src/HOL/Old_Number_Theory/Legacy_GCD.thy
author huffman
Wed Sep 07 09:02:58 2011 -0700 (2011-09-07)
changeset 44821 a92f65e174cf
parent 41541 1fa4725c4656
child 45270 d5b5c9259afd
permissions -rw-r--r--
avoid using legacy theorem names
wenzelm@32960
     1
(*  Title:      HOL/Old_Number_Theory/Legacy_GCD.thy
wenzelm@21256
     2
    Author:     Christophe Tabacznyj and Lawrence C Paulson
wenzelm@21256
     3
    Copyright   1996  University of Cambridge
wenzelm@21256
     4
*)
wenzelm@21256
     5
wenzelm@21256
     6
header {* The Greatest Common Divisor *}
wenzelm@21256
     7
huffman@31706
     8
theory Legacy_GCD
haftmann@30738
     9
imports Main
wenzelm@21256
    10
begin
wenzelm@21256
    11
wenzelm@21256
    12
text {*
haftmann@23687
    13
  See \cite{davenport92}. \bigskip
wenzelm@21256
    14
*}
wenzelm@21256
    15
haftmann@23687
    16
subsection {* Specification of GCD on nats *}
wenzelm@21256
    17
wenzelm@21263
    18
definition
haftmann@23687
    19
  is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where -- {* @{term gcd} as a relation *}
haftmann@37765
    20
  "is_gcd m n p \<longleftrightarrow> p dvd m \<and> p dvd n \<and>
haftmann@23687
    21
    (\<forall>d. d dvd m \<longrightarrow> d dvd n \<longrightarrow> d dvd p)"
haftmann@23687
    22
haftmann@23687
    23
text {* Uniqueness *}
haftmann@23687
    24
haftmann@27556
    25
lemma is_gcd_unique: "is_gcd a b m \<Longrightarrow> is_gcd a b n \<Longrightarrow> m = n"
nipkow@33657
    26
  by (simp add: is_gcd_def) (blast intro: dvd_antisym)
haftmann@23687
    27
haftmann@23687
    28
text {* Connection to divides relation *}
wenzelm@21256
    29
haftmann@27556
    30
lemma is_gcd_dvd: "is_gcd a b m \<Longrightarrow> k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd m"
haftmann@23687
    31
  by (auto simp add: is_gcd_def)
haftmann@23687
    32
haftmann@23687
    33
text {* Commutativity *}
haftmann@23687
    34
haftmann@27556
    35
lemma is_gcd_commute: "is_gcd m n k = is_gcd n m k"
haftmann@23687
    36
  by (auto simp add: is_gcd_def)
haftmann@23687
    37
haftmann@23687
    38
haftmann@23687
    39
subsection {* GCD on nat by Euclid's algorithm *}
haftmann@23687
    40
wenzelm@38159
    41
fun gcd :: "nat => nat => nat"
wenzelm@38159
    42
  where "gcd m n = (if n = 0 then m else gcd n (m mod n))"
wenzelm@38159
    43
haftmann@27556
    44
lemma gcd_induct [case_names "0" rec]:
haftmann@23687
    45
  fixes m n :: nat
haftmann@23687
    46
  assumes "\<And>m. P m 0"
haftmann@23687
    47
    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
haftmann@23687
    48
  shows "P m n"
haftmann@27556
    49
proof (induct m n rule: gcd.induct)
wenzelm@38159
    50
  case (1 m n)
wenzelm@38159
    51
  with assms show ?case by (cases "n = 0") simp_all
haftmann@27556
    52
qed
wenzelm@21256
    53
chaieb@27669
    54
lemma gcd_0 [simp, algebra]: "gcd m 0 = m"
wenzelm@21263
    55
  by simp
wenzelm@21256
    56
chaieb@27669
    57
lemma gcd_0_left [simp,algebra]: "gcd 0 m = m"
haftmann@23687
    58
  by simp
haftmann@23687
    59
haftmann@27556
    60
lemma gcd_non_0: "n > 0 \<Longrightarrow> gcd m n = gcd n (m mod n)"
haftmann@23687
    61
  by simp
haftmann@23687
    62
huffman@30082
    63
lemma gcd_1 [simp, algebra]: "gcd m (Suc 0) = Suc 0"
wenzelm@21263
    64
  by simp
wenzelm@21256
    65
huffman@30082
    66
lemma nat_gcd_1_right [simp, algebra]: "gcd m 1 = 1"
huffman@30082
    67
  unfolding One_nat_def by (rule gcd_1)
huffman@30082
    68
wenzelm@21256
    69
declare gcd.simps [simp del]
wenzelm@21256
    70
wenzelm@21256
    71
text {*
haftmann@27556
    72
  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
wenzelm@21256
    73
  conjunctions don't seem provable separately.
