r2);
wenzelm@16945
   400
clasohm@0
   401
wenzelm@22365
   402
(* basic components *)
wenzelm@16135
   403
wenzelm@28321
   404
val theory_of_thm = Theory.deref o #thy_ref o rep_thm;
wenzelm@28321
   405
val maxidx_of = #maxidx o rep_thm;
wenzelm@19910
   406
fun maxidx_thm th i = Int.max (maxidx_of th, i);
wenzelm@28321
   407
val hyps_of = #hyps o rep_thm;
wenzelm@28321
   408
val prop_of = #prop o rep_thm;
wenzelm@28321
   409
val tpairs_of = #tpairs o rep_thm;
clasohm@0
   410
wenzelm@16601
   411
val concl_of = Logic.strip_imp_concl o prop_of;
wenzelm@16601
   412
val prems_of = Logic.strip_imp_prems o prop_of;
wenzelm@21576
   413
val nprems_of = Logic.count_prems o prop_of;
wenzelm@19305
   414
fun no_prems th = nprems_of th = 0;
wenzelm@16601
   415
wenzelm@16601
   416
fun major_prem_of th =
wenzelm@16601
   417
  (case prems_of th of
wenzelm@16601
   418
    prem :: _ => Logic.strip_assums_concl prem
wenzelm@16601
   419
  | [] => raise THM ("major_prem_of: rule with no premises", 0, [th]));
wenzelm@16601
   420
wenzelm@16601
   421
(*the statement of any thm is a cterm*)
wenzelm@28321
   422
fun cprop_of (Thm (_, {thy_ref, maxidx, shyps, prop, ...})) =
wenzelm@16601
   423
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, t = prop, sorts = shyps};
wenzelm@16601
   424
wenzelm@28321
   425
fun cprem_of (th as Thm (_, {thy_ref, maxidx, shyps, prop, ...})) i =
wenzelm@18035
   426
  Cterm {thy_ref = thy_ref, maxidx = maxidx, T = propT, sorts = shyps,
wenzelm@18145
   427
    t = Logic.nth_prem (i, prop) handle TERM _ => raise THM ("cprem_of", i, [th])};
wenzelm@18035
   428
wenzelm@16656
   429
(*explicit transfer to a super theory*)
wenzelm@16425
   430
fun transfer thy' thm =
wenzelm@3895
   431
  let
wenzelm@28321
   432
    val Thm (der, {thy_ref, tags, maxidx, shyps, hyps, tpairs, prop}) = thm;
wenzelm@16425
   433
    val thy = Theory.deref thy_ref;
wenzelm@26665
   434
    val _ = Theory.subthy (thy, thy') orelse raise THM ("transfer: not a super theory", 0, [thm]);
wenzelm@26665
   435
    val is_eq = Theory.eq_thy (thy, thy');
wenzelm@24143
   436
    val _ = Theory.check_thy thy;
wenzelm@3895
   437
  in
wenzelm@24143
   438
    if is_eq then thm
wenzelm@16945
   439
    else
wenzelm@28321
   440
      Thm (der,
wenzelm@28321
   441
       {thy_ref = Theory.check_thy thy',
wenzelm@21646
   442
        tags = tags,
wenzelm@16945
   443
        maxidx = maxidx,
wenzelm@16945
   444
        shyps = shyps,
wenzelm@16945
   445
        hyps = hyps,
wenzelm@16945
   446
        tpairs = tpairs,
wenzelm@28321
   447
        prop = prop})
wenzelm@3895
   448
  end;
wenzelm@387
   449
wenzelm@16945
   450
(*explicit weakening: maps |- B to A |- B*)
wenzelm@16945
   451
fun weaken raw_ct th =
wenzelm@16945
   452
  let
wenzelm@20261
   453
    val ct as Cterm {t = A, T, sorts, maxidx = maxidxA, ...} = adjust_maxidx_cterm ~1 raw_ct;
wenzelm@28321
   454
    val Thm (der, {tags, maxidx, shyps, hyps, tpairs, prop, ...}) = th;
wenzelm@16945
   455
  in
wenzelm@16945
   456
    if T <> propT then
wenzelm@16945
   457
      raise THM ("weaken: assumptions must have type prop", 0, [])
wenzelm@16945
   458
    else if maxidxA <> ~1 then
wenzelm@16945
   459
      raise THM ("weaken: assumptions may not contain schematic variables", maxidxA, [])
wenzelm@16945
   460
    else
wenzelm@28321
   461
      Thm (der,
wenzelm@28321
   462
       {thy_ref = merge_thys1 ct th,
wenzelm@21646
   463
        tags = tags,
wenzelm@16945
   464
        maxidx = maxidx,
wenzelm@16945
   465
        shyps = Sorts.union sorts shyps,
wenzelm@28354
   466
        hyps = insert_hyps A hyps,
wenzelm@16945
   467
        tpairs = tpairs,
wenzelm@28321
   468
        prop = prop})
wenzelm@16945
   469
  end;
wenzelm@16656
   470
wenzelm@28624
   471
fun weaken_sorts raw_sorts ct =
wenzelm@28624
   472
  let
wenzelm@28624
   473
    val Cterm {thy_ref, t, T, maxidx, sorts} = ct;
wenzelm@28624
   474
    val thy = Theory.deref thy_ref;
wenzelm@28624
   475
    val more_sorts = Sorts.make (map (Sign.certify_sort thy) raw_sorts);
wenzelm@28624
   476
    val sorts' = Sorts.union sorts more_sorts;
wenzelm@28624
   477
  in Cterm {thy_ref = Theory.check_thy thy, t = t, T = T, maxidx = maxidx, sorts = sorts'} end;
wenzelm@28624
   478
wenzelm@16656
   479
clasohm@0
   480
wenzelm@1238
   481
(** sort contexts of theorems **)
wenzelm@1238
   482
wenzelm@31947
   483
(*remove extra sorts that are witnessed by type signature information*)
wenzelm@28321
   484
fun strip_shyps (thm as Thm (_, {shyps = [], ...})) = thm
wenzelm@28321
   485
  | strip_shyps (thm as Thm (der, {thy_ref, tags, maxidx, shyps, hyps, tpairs, prop})) =
wenzelm@7642
   486
      let
wenzelm@16425
   487
        val thy = Theory.deref thy_ref;
wenzelm@31947
   488
        val present =
wenzelm@31947
   489
          (fold_terms o fold_types o fold_atyps)
wenzelm@31947
   490
            (fn T as TFree (_, S) => insert (eq_snd op =) (T, S)
wenzelm@31947
   491
              | T as TVar (_, S) => insert (eq_snd op =) (T, S)) thm [];
wenzelm@31947
   492
        val extra = fold (Sorts.remove_sort o #2) present shyps;
wenzelm@31947
   493
        val witnessed = Sign.witness_sorts thy present extra;
wenzelm@31947
   494
        val extra' = fold (Sorts.remove_sort o #2) witnessed extra
wenzelm@28624
   495
          |> Sorts.minimal_sorts (Sign.classes_of thy);
wenzelm@31947
   496
        val shyps' = fold (Sorts.insert_sort o #2) present extra';
wenzelm@7642
   497
      in
wenzelm@28321
   498
        Thm (der, {thy_ref = Theory.check_thy thy, tags = tags, maxidx = maxidx,
wenzelm@28321
   499
          shyps = shyps', hyps = hyps, tpairs = tpairs, prop = prop})
wenzelm@7642
   500
      end;
wenzelm@1238
   501
wenzelm@16656
   502
(*dangling sort constraints of a thm*)
wenzelm@31947
   503
fun extra_shyps (th as Thm (_, {shyps, ...})) =
wenzelm@31947
   504
  Sorts.subtract (fold_terms Sorts.insert_term th []) shyps;
wenzelm@28321
   505
wenzelm@28321
   506
wenzelm@28321
   507
wenzelm@32725
   508
(** derivations and promised proofs **)
wenzelm@28321
   509
wenzelm@32059
   510
fun make_deriv promises oracles thms proof =
wenzelm@32059
   511
  Deriv {promises = promises, body = PBody {oracles = oracles, thms = thms, proof = proof}};
wenzelm@28321
   512
wenzelm@32059
   513
val empty_deriv = make_deriv [] [] [] Pt.MinProof;
wenzelm@28321
   514
wenzelm@28330
   515
wenzelm@28354
   516
(* inference rules *)
wenzelm@28321
   517
wenzelm@28378
   518
fun promise_ord ((i, _), (j, _)) = int_ord (j, i);
wenzelm@28330
   519
wenzelm@28321
   520
fun deriv_rule2 f
wenzelm@32059
   521
    (Deriv {promises = ps1, body = PBody {oracles = oras1, thms = thms1, proof = prf1}})
wenzelm@32059
   522
    (Deriv {promises = ps2, body = PBody {oracles = oras2, thms = thms2, proof = prf2}}) =
wenzelm@28321
   523
  let
wenzelm@28330
   524
    val ps = OrdList.union promise_ord ps1 ps2;
wenzelm@28804
   525
    val oras = Pt.merge_oracles oras1 oras2;
wenzelm@28804
   526
    val thms = Pt.merge_thms thms1 thms2;
wenzelm@28321
   527
    val prf =
wenzelm@28321
   528
      (case ! Pt.proofs of
wenzelm@28321
   529
        2 => f prf1 prf2
wenzelm@28804
   530
      | 1 => MinProof
wenzelm@28804
   531
      | 0 => MinProof
wenzelm@28321
   532
      | i => error ("Illegal level of detail for proof objects: " ^ string_of_int i));
wenzelm@32059
   533
  in make_deriv ps oras thms prf end;
wenzelm@28321
   534
wenzelm@28321
   535
fun deriv_rule1 f = deriv_rule2 (K f) empty_deriv;
wenzelm@32059
   536
fun deriv_rule0 prf = deriv_rule1 I (make_deriv [] [] [] prf);
wenzelm@28321
   537
wenzelm@1238
   538
wenzelm@32725
   539
(* fulfilled proofs *)
wenzelm@32725
   540
wenzelm@32725
   541
fun raw_body (Thm (Deriv {body, ...}, _)) = body;
wenzelm@32725
   542
wenzelm@32725
   543
fun fulfill_body (Thm (Deriv {promises, body}, {thy_ref, ...})) =
wenzelm@32726
   544
  Pt.fulfill_proof (Theory.deref thy_ref) ~1
wenzelm@32725
   545
    (map #1 promises ~~ fulfill_bodies (map #2 promises)) body
wenzelm@32725
   546
and fulfill_bodies futures = map fulfill_body (Exn.release_all (Future.join_results futures));
wenzelm@32725
   547
wenzelm@32725
   548
val join_proofs = Pt.join_bodies o map fulfill_body;
wenzelm@32725
   549
wenzelm@32725
   550
fun proof_body_of thm = (Pt.join_bodies [raw_body thm]; fulfill_body thm);
wenzelm@32725
   551
val proof_of = Pt.proof_of o proof_body_of;
wenzelm@32725
   552
wenzelm@32725
   553
wenzelm@32725
   554
(* derivation status *)
wenzelm@32725
   555
wenzelm@32725
   556
fun status_of (Thm (Deriv {promises, body}, _)) =
wenzelm@32725
   557
  let
wenzelm@32725
   558
    val ps = map (Future.peek o snd) promises;
wenzelm@32725
   559
    val bodies = body ::
wenzelm@32725
   560
      map_filter (fn SOME (Exn.Result th) => SOME (raw_body th) | _ => NONE) ps;
wenzelm@32725
   561
    val {oracle, unfinished, failed} = Pt.status_of bodies;
wenzelm@32725
   562
  in
wenzelm@32725
   563
   {oracle = oracle,
wenzelm@32725
   564
    unfinished = unfinished orelse exists is_none ps,
wenzelm@32725
   565
    failed = failed orelse exists (fn SOME (Exn.Exn _) => true | _ => false) ps}
wenzelm@32725
   566
  end;
wenzelm@32725
   567
wenzelm@32725
   568
wenzelm@32725
   569
(* future rule *)
wenzelm@32725
   570
wenzelm@32725
   571
fun future_result i orig_thy orig_shyps orig_prop raw_thm =
wenzelm@32725
   572
  let
wenzelm@32725
   573
    val _ = Theory.check_thy orig_thy;
wenzelm@32725
   574
    val thm = strip_shyps (transfer orig_thy raw_thm);
wenzelm@32725
   575
    val _ = Theory.check_thy orig_thy;
wenzelm@32725
   576
    fun err msg = raise THM ("future_result: " ^ msg, 0, [thm]);
wenzelm@32725
   577
wenzelm@32725
   578
    val Thm (Deriv {promises, ...}, {shyps, hyps, tpairs, prop, ...}) = thm;
wenzelm@32725
   579
    val _ = prop aconv orig_prop orelse err "bad prop";
wenzelm@32725
   580
    val _ = null tpairs orelse err "bad tpairs";
wenzelm@32725
   581
    val _ = null hyps orelse err "bad hyps";
wenzelm@32725
   582
    val _ = Sorts.subset (shyps, orig_shyps) orelse err "bad shyps";
wenzelm@32725
   583
    val _ = forall (fn (j, _) => i <> j) promises orelse err "bad dependencies";
wenzelm@32725
   584
    val _ = fulfill_bodies (map #2 promises);
wenzelm@32725
   585
  in thm end;
wenzelm@32725
   586
wenzelm@32725
   587
fun future future_thm ct =
wenzelm@32725
   588
  let
wenzelm@32725
   589
    val Cterm {thy_ref = thy_ref, t = prop, T, maxidx, sorts} = ct;
wenzelm@32725
   590
    val thy = Context.reject_draft (Theory.deref thy_ref);
wenzelm@32725
   591
    val _ = T <> propT andalso raise CTERM ("future: prop expected", [ct]);
wenzelm@32725
   592
wenzelm@32725
   593
    val i = serial ();
wenzelm@32725
   594
    val future = future_thm |> Future.map (future_result i thy sorts prop);
wenzelm@32725
   595
  in
wenzelm@32725
   596
    Thm (make_deriv [(i, future)] [] [] (Pt.promise_proof thy i prop),
wenzelm@32725
   597
     {thy_ref = thy_ref,
wenzelm@32725
   598
      tags = [],
wenzelm@32725
   599
      maxidx = maxidx,
wenzelm@32725
   600
      shyps = sorts,
wenzelm@32725
   601
      hyps = [],
wenzelm@32725
   602
      tpairs = [],
wenzelm@32725
   603
      prop = prop})
wenzelm@32725
   604
  end;
wenzelm@32725
   605
wenzelm@32725
   606
wenzelm@32725
   607
(* closed derivations with official name *)
wenzelm@32725
   608
wenzelm@32725
   609
fun get_name thm =
wenzelm@32725
   610
  Pt.get_name (hyps_of thm) (prop_of thm) (Pt.proof_of (raw_body thm));
wenzelm@32725
   611
wenzelm@32725
   612
fun put_name name (thm as Thm (der, args)) =
wenzelm@32725
   613
  let
wenzelm@32725
   614
    val Deriv {promises, body} = der;
wenzelm@32725
   615
    val {thy_ref, hyps, prop, tpairs, ...} = args;
wenzelm@32725
   616
    val _ = null tpairs orelse raise THM ("put_name: unsolved flex-flex constraints", 0, [thm]);
wenzelm@32725
   617
wenzelm@32725
   618
    val ps = map (apsnd (Future.map proof_body_of)) promises;
wenzelm@32725
   619
    val thy = Theory.deref thy_ref;
wenzelm@32725
   620
    val (pthm, proof) = Pt.thm_proof thy name hyps prop ps body;
wenzelm@32725
   621
    val der' = make_deriv [] [] [pthm] proof;
wenzelm@32725
   622
    val _ = Theory.check_thy thy;
wenzelm@32725
   623
  in Thm (der', args) end;
wenzelm@32725
   624
wenzelm@32725
   625
wenzelm@1238
   626
paulson@1529
   627
(** Axioms **)
wenzelm@387
   628
wenzelm@28675
   629
fun axiom theory name =
wenzelm@387
   630
  let
wenzelm@16425
   631
    fun get_ax thy =
wenzelm@22685
   632
      Symtab.lookup (Theory.axiom_table thy) name
wenzelm@16601
   633
      |> Option.map (fn prop =>
wenzelm@24143
   634
           let
wenzelm@28321
   635
             val der = deriv_rule0 (Pt.axm_proof name prop);
wenzelm@24143
   636
             val maxidx = maxidx_of_term prop;
wenzelm@26640
   637
             val shyps = Sorts.insert_term prop [];
wenzelm@24143
   638
           in
wenzelm@28321
   639
             Thm (der, {thy_ref = Theory.check_thy thy, tags = [],
wenzelm@28321
   640
               maxidx = maxidx, shyps = shyps, hyps = [], tpairs = [], prop = prop})
wenzelm@24143
   641
           end);
wenzelm@387
   642
  in
wenzelm@16425
   643
    (case get_first get_ax (theory :: Theory.ancestors_of theory) of
skalberg@15531
   644
      SOME thm => thm
skalberg@15531
   645
    | NONE => raise THEORY ("No axiom " ^ quote name, [theory]))
wenzelm@387
   646
  end;
wenzelm@387
   647
wenzelm@776
   648
(*return additional axioms of this theory node*)
wenzelm@776
   649
fun axioms_of thy =
wenzelm@28675
   650
  map (fn s => (s, axiom thy s)) (Symtab.keys (Theory.axiom_table thy));
wenzelm@776
   651
wenzelm@6089
   652
wenzelm@28804
   653
(* tags *)
wenzelm@6089
   654
wenzelm@21646
   655
val get_tags = #tags o rep_thm;
wenzelm@6089
   656
wenzelm@28321
   657
fun map_tags f (Thm (der, {thy_ref, tags, maxidx, shyps, hyps, tpairs, prop})) =
wenzelm@28321
   658
  Thm (der, {thy_ref = thy_ref, tags = f tags, maxidx = maxidx,
wenzelm@28321
   659
    shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop});
clasohm@0
   660
clasohm@0
   661
wenzelm@28321
   662
fun norm_proof (Thm (der, args as {thy_ref, ...})) =
wenzelm@24143
   663
  let
wenzelm@24143
   664
    val thy = Theory.deref thy_ref;
wenzelm@28321
   665
    val der' = deriv_rule1 (Pt.rew_proof thy) der;
wenzelm@28321
   666
    val _ = Theory.check_thy thy;
wenzelm@28321
   667
  in Thm (der', args) end;
berghofe@23781
   668
wenzelm@28321
   669
fun adjust_maxidx_thm i (th as Thm (der, {thy_ref, tags, maxidx, shyps, hyps, tpairs, prop})) =
wenzelm@20261
   670
  if maxidx = i then th
wenzelm@20261
   671
  else if maxidx < i then
wenzelm@28321
   672
    Thm (der, {maxidx = i, thy_ref = thy_ref, tags = tags, shyps = shyps,
wenzelm@28321
   673
      hyps = hyps, tpairs = tpairs, prop = prop})
wenzelm@20261
   674
  else
wenzelm@28321
   675
    Thm (der, {maxidx = Int.max (maxidx_tpairs tpairs (maxidx_of_term prop), i), thy_ref = thy_ref,
wenzelm@28321
   676
      tags = tags, shyps = shyps, hyps = hyps, tpairs = tpairs, prop = prop});
wenzelm@564
   677
wenzelm@387
   678
wenzelm@2509
   679
paulson@1529
   680
(*** Meta rules ***)
clasohm@0
   681
wenzelm@16601
   682
(** primitive rules **)
clasohm@0
   683
wenzelm@16656
   684
(*The assumption rule A |- A*)
wenzelm@16601
   685
fun assume raw_ct =
wenzelm@20261
   686
  let val Cterm {thy_ref, t = prop, T, maxidx, sorts} = adjust_maxidx_cterm ~1 raw_ct in
wenzelm@16601
   687
    if T <> propT then
mengj@19230
   688
      raise THM ("assume: prop", 0, [])
wenzelm@16601
   689
    else if maxidx <> ~1 then
mengj@19230
   690
      raise THM ("assume: variables", maxidx, [])
wenzelm@28321
   691
    else Thm (deriv_rule0 (Pt.Hyp prop),
wenzelm@28321
   692
     {thy_ref = thy_ref,
wenzelm@21646
   693
      tags = [],
wenzelm@16601
   694
      maxidx = ~1,
wenzelm@16601
   695
      shyps = sorts,
wenzelm@16601
   696
      hyps = [prop],
wenzelm@16601
   697
      tpairs = [],
wenzelm@28321
   698
      prop = prop})
clasohm@0
   699
  end;
clasohm@0
   700
wenzelm@1220
   701
(*Implication introduction
wenzelm@3529
   702
    [A]
wenzelm@3529
   703
     :
wenzelm@3529
   704
     B
wenzelm@1220
   705
  -------
wenzelm@1220
   706
  A ==> B
wenzelm@1220
   707
*)
wenzelm@16601
   708
fun implies_intr
wenzelm@16679
   709
    (ct as Cterm {t = A, T, maxidx = maxidxA, sorts, ...})
wenzelm@28321
   710
    (th as Thm (der, {maxidx, hyps, shyps, tpairs, prop, ...})) =
wenzelm@16601
   711
  if T <> propT then
wenzelm@16601
   712
    raise THM ("implies_intr: assumptions must have type prop", 0, [th])
wenzelm@16601
   713
  else
wenzelm@28321
   714
    Thm (deriv_rule1 (Pt.implies_intr_proof A) der,
wenzelm@28321
   715
     {thy_ref = merge_thys1 ct th,
wenzelm@21646
   716
      tags = [],
wenzelm@16601
   717
      maxidx = Int.max (maxidxA, maxidx),
wenzelm@16601
   718
      shyps = Sorts.union sorts shyps,
wenzelm@28354
   719
      hyps = remove_hyps A hyps,
wenzelm@16601
   720
      tpairs = tpairs,
wenzelm@28321
   721
      prop = Logic.mk_implies (A, prop)});
clasohm@0
   722
paulson@1529
   723
wenzelm@1220
   724
(*Implication elimination
wenzelm@1220
   725
  A ==> B    A
wenzelm@1220
   726
  ------------
wenzelm@1220
   727
        B
wenzelm@1220
   728
*)
wenzelm@16601
   729
fun implies_elim thAB thA =
wenzelm@16601
   730
  let
wenzelm@28321
   731
    val Thm (derA, {maxidx = maxA, hyps = hypsA, shyps = shypsA, tpairs = tpairsA,
wenzelm@28321
   732
      prop = propA, ...}) = thA
wenzelm@28321
   733
    and Thm (der, {maxidx, hyps, shyps, tpairs, prop, ...}) = thAB;
wenzelm@16601
   734
    fun err () = raise THM ("implies_elim: major premise", 0, [thAB, thA]);
wenzelm@16601
   735
  in
wenzelm@16601
   736
    case prop of
wenzelm@20512
   737
      Const ("==>", _) $ A $ B =>
wenzelm@20512
   738
        if A aconv propA then
wenzelm@28321
   739
          Thm (deriv_rule2 (curry Pt.%%) der derA,
wenzelm@28321
   740
           {thy_ref = merge_thys2 thAB thA,
wenzelm@21646
   741
            tags = [],
wenzelm@16601
   742
            maxidx = Int.max (maxA, maxidx),
wenzelm@16601
   743
            shyps = Sorts.union shypsA shyps,
wenzelm@16601
   744
            hyps = union_hyps hypsA hyps,
wenzelm@16601
   745
            tpairs = union_tpairs tpairsA tpairs,
wenzelm@28321
   746
            prop = B})
wenzelm@16601
   747
        else err ()
wenzelm@16601
   748
    | _ => err ()
wenzelm@16601
   749
  end;
wenzelm@250
   750
wenzelm@1220
   751
(*Forall introduction.  The Free or Var x must not be free in the hypotheses.