wenzelm@21256
    74
*}
wenzelm@21256
    75
chaieb@27669
    76
lemma gcd_dvd1 [iff, algebra]: "gcd m n dvd m"
chaieb@27669
    77
  and gcd_dvd2 [iff, algebra]: "gcd m n dvd n"
wenzelm@21256
    78
  apply (induct m n rule: gcd_induct)
wenzelm@21263
    79
     apply (simp_all add: gcd_non_0)
wenzelm@21256
    80
  apply (blast dest: dvd_mod_imp_dvd)
wenzelm@21256
    81
  done
wenzelm@21256
    82
wenzelm@21256
    83
text {*
wenzelm@21256
    84
  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
wenzelm@21256
    85
  naturals, if @{term k} divides @{term m} and @{term k} divides
haftmann@27556
    86
  @{term n} then @{term k} divides @{term "gcd m n"}.
wenzelm@21256
    87
*}
wenzelm@21256
    88
haftmann@27556
    89
lemma gcd_greatest: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
wenzelm@21263
    90
  by (induct m n rule: gcd_induct) (simp_all add: gcd_non_0 dvd_mod)
wenzelm@21256
    91
wenzelm@21256
    92
text {*
wenzelm@21256
    93
  \medskip Function gcd yields the Greatest Common Divisor.
wenzelm@21256
    94
*}
wenzelm@21256
    95
haftmann@27556
    96
lemma is_gcd: "is_gcd m n (gcd m n) "
haftmann@23687
    97
  by (simp add: is_gcd_def gcd_greatest)
wenzelm@21256
    98
wenzelm@21256
    99
haftmann@23687
   100
subsection {* Derived laws for GCD *}
wenzelm@21256
   101
chaieb@27669
   102
lemma gcd_greatest_iff [iff, algebra]: "k dvd gcd m n \<longleftrightarrow> k dvd m \<and> k dvd n"
haftmann@23687
   103
  by (blast intro!: gcd_greatest intro: dvd_trans)
haftmann@23687
   104
chaieb@27669
   105
lemma gcd_zero[algebra]: "gcd m n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
haftmann@23687
   106
  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff)
wenzelm@21256
   107
haftmann@27556
   108
lemma gcd_commute: "gcd m n = gcd n m"
wenzelm@21256
   109
  apply (rule is_gcd_unique)
wenzelm@21256
   110
   apply (rule is_gcd)
wenzelm@21256
   111
  apply (subst is_gcd_commute)
wenzelm@21256
   112
  apply (simp add: is_gcd)
wenzelm@21256
   113
  done
wenzelm@21256
   114
haftmann@27556
   115
lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)"
wenzelm@21256
   116
  apply (rule is_gcd_unique)
wenzelm@21256
   117
   apply (rule is_gcd)
wenzelm@21256
   118
  apply (simp add: is_gcd_def)
wenzelm@21256
   119
  apply (blast intro: dvd_trans)
wenzelm@21256
   120
  done
wenzelm@21256
   121
huffman@30082
   122
lemma gcd_1_left [simp, algebra]: "gcd (Suc 0) m = Suc 0"
haftmann@23687
   123
  by (simp add: gcd_commute)
wenzelm@21256
   124
huffman@30082
   125
lemma nat_gcd_1_left [simp, algebra]: "gcd 1 m = 1"
huffman@30082
   126
  unfolding One_nat_def by (rule gcd_1_left)
huffman@30082
   127
wenzelm@21256
   128
text {*
wenzelm@21256
   129
  \medskip Multiplication laws
wenzelm@21256
   130
*}
wenzelm@21256
   131
haftmann@27556
   132
lemma gcd_mult_distrib2: "k * gcd m n = gcd (k * m) (k * n)"
wenzelm@21256
   133
    -- {* \cite[page 27]{davenport92} *}
wenzelm@21256
   134