wenzelm@16656
   752
    [x]
wenzelm@16656
   753
     :
wenzelm@16656
   754
     A
wenzelm@16656
   755
  ------
wenzelm@16656
   756
  !!x. A
wenzelm@1220
   757
*)
wenzelm@16601
   758
fun forall_intr
wenzelm@16601
   759
    (ct as Cterm {t = x, T, sorts, ...})
wenzelm@28321
   760
    (th as Thm (der, {maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@16601
   761
  let
wenzelm@16601
   762
    fun result a =
wenzelm@28321
   763
      Thm (deriv_rule1 (Pt.forall_intr_proof x a) der,
wenzelm@28321
   764
       {thy_ref = merge_thys1 ct th,
wenzelm@21646
   765
        tags = [],
wenzelm@16601
   766
        maxidx = maxidx,
wenzelm@16601
   767
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   768
        hyps = hyps,
wenzelm@16601
   769
        tpairs = tpairs,
wenzelm@28321
   770
        prop = Term.all T $ Abs (a, T, abstract_over (x, prop))});
wenzelm@21798
   771
    fun check_occs a x ts =
wenzelm@16847
   772
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@21798
   773
        raise THM ("forall_intr: variable " ^ quote a ^ " free in assumptions", 0, [th])
wenzelm@16601
   774
      else ();
wenzelm@16601
   775
  in
wenzelm@16601
   776
    case x of
wenzelm@21798
   777
      Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result a)
wenzelm@21798
   778
    | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result a)
wenzelm@16601
   779
    | _ => raise THM ("forall_intr: not a variable", 0, [th])
clasohm@0
   780
  end;
clasohm@0
   781
wenzelm@1220
   782
(*Forall elimination
wenzelm@16656
   783
  !!x. A
wenzelm@1220
   784
  ------
wenzelm@1220
   785
  A[t/x]
wenzelm@1220
   786
*)
wenzelm@16601
   787
fun forall_elim
wenzelm@16601
   788
    (ct as Cterm {t, T, maxidx = maxt, sorts, ...})
wenzelm@28321
   789
    (th as Thm (der, {maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@16601
   790
  (case prop of
wenzelm@16601
   791
    Const ("all", Type ("fun", [Type ("fun", [qary, _]), _])) $ A =>
wenzelm@16601
   792
      if T <> qary then
wenzelm@16601
   793
        raise THM ("forall_elim: type mismatch", 0, [th])
wenzelm@16601
   794
      else
wenzelm@28321
   795
        Thm (deriv_rule1 (Pt.% o rpair (SOME t)) der,
wenzelm@28321
   796
         {thy_ref = merge_thys1 ct th,
wenzelm@21646
   797
          tags = [],
wenzelm@16601
   798
          maxidx = Int.max (maxidx, maxt),
wenzelm@16601
   799
          shyps = Sorts.union sorts shyps,
wenzelm@16601
   800
          hyps = hyps,
wenzelm@16601
   801
          tpairs = tpairs,
wenzelm@28321
   802
          prop = Term.betapply (A, t)})
wenzelm@16601
   803
  | _ => raise THM ("forall_elim: not quantified", 0, [th]));
clasohm@0
   804
clasohm@0
   805
wenzelm@1220
   806
(* Equality *)
clasohm@0
   807
wenzelm@16601
   808
(*Reflexivity
wenzelm@16601
   809
  t == t
wenzelm@16601
   810
*)
wenzelm@16601
   811
fun reflexive (ct as Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@28321
   812
  Thm (deriv_rule0 Pt.reflexive,
wenzelm@28321
   813
   {thy_ref = thy_ref,
wenzelm@21646
   814
    tags = [],
wenzelm@16601
   815
    maxidx = maxidx,
wenzelm@16601
   816
    shyps = sorts,
wenzelm@16601
   817
    hyps = [],
wenzelm@16601
   818
    tpairs = [],
wenzelm@28321
   819
    prop = Logic.mk_equals (t, t)});
clasohm@0
   820
wenzelm@16601
   821
(*Symmetry
wenzelm@16601
   822
  t == u
wenzelm@16601
   823
  ------
wenzelm@16601
   824
  u == t
wenzelm@1220
   825
*)
wenzelm@28321
   826
fun symmetric (th as Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@16601
   827
  (case prop of
wenzelm@16601
   828
    (eq as Const ("==", Type (_, [T, _]))) $ t $ u =>
wenzelm@28321
   829
      Thm (deriv_rule1 Pt.symmetric der,
wenzelm@28321
   830
       {thy_ref = thy_ref,
wenzelm@21646
   831
        tags = [],
wenzelm@16601
   832
        maxidx = maxidx,
wenzelm@16601
   833
        shyps = shyps,
wenzelm@16601
   834
        hyps = hyps,
wenzelm@16601
   835
        tpairs = tpairs,
wenzelm@28321
   836
        prop = eq $ u $ t})
wenzelm@16601
   837
    | _ => raise THM ("symmetric", 0, [th]));
clasohm@0
   838
wenzelm@16601
   839
(*Transitivity
wenzelm@16601
   840
  t1 == u    u == t2
wenzelm@16601
   841
  ------------------
wenzelm@16601
   842
       t1 == t2
wenzelm@1220
   843
*)
clasohm@0
   844
fun transitive th1 th2 =
wenzelm@16601
   845
  let
wenzelm@28321
   846
    val Thm (der1, {maxidx = max1, hyps = hyps1, shyps = shyps1, tpairs = tpairs1,
wenzelm@28321
   847
      prop = prop1, ...}) = th1
wenzelm@28321
   848
    and Thm (der2, {maxidx = max2, hyps = hyps2, shyps = shyps2, tpairs = tpairs2,
wenzelm@28321
   849
      prop = prop2, ...}) = th2;
wenzelm@16601
   850
    fun err msg = raise THM ("transitive: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   851
  in
wenzelm@16601
   852
    case (prop1, prop2) of
wenzelm@16601
   853
      ((eq as Const ("==", Type (_, [T, _]))) $ t1 $ u, Const ("==", _) $ u' $ t2) =>
wenzelm@16601
   854
        if not (u aconv u') then err "middle term"
wenzelm@16601
   855
        else
wenzelm@28321
   856
          Thm (deriv_rule2 (Pt.transitive u T) der1 der2,
wenzelm@28321
   857
           {thy_ref = merge_thys2 th1 th2,
wenzelm@21646
   858
            tags = [],
wenzelm@16601
   859
            maxidx = Int.max (max1, max2),
wenzelm@16601
   860
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   861
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   862
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@28321
   863
            prop = eq $ t1 $ t2})
wenzelm@16601
   864
     | _ =>  err "premises"
clasohm@0
   865
  end;
clasohm@0
   866
wenzelm@16601
   867
(*Beta-conversion
wenzelm@16656
   868
  (%x. t)(u) == t[u/x]
wenzelm@16601
   869
  fully beta-reduces the term if full = true
berghofe@10416
   870
*)
wenzelm@16601
   871
fun beta_conversion full (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@16601
   872
  let val t' =
wenzelm@16601
   873
    if full then Envir.beta_norm t
wenzelm@16601
   874
    else
wenzelm@16601
   875
      (case t of Abs (_, _, bodt) $ u => subst_bound (u, bodt)
wenzelm@16601
   876
      | _ => raise THM ("beta_conversion: not a redex", 0, []));
wenzelm@16601
   877
  in
wenzelm@28321
   878
    Thm (deriv_rule0 Pt.reflexive,
wenzelm@28321
   879
     {thy_ref = thy_ref,
wenzelm@21646
   880
      tags = [],
wenzelm@16601
   881
      maxidx = maxidx,
wenzelm@16601
   882
      shyps = sorts,
wenzelm@16601
   883
      hyps = [],
wenzelm@16601
   884
      tpairs = [],
wenzelm@28321
   885
      prop = Logic.mk_equals (t, t')})
berghofe@10416
   886
  end;
berghofe@10416
   887
wenzelm@16601
   888
fun eta_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@28321
   889
  Thm (deriv_rule0 Pt.reflexive,
wenzelm@28321
   890
   {thy_ref = thy_ref,
wenzelm@21646
   891
    tags = [],
wenzelm@16601
   892
    maxidx = maxidx,
wenzelm@16601
   893
    shyps = sorts,
wenzelm@16601
   894
    hyps = [],
wenzelm@16601
   895
    tpairs = [],
wenzelm@28321
   896
    prop = Logic.mk_equals (t, Envir.eta_contract t)});
clasohm@0
   897
wenzelm@23493
   898
fun eta_long_conversion (Cterm {thy_ref, t, T, maxidx, sorts}) =
wenzelm@28321
   899
  Thm (deriv_rule0 Pt.reflexive,
wenzelm@28321
   900
   {thy_ref = thy_ref,
wenzelm@23493
   901
    tags = [],
wenzelm@23493
   902
    maxidx = maxidx,
wenzelm@23493
   903
    shyps = sorts,
wenzelm@23493
   904
    hyps = [],
wenzelm@23493
   905
    tpairs = [],
wenzelm@28321
   906
    prop = Logic.mk_equals (t, Pattern.eta_long [] t)});
wenzelm@23493
   907
clasohm@0
   908
(*The abstraction rule.  The Free or Var x must not be free in the hypotheses.
clasohm@0
   909
  The bound variable will be named "a" (since x will be something like x320)
wenzelm@16601
   910
      t == u
wenzelm@16601
   911
  --------------
wenzelm@16601
   912
  %x. t == %x. u
wenzelm@1220
   913
*)
wenzelm@16601
   914
fun abstract_rule a
wenzelm@16601
   915
    (Cterm {t = x, T, sorts, ...})
wenzelm@28321
   916
    (th as Thm (der, {thy_ref, maxidx, hyps, shyps, tpairs, prop, ...})) =
wenzelm@16601
   917
  let
wenzelm@16601
   918
    val (t, u) = Logic.dest_equals prop
wenzelm@16601
   919
      handle TERM _ => raise THM ("abstract_rule: premise not an equality", 0, [th]);
wenzelm@16601
   920
    val result =
wenzelm@28321
   921
      Thm (deriv_rule1 (Pt.abstract_rule x a) der,
wenzelm@28321
   922
       {thy_ref = thy_ref,
wenzelm@21646
   923
        tags = [],
wenzelm@16601
   924
        maxidx = maxidx,
wenzelm@16601
   925
        shyps = Sorts.union sorts shyps,
wenzelm@16601
   926
        hyps = hyps,
wenzelm@16601
   927
        tpairs = tpairs,
wenzelm@16601
   928
        prop = Logic.mk_equals
wenzelm@28321
   929
          (Abs (a, T, abstract_over (x, t)), Abs (a, T, abstract_over (x, u)))});
wenzelm@21798
   930
    fun check_occs a x ts =
wenzelm@16847
   931
      if exists (fn t => Logic.occs (x, t)) ts then
wenzelm@21798
   932
        raise THM ("abstract_rule: variable " ^ quote a ^ " free in assumptions", 0, [th])
wenzelm@16601
   933
      else ();
wenzelm@16601
   934
  in
wenzelm@16601
   935
    case x of
wenzelm@21798
   936
      Free (a, _) => (check_occs a x hyps; check_occs a x (terms_of_tpairs tpairs); result)
wenzelm@21798
   937
    | Var ((a, _), _) => (check_occs a x (terms_of_tpairs tpairs); result)
wenzelm@21798
   938
    | _ => raise THM ("abstract_rule: not a variable", 0, [th])
clasohm@0
   939
  end;
clasohm@0
   940
clasohm@0
   941
(*The combination rule
wenzelm@3529
   942
  f == g  t == u
wenzelm@3529
   943
  --------------
wenzelm@16601
   944
    f t == g u
wenzelm@1220
   945
*)
clasohm@0
   946
fun combination th1 th2 =
wenzelm@16601
   947
  let
wenzelm@28321
   948
    val Thm (der1, {maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@28321
   949
      prop = prop1, ...}) = th1
wenzelm@28321
   950
    and Thm (der2, {maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@28321
   951
      prop = prop2, ...}) = th2;
wenzelm@16601
   952
    fun chktypes fT tT =
wenzelm@16601
   953
      (case fT of
wenzelm@16601
   954
        Type ("fun", [T1, T2]) =>
wenzelm@16601
   955
          if T1 <> tT then
wenzelm@16601
   956
            raise THM ("combination: types", 0, [th1, th2])
wenzelm@16601
   957
          else ()
wenzelm@16601
   958
      | _ => raise THM ("combination: not function type", 0, [th1, th2]));
wenzelm@16601
   959
  in
wenzelm@16601
   960
    case (prop1, prop2) of
wenzelm@16601
   961
      (Const ("==", Type ("fun", [fT, _])) $ f $ g,
wenzelm@16601
   962
       Const ("==", Type ("fun", [tT, _])) $ t $ u) =>
wenzelm@16601
   963
        (chktypes fT tT;
wenzelm@28321
   964
          Thm (deriv_rule2 (Pt.combination f g t u fT) der1 der2,
wenzelm@28321
   965
           {thy_ref = merge_thys2 th1 th2,
wenzelm@21646
   966
            tags = [],
wenzelm@16601
   967
            maxidx = Int.max (max1, max2),
wenzelm@16601
   968
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   969
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   970
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@28321
   971
            prop = Logic.mk_equals (f $ t, g $ u)}))
wenzelm@16601
   972
     | _ => raise THM ("combination: premises", 0, [th1, th2])
clasohm@0
   973
  end;
clasohm@0
   974
wenzelm@16601
   975
(*Equality introduction
wenzelm@3529
   976
  A ==> B  B ==> A
wenzelm@3529
   977
  ----------------
wenzelm@3529
   978
       A == B
wenzelm@1220
   979
*)
clasohm@0
   980
fun equal_intr th1 th2 =
wenzelm@16601
   981
  let
wenzelm@28321
   982
    val Thm (der1, {maxidx = max1, shyps = shyps1, hyps = hyps1, tpairs = tpairs1,
wenzelm@28321
   983
      prop = prop1, ...}) = th1
wenzelm@28321
   984
    and Thm (der2, {maxidx = max2, shyps = shyps2, hyps = hyps2, tpairs = tpairs2,
wenzelm@28321
   985
      prop = prop2, ...}) = th2;
wenzelm@16601
   986
    fun err msg = raise THM ("equal_intr: " ^ msg, 0, [th1, th2]);
wenzelm@16601
   987
  in
wenzelm@16601
   988
    case (prop1, prop2) of
wenzelm@16601
   989
      (Const("==>", _) $ A $ B, Const("==>", _) $ B' $ A') =>
wenzelm@16601
   990
        if A aconv A' andalso B aconv B' then
wenzelm@28321
   991
          Thm (deriv_rule2 (Pt.equal_intr A B) der1 der2,
wenzelm@28321
   992
           {thy_ref = merge_thys2 th1 th2,
wenzelm@21646
   993
            tags = [],
wenzelm@16601
   994
            maxidx = Int.max (max1, max2),
wenzelm@16601
   995
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
   996
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
   997
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@28321
   998
            prop = Logic.mk_equals (A, B)})
wenzelm@16601
   999
        else err "not equal"
wenzelm@16601
  1000
    | _ =>  err "premises"
paulson@1529
  1001
  end;
paulson@1529
  1002
paulson@1529
  1003
(*The equal propositions rule
wenzelm@3529
  1004
  A == B  A
paulson@1529
  1005
  ---------
paulson@1529
  1006
      B
paulson@1529
  1007
*)
paulson@1529
  1008
fun equal_elim th1 th2 =
wenzelm@16601
  1009
  let
wenzelm@28321
  1010
    val Thm (der1, {maxidx = max1, shyps = shyps1, hyps = hyps1,
wenzelm@28321
  1011
      tpairs = tpairs1, prop = prop1, ...}) = th1
wenzelm@28321
  1012
    and Thm (der2, {maxidx = max2, shyps = shyps2, hyps = hyps2,
wenzelm@28321
  1013
      tpairs = tpairs2, prop = prop2, ...}) = th2;
wenzelm@16601
  1014
    fun err msg = raise THM ("equal_elim: " ^ msg, 0, [th1, th2]);
wenzelm@16601
  1015
  in
wenzelm@16601
  1016
    case prop1 of
wenzelm@16601
  1017
      Const ("==", _) $ A $ B =>
wenzelm@16601
  1018
        if prop2 aconv A then
wenzelm@28321
  1019
          Thm (deriv_rule2 (Pt.equal_elim A B) der1 der2,
wenzelm@28321
  1020
           {thy_ref = merge_thys2 th1 th2,
wenzelm@21646
  1021
            tags = [],
wenzelm@16601
  1022
            maxidx = Int.max (max1, max2),
wenzelm@16601
  1023
            shyps = Sorts.union shyps1 shyps2,
wenzelm@16601
  1024
            hyps = union_hyps hyps1 hyps2,
wenzelm@16601
  1025
            tpairs = union_tpairs tpairs1 tpairs2,
wenzelm@28321
  1026
            prop = B})
wenzelm@16601
  1027
        else err "not equal"
paulson@1529
  1028
     | _ =>  err"major premise"
paulson@1529
  1029
  end;
clasohm@0
  1030
wenzelm@1220
  1031
wenzelm@1220
  1032
clasohm@0
  1033
(**** Derived rules ****)
clasohm@0
  1034
wenzelm@16601
  1035
(*Smash unifies the list of term pairs leaving no flex-flex pairs.
wenzelm@24143
  1036
  Instantiates the theorem and deletes trivial tpairs.  Resulting
wenzelm@24143
  1037
  sequence may contain multiple elements if the tpairs are not all
wenzelm@24143
  1038
  flex-flex.*)
wenzelm@28321
  1039
fun flexflex_rule (th as Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@24143
  1040
  let val thy = Theory.deref thy_ref in
wenzelm@24143
  1041
    Unify.smash_unifiers thy tpairs (Envir.empty maxidx)
wenzelm@24143
  1042
    |> Seq.map (fn env =>
wenzelm@24143
  1043
        if Envir.is_empty env then th
wenzelm@24143
  1044
        else
wenzelm@24143
  1045
          let
wenzelm@24143
  1046
            val tpairs' = tpairs |> map (pairself (Envir.norm_term env))
wenzelm@24143
  1047
              (*remove trivial tpairs, of the form t==t*)
wenzelm@24143
  1048
              |> filter_out (op aconv);
wenzelm@28321
  1049
            val der' = deriv_rule1 (Pt.norm_proof' env) der;
wenzelm@24143
  1050
            val prop' = Envir.norm_term env prop;
wenzelm@24143
  1051
            val maxidx = maxidx_tpairs tpairs' (maxidx_of_term prop');
wenzelm@26640
  1052
            val shyps = Envir.insert_sorts env shyps;
wenzelm@24143
  1053
          in
wenzelm@28321
  1054
            Thm (der', {thy_ref = Theory.check_thy thy, tags = [], maxidx = maxidx,
wenzelm@28321
  1055
              shyps = shyps, hyps = hyps, tpairs = tpairs', prop = prop'})
wenzelm@24143
  1056
          end)
wenzelm@24143
  1057
  end;
wenzelm@16601
  1058
clasohm@0
  1059
wenzelm@19910
  1060
(*Generalization of fixed variables
wenzelm@19910
  1061
           A
wenzelm@19910
  1062
  --------------------
wenzelm@19910
  1063
  A[?'a/'a, ?x/x, ...]
wenzelm@19910
  1064
*)
wenzelm@19910
  1065
wenzelm@19910
  1066
fun generalize ([], []) _ th = th
wenzelm@19910
  1067
  | generalize (tfrees, frees) idx th =
wenzelm@19910
  1068
      let
wenzelm@28321
  1069
        val Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...}) = th;
wenzelm@19910
  1070
        val _ = idx <= maxidx andalso raise THM ("generalize: bad index", idx, [th]);
wenzelm@19910
  1071
wenzelm@19910
  1072
        val bad_type = if null tfrees then K false else
wenzelm@19910
  1073
          Term.exists_subtype (fn TFree (a, _) => member (op =) tfrees a | _ => false);
wenzelm@19910
  1074
        fun bad_term (Free (x, T)) = bad_type T orelse member (op =) frees x
wenzelm@19910
  1075
          | bad_term (Var (_, T)) = bad_type T
wenzelm@19910
  1076
          | bad_term (Const (_, T)) = bad_type T
wenzelm@19910
  1077
          | bad_term (Abs (_, T, t)) = bad_type T orelse bad_term t
wenzelm@19910
  1078
          | bad_term (t $ u) = bad_term t orelse bad_term u
wenzelm@19910
  1079
          | bad_term (Bound _) = false;
wenzelm@19910
  1080
        val _ = exists bad_term hyps andalso
wenzelm@19910
  1081
          raise THM ("generalize: variable free in assumptions", 0, [th]);
wenzelm@19910
  1082
wenzelm@31977
  1083
        val gen = Term_Subst.generalize (tfrees, frees) idx;
wenzelm@19910
  1084
        val prop' = gen prop;
wenzelm@19910
  1085
        val tpairs' = map (pairself gen) tpairs;
wenzelm@19910
  1086
        val maxidx' = maxidx_tpairs tpairs' (maxidx_of_term prop');
wenzelm@19910
  1087
      in
wenzelm@28321
  1088
        Thm (deriv_rule1 (Pt.generalize (tfrees, frees) idx) der,
wenzelm@28321
  1089
         {thy_ref = thy_ref,
wenzelm@21646
  1090
          tags = [],
wenzelm@19910
  1091
          maxidx = maxidx',
wenzelm@19910
  1092
          shyps = shyps,
wenzelm@19910
  1093
          hyps = hyps,
wenzelm@19910
  1094
          tpairs = tpairs',
wenzelm@28321
  1095
          prop = prop'})
wenzelm@19910
  1096
      end;
wenzelm@19910
  1097
wenzelm@19910
  1098
wenzelm@22584
  1099
(*Instantiation of schematic variables
wenzelm@16656
  1100
           A
wenzelm@16656
  1101
  --------------------
wenzelm@16656
  1102
  A[t1/v1, ..., tn/vn]
wenzelm@1220
  1103
*)
clasohm@0
  1104
wenzelm@6928
  1105
local
wenzelm@6928
  1106
wenzelm@26939
  1107
fun pretty_typing thy t T = Pretty.block
wenzelm@26939
  1108
  [Syntax.pretty_term_global thy t, Pretty.str " ::", Pretty.brk 1, Syntax.pretty_typ_global thy T];
berghofe@15797
  1109
wenzelm@16884
  1110
fun add_inst (ct, cu) (thy_ref, sorts) =
wenzelm@6928
  1111
  let
wenzelm@26939
  1112
    val Cterm {t = t, T = T, ...} = ct;
wenzelm@26939
  1113
    val Cterm {t = u, T = U, sorts = sorts_u, maxidx = maxidx_u, ...} = cu;
wenzelm@16884
  1114
    val thy_ref' = Theory.merge_refs (thy_ref, merge_thys0 ct cu);
wenzelm@16884
  1115
    val sorts' = Sorts.union sorts_u sorts;
wenzelm@3967
  1116
  in
wenzelm@16884
  1117
    (case t of Var v =>
wenzelm@20512
  1118
      if T = U then ((v, (u, maxidx_u)), (thy_ref', sorts'))
wenzelm@16884
  1119
      else raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
  1120
       [Pretty.str "instantiate: type conflict",
wenzelm@16884
  1121
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') t T,
wenzelm@16884
  1122
        Pretty.fbrk, pretty_typing (Theory.deref thy_ref') u U]), [T, U], [t, u])
wenzelm@16884
  1123
    | _ => raise TYPE (Pretty.string_of (Pretty.block
wenzelm@16884
  1124
       [Pretty.str "instantiate: not a variable",
wenzelm@26939
  1125
        Pretty.fbrk, Syntax.pretty_term_global (Theory.deref thy_ref') t]), [], [t]))
clasohm@0
  1126
  end;
clasohm@0
  1127
wenzelm@16884
  1128
fun add_instT (cT, cU) (thy_ref, sorts) =
wenzelm@16656
  1129
  let
wenzelm@16884
  1130
    val Ctyp {T, thy_ref = thy_ref1, ...} = cT
wenzelm@20512
  1131
    and Ctyp {T = U, thy_ref = thy_ref2, sorts = sorts_U, maxidx = maxidx_U, ...} = cU;
wenzelm@24143
  1132
    val thy' = Theory.deref (Theory.merge_refs (thy_ref, Theory.merge_refs (thy_ref1, thy_ref2)));
wenzelm@16884
  1133
    val sorts' = Sorts.union sorts_U sorts;
wenzelm@16656
  1134
  in
wenzelm@16884
  1135
    (case T of TVar (v as (_, S)) =>
wenzelm@24143
  1136
      if Sign.of_sort thy' (U, S) then ((v, (U, maxidx_U)), (Theory.check_thy thy', sorts'))
wenzelm@26939
  1137
      else raise TYPE ("Type not of sort " ^ Syntax.string_of_sort_global thy' S, [U], [])
wenzelm@16656
  1138
    | _ => raise TYPE (Pretty.string_of (Pretty.block
berghofe@15797
  1139
        [Pretty.str "instantiate: not a type variable",
wenzelm@26939
  1140
         Pretty.fbrk, Syntax.pretty_typ_global thy' T]), [T], []))
wenzelm@16656
  1141
  end;
clasohm@0
  1142
wenzelm@6928
  1143
in
wenzelm@6928
  1144
wenzelm@16601
  1145
(*Left-to-right replacements: ctpairs = [..., (vi, ti), ...].