  apply (induct m n rule: gcd_induct)
wenzelm@21256
   135
   apply simp
wenzelm@21256
   136
  apply (case_tac "k = 0")
wenzelm@21256
   137
   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
wenzelm@21256
   138
  done
wenzelm@21256
   139
chaieb@27669
   140
lemma gcd_mult [simp, algebra]: "gcd k (k * n) = k"
wenzelm@21256
   141
  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
wenzelm@21256
   142
  done
wenzelm@21256
   143
chaieb@27669
   144
lemma gcd_self [simp, algebra]: "gcd k k = k"
wenzelm@21256
   145
  apply (rule gcd_mult [of k 1, simplified])
wenzelm@21256
   146
  done
wenzelm@21256
   147
haftmann@27556
   148
lemma relprime_dvd_mult: "gcd k n = 1 ==> k dvd m * n ==> k dvd m"
wenzelm@21256
   149
  apply (insert gcd_mult_distrib2 [of m k n])
wenzelm@21256
   150
  apply simp
wenzelm@21256
   151
  apply (erule_tac t = m in ssubst)
wenzelm@21256
   152
  apply simp
wenzelm@21256
   153
  done
wenzelm@21256
   154
haftmann@27556
   155
lemma relprime_dvd_mult_iff: "gcd k n = 1 ==> (k dvd m * n) = (k dvd m)"
haftmann@27651
   156
  by (auto intro: relprime_dvd_mult dvd_mult2)
wenzelm@21256
   157
haftmann@27556
   158
lemma gcd_mult_cancel: "gcd k n = 1 ==> gcd (k * m) n = gcd m n"
nipkow@33657
   159
  apply (rule dvd_antisym)
wenzelm@21256
   160
   apply (rule gcd_greatest)
wenzelm@21256
   161
    apply (rule_tac n = k in relprime_dvd_mult)
wenzelm@21256
   162
     apply (simp add: gcd_assoc)
wenzelm@21256
   163
     apply (simp add: gcd_commute)
wenzelm@21256
   164
    apply (simp_all add: mult_commute)
wenzelm@21256
   165
  done
wenzelm@21256
   166
wenzelm@21256
   167
wenzelm@21256
   168
text {* \medskip Addition laws *}
wenzelm@21256
   169
haftmann@27676
   170
lemma gcd_add1 [simp, algebra]: "gcd (m + n) n = gcd m n"
haftmann@27676
   171
  by (cases "n = 0") (auto simp add: gcd_non_0)
wenzelm@21256
   172
chaieb@27669
   173
lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n"
wenzelm@21256
   174
proof -
haftmann@27556
   175
  have "gcd m (m + n) = gcd (m + n) m" by (rule gcd_commute)
haftmann@27556
   176
  also have "... = gcd (n + m) m" by (simp add: add_commute)
haftmann@27556
   177
  also have "... = gcd n m" by simp
haftmann@27556
   178
  also have  "... = gcd m n" by (rule gcd_commute)
wenzelm@21256
   179
  finally show ?thesis .
wenzelm@21256
   180
qed
wenzelm@21256
   181
chaieb@27669
   182
lemma gcd_add2' [simp, algebra]: "gcd m (n + m) = gcd m n"
wenzelm@21256
   183
  apply (subst add_commute)
wenzelm@21256
   184
  apply (rule gcd_add2)
wenzelm@21256
   185
  done
wenzelm@21256
   186
chaieb@27669
   187
lemma gcd_add_mult[algebra]: "gcd m (k * m + n) = gcd m n"
wenzelm@21263
   188
  by (induct k) (simp_all add: add_assoc)
wenzelm@21256
   189
chaieb@27669
   190
lemma gcd_dvd_prod: "gcd m n dvd m * n" 
haftmann@23687
   191
  using mult_dvd_mono [of 1] by auto
chaieb@22027
   192
wenzelm@22367
   193
text {*
wenzelm@22367
   194
  \medskip Division by gcd yields rrelatively primes.