clasohm@0
  1146
  Instantiates distinct Vars by terms of same type.
wenzelm@16601
  1147
  Does NOT normalize the resulting theorem!*)
paulson@1529
  1148
fun instantiate ([], []) th = th
wenzelm@16884
  1149
  | instantiate (instT, inst) th =
wenzelm@16656
  1150
      let
wenzelm@28321
  1151
        val Thm (der, {thy_ref, hyps, shyps, tpairs, prop, ...}) = th;
wenzelm@16884
  1152
        val (inst', (instT', (thy_ref', shyps'))) =
wenzelm@16884
  1153
          (thy_ref, shyps) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@31977
  1154
        val subst = Term_Subst.instantiate_maxidx (instT', inst');
wenzelm@20512
  1155
        val (prop', maxidx1) = subst prop ~1;
wenzelm@20512
  1156
        val (tpairs', maxidx') =
wenzelm@20512
  1157
          fold_map (fn (t, u) => fn i => subst t i ||>> subst u) tpairs maxidx1;
wenzelm@16656
  1158
      in
wenzelm@28321
  1159
        Thm (deriv_rule1 (fn d => Pt.instantiate (map (apsnd #1) instT', map (apsnd #1) inst') d) der,
wenzelm@28321
  1160
         {thy_ref = thy_ref',
wenzelm@21646
  1161
          tags = [],
wenzelm@20545
  1162
          maxidx = maxidx',
wenzelm@20545
  1163
          shyps = shyps',
wenzelm@20545
  1164
          hyps = hyps,
wenzelm@20545
  1165
          tpairs = tpairs',
wenzelm@28321
  1166
          prop = prop'})
wenzelm@16656
  1167
      end
wenzelm@16656
  1168
      handle TYPE (msg, _, _) => raise THM (msg, 0, [th]);
wenzelm@6928
  1169
wenzelm@22584
  1170
fun instantiate_cterm ([], []) ct = ct
wenzelm@22584
  1171
  | instantiate_cterm (instT, inst) ct =
wenzelm@22584
  1172
      let
wenzelm@22584
  1173
        val Cterm {thy_ref, t, T, sorts, ...} = ct;
wenzelm@22584
  1174
        val (inst', (instT', (thy_ref', sorts'))) =
wenzelm@22584
  1175
          (thy_ref, sorts) |> fold_map add_inst inst ||> fold_map add_instT instT;
wenzelm@31977
  1176
        val subst = Term_Subst.instantiate_maxidx (instT', inst');
wenzelm@31977
  1177
        val substT = Term_Subst.instantiateT_maxidx instT';
wenzelm@22584
  1178
        val (t', maxidx1) = subst t ~1;
wenzelm@22584
  1179
        val (T', maxidx') = substT T maxidx1;
wenzelm@22584
  1180
      in Cterm {thy_ref = thy_ref', t = t', T = T', sorts = sorts', maxidx = maxidx'} end
wenzelm@22584
  1181
      handle TYPE (msg, _, _) => raise CTERM (msg, [ct]);
wenzelm@22584
  1182
wenzelm@6928
  1183
end;
wenzelm@6928
  1184
clasohm@0
  1185
wenzelm@16601
  1186
(*The trivial implication A ==> A, justified by assume and forall rules.
wenzelm@16601
  1187
  A can contain Vars, not so for assume!*)
wenzelm@16601
  1188
fun trivial (Cterm {thy_ref, t =A, T, maxidx, sorts}) =
wenzelm@16601
  1189
  if T <> propT then
wenzelm@16601
  1190
    raise THM ("trivial: the term must have type prop", 0, [])
wenzelm@16601
  1191
  else
wenzelm@28321
  1192
    Thm (deriv_rule0 (Pt.AbsP ("H", NONE, Pt.PBound 0)),
wenzelm@28321
  1193
     {thy_ref = thy_ref,
wenzelm@21646
  1194
      tags = [],
wenzelm@16601
  1195
      maxidx = maxidx,
wenzelm@16601
  1196
      shyps = sorts,
wenzelm@16601
  1197
      hyps = [],
wenzelm@16601
  1198
      tpairs = [],
wenzelm@28321
  1199
      prop = Logic.mk_implies (A, A)});
clasohm@0
  1200
wenzelm@31944
  1201
(*Axiom-scheme reflecting signature contents
wenzelm@31944
  1202
        T :: c
wenzelm@31944
  1203
  -------------------
wenzelm@31944
  1204
  OFCLASS(T, c_class)
wenzelm@31944
  1205
*)
wenzelm@31944
  1206
fun of_class (cT, raw_c) =
wenzelm@24143
  1207
  let
wenzelm@31944
  1208
    val Ctyp {thy_ref, T, ...} = cT;
wenzelm@31944
  1209
    val thy = Theory.deref thy_ref;
wenzelm@31903
  1210
    val c = Sign.certify_class thy raw_c;
wenzelm@31944
  1211
    val Cterm {t = prop, maxidx, sorts, ...} = cterm_of thy (Logic.mk_of_class (T, c));
wenzelm@399
  1212
  in
wenzelm@31944
  1213
    if Sign.of_sort thy (T, [c]) then
wenzelm@31944
  1214
      Thm (deriv_rule0 (Pt.OfClass (T, c)),
wenzelm@31944
  1215
       {thy_ref = Theory.check_thy thy,
wenzelm@31944
  1216
        tags = [],
wenzelm@31944
  1217
        maxidx = maxidx,
wenzelm@31944
  1218
        shyps = sorts,
wenzelm@31944
  1219
        hyps = [],
wenzelm@31944
  1220
        tpairs = [],
wenzelm@31944
  1221
        prop = prop})
wenzelm@31944
  1222
    else raise THM ("of_class: type not of class " ^ Syntax.string_of_sort_global thy [c], 0, [])
wenzelm@399
  1223
  end;
wenzelm@399
  1224
wenzelm@19505
  1225
(*Internalize sort constraints of type variable*)
wenzelm@19505
  1226
fun unconstrainT
wenzelm@19505
  1227
    (Ctyp {thy_ref = thy_ref1, T, ...})
wenzelm@28321
  1228
    (th as Thm (_, {thy_ref = thy_ref2, maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@19505
  1229
  let
wenzelm@19505
  1230
    val ((x, i), S) = Term.dest_TVar T handle TYPE _ =>
wenzelm@19505
  1231
      raise THM ("unconstrainT: not a type variable", 0, [th]);
wenzelm@19505
  1232
    val T' = TVar ((x, i), []);
wenzelm@20548
  1233
    val unconstrain = Term.map_types (Term.map_atyps (fn U => if U = T then T' else U));
wenzelm@31943
  1234
    val constraints = map (curry Logic.mk_of_class T') S;
wenzelm@19505
  1235
  in
wenzelm@28321
  1236
    Thm (deriv_rule0 (Pt.PAxm ("Pure.unconstrainT", prop, SOME [])),
wenzelm@28321
  1237
     {thy_ref = Theory.merge_refs (thy_ref1, thy_ref2),
wenzelm@21646
  1238
      tags = [],
wenzelm@19505
  1239
      maxidx = Int.max (maxidx, i),
wenzelm@19505
  1240
      shyps = Sorts.remove_sort S shyps,
wenzelm@19505
  1241
      hyps = hyps,
wenzelm@19505
  1242
      tpairs = map (pairself unconstrain) tpairs,
wenzelm@28321
  1243
      prop = Logic.list_implies (constraints, unconstrain prop)})
wenzelm@19505
  1244
  end;
wenzelm@399
  1245
wenzelm@6786
  1246
(* Replace all TFrees not fixed or in the hyps by new TVars *)
wenzelm@28321
  1247
fun varifyT' fixed (Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@12500
  1248
  let
wenzelm@29272
  1249
    val tfrees = fold Term.add_tfrees hyps fixed;
berghofe@13658
  1250
    val prop1 = attach_tpairs tpairs prop;
haftmann@21116
  1251
    val (al, prop2) = Type.varify tfrees prop1;
wenzelm@16601
  1252
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@16601
  1253
  in
wenzelm@28321
  1254
    (al, Thm (deriv_rule1 (Pt.varify_proof prop tfrees) der,
wenzelm@28321
  1255
     {thy_ref = thy_ref,
wenzelm@21646
  1256
      tags = [],
wenzelm@16601
  1257
      maxidx = Int.max (0, maxidx),
wenzelm@16601
  1258
      shyps = shyps,
wenzelm@16601
  1259
      hyps = hyps,
wenzelm@16601
  1260
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@28321
  1261
      prop = prop3}))
wenzelm@28321
  1262
  end;
wenzelm@28321
  1263
wenzelm@28321
  1264
val varifyT = #2 o varifyT' [];
wenzelm@28321
  1265
wenzelm@28321
  1266
(* Replace all TVars by new TFrees *)
wenzelm@28321
  1267
fun freezeT (Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@28321
  1268
  let
wenzelm@28321
  1269
    val prop1 = attach_tpairs tpairs prop;
wenzelm@28321
  1270
    val prop2 = Type.freeze prop1;
wenzelm@28321
  1271
    val (ts, prop3) = Logic.strip_prems (length tpairs, [], prop2);
wenzelm@28321
  1272
  in
wenzelm@28321
  1273
    Thm (deriv_rule1 (Pt.freezeT prop1) der,
wenzelm@28321
  1274
     {thy_ref = thy_ref,
wenzelm@28321
  1275
      tags = [],
wenzelm@28321
  1276
      maxidx = maxidx_of_term prop2,
wenzelm@28321
  1277
      shyps = shyps,
wenzelm@28321
  1278
      hyps = hyps,
wenzelm@28321
  1279
      tpairs = rev (map Logic.dest_equals ts),
wenzelm@18127
  1280
      prop = prop3})
clasohm@0
  1281
  end;
clasohm@0
  1282
clasohm@0
  1283
clasohm@0
  1284
(*** Inference rules for tactics ***)
clasohm@0
  1285
clasohm@0
  1286
(*Destruct proof state into constraints, other goals, goal(i), rest *)
wenzelm@28321
  1287
fun dest_state (state as Thm (_, {prop,tpairs,...}), i) =
berghofe@13658
  1288
  (case  Logic.strip_prems(i, [], prop) of
berghofe@13658
  1289
      (B::rBs, C) => (tpairs, rev rBs, B, C)
berghofe@13658
  1290
    | _ => raise THM("dest_state", i, [state]))
clasohm@0
  1291
  handle TERM _ => raise THM("dest_state", i, [state]);
clasohm@0
  1292
lcp@309
  1293
(*Increment variables and parameters of orule as required for
wenzelm@18035
  1294
  resolution with a goal.*)
wenzelm@18035
  1295
fun lift_rule goal orule =
wenzelm@16601
  1296
  let
wenzelm@18035
  1297
    val Cterm {t = gprop, T, maxidx = gmax, sorts, ...} = goal;
wenzelm@18035
  1298
    val inc = gmax + 1;
wenzelm@18035
  1299
    val lift_abs = Logic.lift_abs inc gprop;
wenzelm@18035
  1300
    val lift_all = Logic.lift_all inc gprop;
wenzelm@28321
  1301
    val Thm (der, {maxidx, shyps, hyps, tpairs, prop, ...}) = orule;
wenzelm@16601
  1302
    val (As, B) = Logic.strip_horn prop;
wenzelm@16601
  1303
  in
wenzelm@18035
  1304
    if T <> propT then raise THM ("lift_rule: the term must have type prop", 0, [])
wenzelm@18035
  1305
    else
wenzelm@28321
  1306
      Thm (deriv_rule1 (Pt.lift_proof gprop inc prop) der,
wenzelm@28321
  1307
       {thy_ref = merge_thys1 goal orule,
wenzelm@21646
  1308
        tags = [],
wenzelm@18035
  1309
        maxidx = maxidx + inc,
wenzelm@18035
  1310
        shyps = Sorts.union shyps sorts,  (*sic!*)
wenzelm@18035
  1311
        hyps = hyps,
wenzelm@18035
  1312
        tpairs = map (pairself lift_abs) tpairs,
wenzelm@28321
  1313
        prop = Logic.list_implies (map lift_all As, lift_all B)})
clasohm@0
  1314
  end;
clasohm@0
  1315
wenzelm@28321
  1316
fun incr_indexes i (thm as Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...})) =
wenzelm@16601
  1317
  if i < 0 then raise THM ("negative increment", 0, [thm])
wenzelm@16601
  1318
  else if i = 0 then thm
wenzelm@16601
  1319
  else
wenzelm@32027
  1320
    Thm (deriv_rule1 (Pt.incr_indexes i) der,
wenzelm@28321
  1321
     {thy_ref = thy_ref,
wenzelm@21646
  1322
      tags = [],
wenzelm@16601
  1323
      maxidx = maxidx + i,
wenzelm@16601
  1324
      shyps = shyps,
wenzelm@16601
  1325
      hyps = hyps,
wenzelm@16601
  1326
      tpairs = map (pairself (Logic.incr_indexes ([], i))) tpairs,
wenzelm@28321
  1327
      prop = Logic.incr_indexes ([], i) prop});
berghofe@10416
  1328
clasohm@0
  1329
(*Solve subgoal Bi of proof state B1...Bn/C by assumption. *)
clasohm@0
  1330
fun assumption i state =
wenzelm@16601
  1331
  let
wenzelm@28321
  1332
    val Thm (der, {thy_ref, maxidx, shyps, hyps, prop, ...}) = state;
wenzelm@16656
  1333
    val thy = Theory.deref thy_ref;
wenzelm@16601
  1334
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@32032
  1335
    fun newth n (env, tpairs) =
wenzelm@28321
  1336
      Thm (deriv_rule1
wenzelm@16601
  1337
          ((if Envir.is_empty env then I else (Pt.norm_proof' env)) o
wenzelm@16601
  1338
            Pt.assumption_proof Bs Bi n) der,
wenzelm@28321
  1339
       {tags = [],
wenzelm@32032
  1340
        maxidx = Envir.maxidx_of env,
wenzelm@26640
  1341
        shyps = Envir.insert_sorts env shyps,
wenzelm@16601
  1342
        hyps = hyps,
wenzelm@16601
  1343
        tpairs =
wenzelm@16601
  1344
          if Envir.is_empty env then tpairs
wenzelm@16601
  1345
          else map (pairself (Envir.norm_term env)) tpairs,
wenzelm@16601
  1346
        prop =
wenzelm@16601
  1347
          if Envir.is_empty env then (*avoid wasted normalizations*)
wenzelm@16601
  1348
            Logic.list_implies (Bs, C)
wenzelm@16601
  1349
          else (*normalize the new rule fully*)
wenzelm@24143
  1350
            Envir.norm_term env (Logic.list_implies (Bs, C)),
wenzelm@28321
  1351
        thy_ref = Theory.check_thy thy});
wenzelm@30554
  1352
wenzelm@30556
  1353
    val (close, asms, concl) = Logic.assum_problems (~1, Bi);
wenzelm@30556
  1354
    val concl' = close concl;
wenzelm@16601
  1355
    fun addprfs [] _ = Seq.empty
wenzelm@30556
  1356
      | addprfs (asm :: rest) n = Seq.make (fn () => Seq.pull
wenzelm@16601
  1357
          (Seq.mapp (newth n)
wenzelm@30556
  1358
            (if Term.could_unify (asm, concl) then
wenzelm@30556
  1359
              (Unify.unifiers (thy, Envir.empty maxidx, (close asm, concl') :: tpairs))
wenzelm@30554
  1360
             else Seq.empty)
wenzelm@30554
  1361
            (addprfs rest (n + 1))))
wenzelm@30556
  1362
  in addprfs asms 1 end;
clasohm@0
  1363
wenzelm@250
  1364
(*Solve subgoal Bi of proof state B1...Bn/C by assumption.
clasohm@0
  1365
  Checks if Bi's conclusion is alpha-convertible to one of its assumptions*)
clasohm@0
  1366
fun eq_assumption i state =
wenzelm@16601
  1367
  let
wenzelm@28321
  1368
    val Thm (der, {thy_ref, maxidx, shyps, hyps, prop, ...}) = state;
wenzelm@16601
  1369
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@30556
  1370
    val (_, asms, concl) = Logic.assum_problems (~1, Bi);
wenzelm@16601
  1371
  in
wenzelm@30556
  1372
    (case find_index (fn asm => Pattern.aeconv (asm, concl)) asms of
wenzelm@16601
  1373
      ~1 => raise THM ("eq_assumption", 0, [state])
wenzelm@16601
  1374
    | n =>
wenzelm@28321
  1375
        Thm (deriv_rule1 (Pt.assumption_proof Bs Bi (n + 1)) der,
wenzelm@28321
  1376
         {thy_ref = thy_ref,
wenzelm@21646
  1377
          tags = [],
wenzelm@16601
  1378
          maxidx = maxidx,
wenzelm@16601
  1379
          shyps = shyps,
wenzelm@16601
  1380
          hyps = hyps,
wenzelm@16601
  1381
          tpairs = tpairs,
wenzelm@28321
  1382
          prop = Logic.list_implies (Bs, C)}))
clasohm@0
  1383
  end;
clasohm@0
  1384
clasohm@0
  1385
paulson@2671
  1386
(*For rotate_tac: fast rotation of assumptions of subgoal i*)
paulson@2671
  1387
fun rotate_rule k i state =
wenzelm@16601
  1388
  let
wenzelm@28321
  1389
    val Thm (der, {thy_ref, maxidx, shyps, hyps, prop, ...}) = state;
wenzelm@16601
  1390
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1391
    val params = Term.strip_all_vars Bi
wenzelm@16601
  1392
    and rest   = Term.strip_all_body Bi;
wenzelm@16601
  1393
    val asms   = Logic.strip_imp_prems rest
wenzelm@16601
  1394
    and concl  = Logic.strip_imp_concl rest;
wenzelm@16601
  1395
    val n = length asms;
wenzelm@16601
  1396
    val m = if k < 0 then n + k else k;
wenzelm@16601
  1397
    val Bi' =
wenzelm@16601
  1398
      if 0 = m orelse m = n then Bi
wenzelm@16601
  1399
      else if 0 < m andalso m < n then
wenzelm@19012
  1400
        let val (ps, qs) = chop m asms
wenzelm@16601
  1401
        in list_all (params, Logic.list_implies (qs @ ps, concl)) end
wenzelm@16601
  1402
      else raise THM ("rotate_rule", k, [state]);
wenzelm@16601
  1403
  in
wenzelm@28321
  1404
    Thm (deriv_rule1 (Pt.rotate_proof Bs Bi m) der,
wenzelm@28321
  1405
     {thy_ref = thy_ref,
wenzelm@21646
  1406
      tags = [],
wenzelm@16601
  1407
      maxidx = maxidx,
wenzelm@16601
  1408
      shyps = shyps,
wenzelm@16601
  1409
      hyps = hyps,
wenzelm@16601
  1410
      tpairs = tpairs,
wenzelm@28321
  1411
      prop = Logic.list_implies (Bs @ [Bi'], C)})
paulson@2671
  1412
  end;
paulson@2671
  1413
paulson@2671
  1414
paulson@7248
  1415
(*Rotates a rule's premises to the left by k, leaving the first j premises
paulson@7248
  1416
  unchanged.  Does nothing if k=0 or if k equals n-j, where n is the
wenzelm@16656
  1417
  number of premises.  Useful with etac and underlies defer_tac*)
paulson@7248
  1418
fun permute_prems j k rl =
wenzelm@16601
  1419
  let
wenzelm@28321
  1420
    val Thm (der, {thy_ref, maxidx, shyps, hyps, tpairs, prop, ...}) = rl;
wenzelm@16601
  1421
    val prems = Logic.strip_imp_prems prop
wenzelm@16601
  1422
    and concl = Logic.strip_imp_concl prop;
wenzelm@16601
  1423
    val moved_prems = List.drop (prems, j)
wenzelm@16601
  1424
    and fixed_prems = List.take (prems, j)
wenzelm@16601
  1425
      handle Subscript => raise THM ("permute_prems: j", j, [rl]);
wenzelm@16601
  1426
    val n_j = length moved_prems;
wenzelm@16601
  1427
    val m = if k < 0 then n_j + k else k;
wenzelm@16601
  1428
    val prop' =
wenzelm@16601
  1429
      if 0 = m orelse m = n_j then prop
wenzelm@16601
  1430
      else if 0 < m andalso m < n_j then
wenzelm@19012
  1431
        let val (ps, qs) = chop m moved_prems
wenzelm@16601
  1432
        in Logic.list_implies (fixed_prems @ qs @ ps, concl) end
wenzelm@16725
  1433
      else raise THM ("permute_prems: k", k, [rl]);
wenzelm@16601
  1434
  in
wenzelm@28321
  1435
    Thm (deriv_rule1 (Pt.permute_prems_prf prems j m) der,
wenzelm@28321
  1436
     {thy_ref = thy_ref,
wenzelm@21646
  1437
      tags = [],
wenzelm@16601
  1438
      maxidx = maxidx,
wenzelm@16601
  1439
      shyps = shyps,
wenzelm@16601
  1440
      hyps = hyps,
wenzelm@16601
  1441
      tpairs = tpairs,
wenzelm@28321
  1442
      prop = prop'})
paulson@7248
  1443
  end;
paulson@7248
  1444
paulson@7248
  1445
clasohm@0
  1446
(** User renaming of parameters in a subgoal **)
clasohm@0
  1447
clasohm@0
  1448
(*Calls error rather than raising an exception because it is intended
clasohm@0
  1449
  for top-level use -- exception handling would not make sense here.