wenzelm@22367
   195
*}
chaieb@22027
   196
chaieb@22027
   197
lemma div_gcd_relprime:
wenzelm@22367
   198
  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
haftmann@27556
   199
  shows "gcd (a div gcd a b) (b div gcd a b) = 1"
wenzelm@22367
   200
proof -
haftmann@27556
   201
  let ?g = "gcd a b"
chaieb@22027
   202
  let ?a' = "a div ?g"
chaieb@22027
   203
  let ?b' = "b div ?g"
haftmann@27556
   204
  let ?g' = "gcd ?a' ?b'"
chaieb@22027
   205
  have dvdg: "?g dvd a" "?g dvd b" by simp_all
chaieb@22027
   206
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
wenzelm@22367
   207
  from dvdg dvdg' obtain ka kb ka' kb' where
wenzelm@22367
   208
      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
chaieb@22027
   209
    unfolding dvd_def by blast
wenzelm@22367
   210
  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by simp_all
wenzelm@22367
   211
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
wenzelm@22367
   212
    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
wenzelm@22367
   213
      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
chaieb@22027
   214
  have "?g \<noteq> 0" using nz by (simp add: gcd_zero)
wenzelm@22367
   215
  then have gp: "?g > 0" by simp
wenzelm@22367
   216
  from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
wenzelm@22367
   217
  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
chaieb@22027
   218
qed
chaieb@22027
   219
chaieb@27669
   220
chaieb@27669
   221
lemma gcd_unique: "d dvd a\<and>d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
chaieb@27669
   222
proof(auto)
chaieb@27669
   223
  assume H: "d dvd a" "d dvd b" "\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d"
chaieb@27669
   224
  from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] 
chaieb@27669
   225
  have th: "gcd a b dvd d" by blast
nipkow@33657
   226
  from dvd_antisym[OF th gcd_greatest[OF H(1,2)]]  show "d = gcd a b" by blast 
chaieb@27669
   227
qed
chaieb@27669
   228
chaieb@27669
   229
lemma gcd_eq: assumes H: "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd u \<and> d dvd v"
chaieb@27669
   230
  shows "gcd x y = gcd u v"
chaieb@27669
   231
proof-
chaieb@27669
   232
  from H have "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd gcd u v" by simp
chaieb@27669
   233
  with gcd_unique[of "gcd u v" x y]  show ?thesis by auto
chaieb@27669
   234
qed
chaieb@27669
   235
berghofe@34915
   236
lemma ind_euclid:
berghofe@34915
   237
  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0"
berghofe@34915
   238
  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
chaieb@27669
   239
  shows "P a b"
berghofe@34915
   240
proof(induct "a + b" arbitrary: a b rule: less_induct)
berghofe@34915
   241
  case less
chaieb@27669
   242
  have "a = b \<or> a < b \<or> b < a" by arith
chaieb@27669
   243
  moreover {assume eq: "a= b"
berghofe@34915
   244
    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq
berghofe@34915
   245
    by simp}
chaieb@27669
   246
  moreover
chaieb@27669
   247
  {assume lt: "a < b"
berghofe@34915
   248
    hence "a + b - a < a + b \<or> a = 0" by arith
chaieb@27669
   249
    moreover
chaieb@27669
   250
    {assume "a =0" with z c have "P a b" by blast }
chaieb@27669
   251
    moreover
berghofe@34915
   252
    {assume "a + b - a < a + b"
berghofe@34915
   253
      also have th0: "a + b - a = a + (b - a)" using lt by arith
berghofe@34915
   254
      finally have "a + (b - a) < a + b" .
berghofe@34915
   255
      then have "P a (a + (b - a))" by (rule add[rule_format, OF less])
berghofe@34915
   256
      then have "P a b" by (simp add: th0[symmetric])}
chaieb@27669
   257
    ultimately have "P a b" by blast}
chaieb@27669
   258
  moreover
chaieb@27669
   259
  {assume lt: "a > b"
berghofe@34915
   260
    hence "b + a - b < a + b \<or> b = 0" by arith
chaieb@27669
   261
    moreover
chaieb@27669
   262
    {assume "b =0" with z c have "P a b" by blast }
chaieb@27669
   263
    moreover
berghofe@34915
   264
    {assume "b + a - b < a + b"
berghofe@34915
   265
      also have th0: "b + a - b = b + (a - b)" using lt by arith
berghofe@34915
   266
      finally have "b + (a - b) < a + b" .
berghofe@34915
   267
      then have "P b (b + (a - b))" by (rule add[rule_format, OF less])
berghofe@34915
   268
      then have "P b a" by (simp add: th0[symmetric])
chaieb@27669
   269
      hence "P a b" using c by blast }
chaieb@27669
   270
    ultimately have "P a b" by blast}
chaieb@27669
   271
ultimately  show "P a b" by blast
chaieb@27669
   272
qed
chaieb@27669
   273
chaieb@27669
   274
lemma bezout_lemma: 
chaieb@27669
   275
  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
chaieb@27669
   276
  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
chaieb@27669
   277
using ex
chaieb@27669
   278
apply clarsimp
wenzelm@41541
   279
apply (rule_tac x="d" in exI, simp)
chaieb@27669
   280
apply (case_tac "a * x = b * y + d" , simp_all)
chaieb@27669
   281
apply (rule_tac x="x + y" in exI)
chaieb@27669
   282
apply (rule_tac x="y" in exI)
chaieb@27669
   283
apply algebra
chaieb@27669
   284
apply (rule_tac x="x" in exI)
chaieb@27669
   285
apply (rule_tac x="x + y" in exI)
chaieb@27669
   286
apply algebra
chaieb@27669
   287
done
chaieb@27669
   288
chaieb@27669
   289
lemma bezout_add: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
chaieb@27669
   290
apply(induct a b rule: ind_euclid)
chaieb@27669
   291
apply blast
chaieb@27669
   292
apply clarify
wenzelm@41541
   293
apply (rule_tac x="a" in exI, simp)
chaieb@27669
   294
apply clarsimp
chaieb@27669
   295
apply (rule_tac x="d" in exI)
wenzelm@41541
   296
apply (case_tac "a * x = b * y + d", simp_all)
chaieb@27669
   297
apply (rule_tac x="x+y" in exI)
chaieb@27669
   298
apply (rule_tac x="y" in exI)
chaieb@27669
   299
apply algebra
chaieb@27669
   300
apply (rule_tac x="x" in exI)
chaieb@27669
   301
apply (rule_tac x="x+y" in exI)
chaieb@27669
   302
apply algebra
chaieb@27669
   303
done
chaieb@27669
   304
chaieb@27669
   305
lemma bezout: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)"
chaieb@27669
   306
using bezout_add[of a b]
chaieb@27669
   307
apply clarsimp
chaieb@27669
   308
apply (rule_tac x="d" in exI, simp)
chaieb@27669
   309
apply (rule_tac x="x" in exI)
chaieb@27669
   310
apply (rule_tac x="y" in exI)
chaieb@27669
   311
apply auto
chaieb@27669
   312
done
chaieb@27669
   313
chaieb@27669
   314
chaieb@27669
   315
text {* We can get a stronger version with a nonzeroness assumption. *}
chaieb@27669
   316
lemma divides_le: "m dvd n ==> m <= n \<or> n = (0::nat)" by (auto simp add: dvd_def)
chaieb@27669
   317
chaieb@27669
   318
lemma bezout_add_strong: assumes nz: "a \<noteq> (0::nat)"
chaieb@27669
   319
  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
chaieb@27669
   320
proof-
chaieb@27669
   321
  from nz have ap: "a > 0" by simp
chaieb@27669
   322
 from bezout_add[of a b] 
chaieb@27669
   323
 have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
chaieb@27669
   324
 moreover
chaieb@27669
   325
 {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
chaieb@27669
   326
   from H have ?thesis by blast }
chaieb@27669
   327
 moreover
chaieb@27669
   328
 {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
chaieb@27669