clasohm@0
  1450
  The names in cs, if distinct, are used for the innermost parameters;
wenzelm@17868
  1451
  preceding parameters may be renamed to make all params distinct.*)
clasohm@0
  1452
fun rename_params_rule (cs, i) state =
wenzelm@16601
  1453
  let
wenzelm@28321
  1454
    val Thm (der, {thy_ref, tags, maxidx, shyps, hyps, ...}) = state;
wenzelm@16601
  1455
    val (tpairs, Bs, Bi, C) = dest_state (state, i);
wenzelm@16601
  1456
    val iparams = map #1 (Logic.strip_params Bi);
wenzelm@16601
  1457
    val short = length iparams - length cs;
wenzelm@16601
  1458
    val newnames =
wenzelm@16601
  1459
      if short < 0 then error "More names than abstractions!"
wenzelm@20071
  1460
      else Name.variant_list cs (Library.take (short, iparams)) @ cs;
wenzelm@20330
  1461
    val freenames = Term.fold_aterms (fn Free (x, _) => insert (op =) x | _ => I) Bi [];
wenzelm@16601
  1462
    val newBi = Logic.list_rename_params (newnames, Bi);
wenzelm@250
  1463
  in
wenzelm@21182
  1464
    (case duplicates (op =) cs of
wenzelm@21182
  1465
      a :: _ => (warning ("Can't rename.  Bound variables not distinct: " ^ a); state)
wenzelm@21182
  1466
    | [] =>
wenzelm@16601
  1467
      (case cs inter_string freenames of
wenzelm@16601
  1468
        a :: _ => (warning ("Can't rename.  Bound/Free variable clash: " ^ a); state)
wenzelm@16601
  1469
      | [] =>
wenzelm@28321
  1470
        Thm (der,
wenzelm@28321
  1471
         {thy_ref = thy_ref,
wenzelm@21646
  1472
          tags = tags,
wenzelm@16601
  1473
          maxidx = maxidx,
wenzelm@16601
  1474
          shyps = shyps,
wenzelm@16601
  1475
          hyps = hyps,
wenzelm@16601
  1476
          tpairs = tpairs,
wenzelm@28321
  1477
          prop = Logic.list_implies (Bs @ [newBi], C)})))
clasohm@0
  1478
  end;
clasohm@0
  1479
wenzelm@12982
  1480
clasohm@0
  1481
(*** Preservation of bound variable names ***)
clasohm@0
  1482
wenzelm@28321
  1483
fun rename_boundvars pat obj (thm as Thm (der, {thy_ref, tags, maxidx, shyps, hyps, tpairs, prop})) =
wenzelm@12982
  1484
  (case Term.rename_abs pat obj prop of
skalberg@15531
  1485
    NONE => thm
wenzelm@28321
  1486
  | SOME prop' => Thm (der,
wenzelm@16425
  1487
      {thy_ref = thy_ref,
wenzelm@21646
  1488
       tags = tags,
wenzelm@12982
  1489
       maxidx = maxidx,
wenzelm@12982
  1490
       hyps = hyps,
wenzelm@12982
  1491
       shyps = shyps,
berghofe@13658
  1492
       tpairs = tpairs,
wenzelm@28321
  1493
       prop = prop'}));
berghofe@10416
  1494
clasohm@0
  1495
wenzelm@16656
  1496
(* strip_apply f (A, B) strips off all assumptions/parameters from A
clasohm@0
  1497
   introduced by lifting over B, and applies f to remaining part of A*)
clasohm@0
  1498
fun strip_apply f =
clasohm@0
  1499
  let fun strip(Const("==>",_)$ A1 $ B1,
wenzelm@27336
  1500
                Const("==>",_)$ _  $ B2) = Logic.mk_implies (A1, strip(B1,B2))
wenzelm@250
  1501
        | strip((c as Const("all",_)) $ Abs(a,T,t1),
wenzelm@250
  1502
                      Const("all",_)  $ Abs(_,_,t2)) = c$Abs(a,T,strip(t1,t2))
wenzelm@250
  1503
        | strip(A,_) = f A
clasohm@0
  1504
  in strip end;
clasohm@0
  1505
clasohm@0
  1506
(*Use the alist to rename all bound variables and some unknowns in a term
clasohm@0
  1507
  dpairs = current disagreement pairs;  tpairs = permanent ones (flexflex);
clasohm@0
  1508
  Preserves unknowns in tpairs and on lhs of dpairs. *)
clasohm@0
  1509
fun rename_bvs([],_,_,_) = I
clasohm@0
  1510
  | rename_bvs(al,dpairs,tpairs,B) =
wenzelm@20330
  1511
      let
wenzelm@20330
  1512
        val add_var = fold_aterms (fn Var ((x, _), _) => insert (op =) x | _ => I);
wenzelm@20330
  1513
        val vids = []
wenzelm@20330
  1514
          |> fold (add_var o fst) dpairs
wenzelm@20330
  1515
          |> fold (add_var o fst) tpairs
wenzelm@20330
  1516
          |> fold (add_var o snd) tpairs;
wenzelm@250
  1517
        (*unknowns appearing elsewhere be preserved!*)
wenzelm@250
  1518
        fun rename(t as Var((x,i),T)) =
wenzelm@20330
  1519
              (case AList.lookup (op =) al x of
wenzelm@20330
  1520
                SOME y =>
wenzelm@20330
  1521
                  if member (op =) vids x orelse member (op =) vids y then t
wenzelm@20330
  1522
                  else Var((y,i),T)
wenzelm@20330
  1523
              | NONE=> t)
clasohm@0
  1524
          | rename(Abs(x,T,t)) =
wenzelm@18944
  1525
              Abs (the_default x (AList.lookup (op =) al x), T, rename t)
clasohm@0
  1526
          | rename(f$t) = rename f $ rename t
clasohm@0
  1527
          | rename(t) = t;
wenzelm@250
  1528
        fun strip_ren Ai = strip_apply rename (Ai,B)
wenzelm@20330
  1529
      in strip_ren end;
clasohm@0
  1530
clasohm@0
  1531
(*Function to rename bounds/unknowns in the argument, lifted over B*)
clasohm@0
  1532
fun rename_bvars(dpairs, tpairs, B) =
wenzelm@23178
  1533
        rename_bvs(List.foldr Term.match_bvars [] dpairs, dpairs, tpairs, B);
clasohm@0
  1534
clasohm@0
  1535
clasohm@0
  1536
(*** RESOLUTION ***)
clasohm@0
  1537
lcp@721
  1538
(** Lifting optimizations **)
lcp@721
  1539
clasohm@0
  1540
(*strip off pairs of assumptions/parameters in parallel -- they are
clasohm@0
  1541
  identical because of lifting*)
wenzelm@250
  1542
fun strip_assums2 (Const("==>", _) $ _ $ B1,
wenzelm@250
  1543
                   Const("==>", _) $ _ $ B2) = strip_assums2 (B1,B2)
clasohm@0
  1544
  | strip_assums2 (Const("all",_)$Abs(a,T,t1),
wenzelm@250
  1545
                   Const("all",_)$Abs(_,_,t2)) =
clasohm@0
  1546
      let val (B1,B2) = strip_assums2 (t1,t2)
clasohm@0
  1547
      in  (Abs(a,T,B1), Abs(a,T,B2))  end
clasohm@0
  1548
  | strip_assums2 BB = BB;
clasohm@0
  1549
clasohm@0
  1550
lcp@721
  1551
(*Faster normalization: skip assumptions that were lifted over*)
lcp@721
  1552
fun norm_term_skip env 0 t = Envir.norm_term env t
wenzelm@32032
  1553
  | norm_term_skip env n (Const ("all", _) $ Abs (a, T, t)) =
wenzelm@32032
  1554
      let
wenzelm@32035
  1555
        val T' = Envir.subst_type (Envir.type_env env) T
wenzelm@32032
  1556
        (*Must instantiate types of parameters because they are flattened;
wenzelm@32032
  1557
          this could be a NEW parameter*)
wenzelm@32032
  1558
      in Term.all T' $ Abs (a, T', norm_term_skip env n t) end
wenzelm@32032
  1559
  | norm_term_skip env n (Const ("==>", _) $ A $ B) =
wenzelm@32032
  1560
      Logic.mk_implies (A, norm_term_skip env (n - 1) B)
wenzelm@32032
  1561
  | norm_term_skip env n t = error "norm_term_skip: too few assumptions??";
lcp@721
  1562
lcp@721
  1563
clasohm@0
  1564
(*Composition of object rule r=(A1...Am/B) with proof state s=(B1...Bn/C)
wenzelm@250
  1565
  Unifies B with Bi, replacing subgoal i    (1 <= i <= n)
clasohm@0
  1566
  If match then forbid instantiations in proof state
clasohm@0
  1567
  If lifted then shorten the dpair using strip_assums2.
clasohm@0
  1568
  If eres_flg then simultaneously proves A1 by assumption.
wenzelm@250
  1569
  nsubgoal is the number of new subgoals (written m above).
clasohm@0
  1570
  Curried so that resolution calls dest_state only once.
clasohm@0
  1571
*)
wenzelm@4270
  1572
local exception COMPOSE
clasohm@0
  1573
in
wenzelm@18486
  1574
fun bicompose_aux flatten match (state, (stpairs, Bs, Bi, C), lifted)
clasohm@0
  1575
                        (eres_flg, orule, nsubgoal) =
wenzelm@28321
  1576
 let val Thm (sder, {maxidx=smax, shyps=sshyps, hyps=shyps, ...}) = state
wenzelm@28321
  1577
     and Thm (rder, {maxidx=rmax, shyps=rshyps, hyps=rhyps,
wenzelm@28321
  1578
             tpairs=rtpairs, prop=rprop,...}) = orule
paulson@1529
  1579
         (*How many hyps to skip over during normalization*)
wenzelm@21576
  1580
     and nlift = Logic.count_prems (strip_all_body Bi) + (if eres_flg then ~1 else 0)
wenzelm@24143
  1581
     val thy = Theory.deref (merge_thys2 state orule);
clasohm@0
  1582
     (** Add new theorem with prop = '[| Bs; As |] ==> C' to thq **)
wenzelm@32032
  1583
     fun addth A (As, oldAs, rder', n) ((env, tpairs), thq) =
wenzelm@250
  1584
       let val normt = Envir.norm_term env;
wenzelm@250
  1585
           (*perform minimal copying here by examining env*)
berghofe@13658
  1586
           val (ntpairs, normp) =
berghofe@13658
  1587
             if Envir.is_empty env then (tpairs, (Bs @ As, C))
wenzelm@250
  1588
             else
wenzelm@250
  1589
             let val ntps = map (pairself normt) tpairs
wenzelm@19861
  1590
             in if Envir.above env smax then
wenzelm@1238
  1591
                  (*no assignments in state; normalize the rule only*)
wenzelm@1238
  1592
                  if lifted
berghofe@13658
  1593
                  then (ntps, (Bs @ map (norm_term_skip env nlift) As, C))
berghofe@13658
  1594
                  else (ntps, (Bs @ map normt As, C))
paulson@1529
  1595
                else if match then raise COMPOSE
wenzelm@250
  1596
                else (*normalize the new rule fully*)
berghofe@13658
  1597
                  (ntps, (map normt (Bs @ As), normt C))
wenzelm@250
  1598
             end
wenzelm@16601
  1599
           val th =
wenzelm@28321
  1600
             Thm (deriv_rule2
berghofe@11518
  1601
                   ((if Envir.is_empty env then I
wenzelm@19861
  1602
                     else if Envir.above env smax then
berghofe@11518
  1603
                       (fn f => fn der => f (Pt.norm_proof' env der))
berghofe@11518
  1604
                     else
berghofe@11518
  1605
                       curry op oo (Pt.norm_proof' env))
berghofe@23296
  1606
                    (Pt.bicompose_proof flatten Bs oldAs As A n (nlift+1))) rder' sder,
wenzelm@28321
  1607
                {tags = [],
wenzelm@32032
  1608
                 maxidx = Envir.maxidx_of env,
wenzelm@26640
  1609
                 shyps = Envir.insert_sorts env (Sorts.union rshyps sshyps),
wenzelm@16601
  1610
                 hyps = union_hyps rhyps shyps,
berghofe@13658
  1611
                 tpairs = ntpairs,
wenzelm@24143
  1612
                 prop = Logic.list_implies normp,
wenzelm@28321
  1613
                 thy_ref = Theory.check_thy thy})
wenzelm@19475
  1614
        in  Seq.cons th thq  end  handle COMPOSE => thq;
berghofe@13658
  1615
     val (rAs,B) = Logic.strip_prems(nsubgoal, [], rprop)
clasohm@0
  1616
       handle TERM _ => raise THM("bicompose: rule", 0, [orule,state]);
clasohm@0
  1617
     (*Modify assumptions, deleting n-th if n>0 for e-resolution*)
clasohm@0
  1618
     fun newAs(As0, n, dpairs, tpairs) =
berghofe@11518
  1619
       let val (As1, rder') =
berghofe@25939
  1620
         if not lifted then (As0, rder)
berghofe@11518
  1621
         else (map (rename_bvars(dpairs,tpairs,B)) As0,
wenzelm@28321
  1622
           deriv_rule1 (Pt.map_proof_terms
berghofe@11518
  1623
             (rename_bvars (dpairs, tpairs, Bound 0)) I) rder);
wenzelm@18486
  1624
       in (map (if flatten then (Logic.flatten_params n) else I) As1, As1, rder', n)
wenzelm@250
  1625
          handle TERM _ =>
wenzelm@250
  1626
          raise THM("bicompose: 1st premise", 0, [orule])
clasohm@0
  1627
       end;
paulson@2147
  1628
     val env = Envir.empty(Int.max(rmax,smax));
clasohm@0
  1629
     val BBi = if lifted then strip_assums2(B,Bi) else (B,Bi);
clasohm@0
  1630
     val dpairs = BBi :: (rtpairs@stpairs);
wenzelm@30554
  1631
wenzelm@30554
  1632
     (*elim-resolution: try each assumption in turn*)
wenzelm@30554
  1633
     fun eres [] = raise THM ("bicompose: no premises", 0, [orule, state])
wenzelm@30554
  1634
       | eres (A1 :: As) =
wenzelm@30554
  1635
           let
wenzelm@30554
  1636
             val A = SOME A1;
wenzelm@30556
  1637
             val (close, asms, concl) = Logic.assum_problems (nlift + 1, A1);
wenzelm@30556
  1638
             val concl' = close concl;
wenzelm@30554
  1639
             fun tryasms [] _ = Seq.empty
wenzelm@30556
  1640
               | tryasms (asm :: rest) n =
wenzelm@30556
  1641
                   if Term.could_unify (asm, concl) then
wenzelm@30556
  1642
                     let val asm' = close asm in
wenzelm@30556
  1643
                       (case Seq.pull (Unify.unifiers (thy, env, (asm', concl') :: dpairs)) of
wenzelm@30554
  1644
                         NONE => tryasms rest (n + 1)
wenzelm@30554
  1645
                       | cell as SOME ((_, tpairs), _) =>
wenzelm@30556
  1646
                           Seq.it_right (addth A (newAs (As, n, [BBi, (concl', asm')], tpairs)))
wenzelm@30554
  1647
                             (Seq.make (fn () => cell),
wenzelm@30554
  1648
                              Seq.make (fn () => Seq.pull (tryasms rest (n + 1)))))
wenzelm@30554
  1649
                     end
wenzelm@30554
  1650
                   else tryasms rest (n + 1);
wenzelm@30556
  1651
           in tryasms asms 1 end;
wenzelm@30554
  1652
clasohm@0
  1653
     (*ordinary resolution*)
wenzelm@30554
  1654
     fun res () =
wenzelm@30554
  1655
       (case Seq.pull (Unify.unifiers (thy, env, dpairs)) of
wenzelm@30554
  1656
         NONE => Seq.empty
wenzelm@30554
  1657
       | cell as SOME ((_, tpairs), _) =>
wenzelm@30554
  1658
           Seq.it_right (addth NONE (newAs (rev rAs, 0, [BBi], tpairs)))
wenzelm@30554
  1659
             (Seq.make (fn () => cell), Seq.empty));
wenzelm@30554
  1660
 in
wenzelm@30554
  1661
   if eres_flg then eres (rev rAs) else res ()
clasohm@0
  1662
 end;
wenzelm@7528
  1663
end;
clasohm@0
  1664
wenzelm@18501
  1665
fun compose_no_flatten match (orule, nsubgoal) i state =
wenzelm@18501
  1666
  bicompose_aux false match (state, dest_state (state, i), false) (false, orule, nsubgoal);
clasohm@0
  1667
wenzelm@18501
  1668
fun bicompose match arg i state =
wenzelm@18501
  1669
  bicompose_aux true match (state, dest_state (state,i), false) arg;
clasohm@0
  1670
clasohm@0
  1671
(*Quick test whether rule is resolvable with the subgoal with hyps Hs
clasohm@0
  1672
  and conclusion B.  If eres_flg then checks 1st premise of rule also*)
clasohm@0
  1673
fun could_bires (Hs, B, eres_flg, rule) =
wenzelm@29269
  1674
    let fun could_reshyp (A1::_) = exists (fn H => Term.could_unify (A1, H)) Hs
wenzelm@250
  1675
          | could_reshyp [] = false;  (*no premise -- illegal*)
wenzelm@29269
  1676
    in  Term.could_unify(concl_of rule, B) andalso
wenzelm@250
  1677
        (not eres_flg  orelse  could_reshyp (prems_of rule))
clasohm@0
  1678
    end;
clasohm@0
  1679
clasohm@0
  1680
(*Bi-resolution of a state with a list of (flag,rule) pairs.
clasohm@0
  1681
  Puts the rule above:  rule/state.  Renames vars in the rules. *)
wenzelm@250
  1682
fun biresolution match brules i state =
wenzelm@18035
  1683
    let val (stpairs, Bs, Bi, C) = dest_state(state,i);
wenzelm@18145
  1684
        val lift = lift_rule (cprem_of state i);
wenzelm@250
  1685
        val B = Logic.strip_assums_concl Bi;
wenzelm@250
  1686
        val Hs = Logic.strip_assums_hyp Bi;
wenzelm@22573
  1687
        val compose = bicompose_aux true match (state, (stpairs, Bs, Bi, C), true);
wenzelm@4270
  1688
        fun res [] = Seq.empty
wenzelm@250
  1689
          | res ((eres_flg, rule)::brules) =
nipkow@13642
  1690
              if !Pattern.trace_unify_fail orelse
nipkow@13642
  1691
                 could_bires (Hs, B, eres_flg, rule)
wenzelm@4270
  1692
              then Seq.make (*delay processing remainder till needed*)
wenzelm@22573
  1693
                  (fn()=> SOME(compose (eres_flg, lift rule, nprems_of rule),
wenzelm@250
  1694
                               res brules))
wenzelm@250
  1695
              else res brules
wenzelm@4270
  1696
    in  Seq.flat (res brules)  end;
clasohm@0
  1697
clasohm@0
  1698
wenzelm@28321
  1699
wenzelm@2509
  1700
(*** Oracles ***)
wenzelm@2509
  1701
wenzelm@28290
  1702
(* oracle rule *)
wenzelm@28290
  1703
wenzelm@28290
  1704
fun invoke_oracle thy_ref1 name oracle arg =
wenzelm@28624
  1705
  let val Cterm {thy_ref = thy_ref2, t = prop, T, maxidx, sorts} = oracle arg in
wenzelm@28290
  1706
    if T <> propT then
wenzelm@28290
  1707
      raise THM ("Oracle's result must have type prop: " ^ name, 0, [])
wenzelm@28290
  1708
    else
wenzelm@30717
  1709
      let val (ora, prf) = Pt.oracle_proof name prop in
wenzelm@32059
  1710
        Thm (make_deriv [] [ora] [] prf,
wenzelm@28804
  1711
         {thy_ref = Theory.merge_refs (thy_ref1, thy_ref2),
wenzelm@28804
  1712
          tags = [],
wenzelm@28804
  1713
          maxidx = maxidx,
wenzelm@28804
  1714
          shyps = sorts,
wenzelm@28804
  1715
          hyps = [],
wenzelm@28804
  1716
          tpairs = [],
wenzelm@28804
  1717
          prop = prop})
wenzelm@28804
  1718
      end
wenzelm@3812
  1719
  end;
wenzelm@3812
  1720
wenzelm@32590
  1721
end;
wenzelm@32590
  1722
end;
wenzelm@32590
  1723
end;
wenzelm@32590
  1724
wenzelm@28290
  1725
wenzelm@28290
  1726
(* authentic derivation names *)
wenzelm@28290
  1727
wenzelm@28290
  1728
fun err_dup_ora dup = error ("Duplicate oracle: " ^ quote dup);
wenzelm@28290
  1729
wenzelm@28290
  1730
structure Oracles = TheoryDataFun
wenzelm@28290
  1731
(
wenzelm@30288
  1732
  type T = serial NameSpace.table;
wenzelm@28290
  1733
  val empty = NameSpace.empty_table;
wenzelm@28290
  1734
  val copy = I;
wenzelm@28290
  1735
  val extend = I;
wenzelm@29288
  1736
  fun merge _ oracles : T = NameSpace.merge_tables (op =) oracles
wenzelm@28290
  1737
    handle Symtab.DUP dup => err_dup_ora dup;
wenzelm@28290
  1738
);
wenzelm@28290
  1739
wenzelm@28290
  1740
val extern_oracles = map #1 o NameSpace.extern_table o Oracles.get;
wenzelm@28290
  1741
wenzelm@30288
  1742
fun add_oracle (b, oracle) thy =
wenzelm@28290
  1743
  let
wenzelm@28290
  1744
    val naming = Sign.naming_of thy;
wenzelm@30466
  1745
    val (name, tab') = NameSpace.define naming (b, serial ()) (Oracles.get thy)
wenzelm@30288
  1746
      handle Symtab.DUP _ => err_dup_ora (Binding.str_of b);
wenzelm@30288
  1747
    val thy' = Oracles.put tab' thy;
wenzelm@28290
  1748
  in ((name, invoke_oracle (Theory.check_thy thy') name oracle), thy') end;
wenzelm@28290
  1749
clasohm@0
  1750
end;
paulson@1503
  1751
wenzelm@32104
  1752
structure Basic_Thm: BASIC_THM = Thm;
wenzelm@32104
  1753
open Basic_Thm;