   329
   {assume b0: "b = 0" with H  have ?thesis by simp}
chaieb@27669
   330
   moreover 
chaieb@27669
   331
   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
chaieb@27669
   332
     from divides_le[OF H(2)] b have "d < b \<or> d = b" using le_less by blast
chaieb@27669
   333
     moreover
chaieb@27669
   334
     {assume db: "d=b"
wenzelm@41541
   335
       from nz H db have ?thesis apply simp
wenzelm@32960
   336
         apply (rule exI[where x = b], simp)
wenzelm@32960
   337
         apply (rule exI[where x = b])
wenzelm@32960
   338
        by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
chaieb@27669
   339
    moreover
chaieb@27669
   340
    {assume db: "d < b" 
wenzelm@41541
   341
        {assume "x=0" hence ?thesis using nz H by simp }
wenzelm@32960
   342
        moreover
wenzelm@32960
   343
        {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
wenzelm@32960
   344
          
wenzelm@32960
   345
          from db have "d \<le> b - 1" by simp
wenzelm@32960
   346
          hence "d*b \<le> b*(b - 1)" by simp
wenzelm@32960
   347
          with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
wenzelm@32960
   348
          have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
wenzelm@32960
   349
          from H (3) have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" by algebra
wenzelm@32960
   350
          hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
wenzelm@32960
   351
          hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" 
wenzelm@32960
   352
            by (simp only: diff_add_assoc[OF dble, of d, symmetric])
wenzelm@32960
   353
          hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
wenzelm@32960
   354
            by (simp only: diff_mult_distrib2 add_commute mult_ac)
wenzelm@32960
   355
          hence ?thesis using H(1,2)
wenzelm@32960
   356
            apply -
wenzelm@32960
   357
            apply (rule exI[where x=d], simp)
wenzelm@32960
   358
            apply (rule exI[where x="(b - 1) * y"])
wenzelm@32960
   359
            by (rule exI[where x="x*(b - 1) - d"], simp)}
wenzelm@32960
   360
        ultimately have ?thesis by blast}
chaieb@27669
   361
    ultimately have ?thesis by blast}
chaieb@27669
   362
  ultimately have ?thesis by blast}
chaieb@27669
   363
 ultimately show ?thesis by blast
chaieb@27669
   364
qed
chaieb@27669
   365
chaieb@27669
   366
chaieb@27669
   367
lemma bezout_gcd: "\<exists>x y. a * x - b * y = gcd a b \<or> b * x - a * y = gcd a b"
chaieb@27669
   368
proof-
chaieb@27669
   369
  let ?g = "gcd a b"
chaieb@27669
   370
  from bezout[of a b] obtain d x y where d: "d dvd a" "d dvd b" "a * x - b * y = d \<or> b * x - a * y = d" by blast
chaieb@27669
   371
  from d(1,2) have "d dvd ?g" by simp
chaieb@27669
   372
  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
chaieb@27669
   373
  from d(3) have "(a * x - b * y)*k = d*k \<or> (b * x - a * y)*k = d*k" by blast 
chaieb@27669
   374
  hence "a * x * k - b * y*k = d*k \<or> b * x * k - a * y*k = d*k" 
chaieb@27669
   375
    by (algebra add: diff_mult_distrib)
chaieb@27669
   376
  hence "a * (x * k) - b * (y*k) = ?g \<or> b * (x * k) - a * (y*k) = ?g" 
chaieb@27669
   377
    by (simp add: k mult_assoc)
chaieb@27669
   378
  thus ?thesis by blast
chaieb@27669
   379
qed
chaieb@27669
   380
chaieb@27669
   381
lemma bezout_gcd_strong: assumes a: "a \<noteq> 0" 
chaieb@27669
   382
  shows "\<exists>x y. a * x = b * y + gcd a b"
chaieb@27669
   383
proof-
chaieb@27669
   384
  let ?g = "gcd a b"
chaieb@27669
   385
  from bezout_add_strong[OF a, of b]
chaieb@27669
   386
  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
chaieb@27669
   387
  from d(1,2) have "d dvd ?g" by simp
chaieb@27669
   388
  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
chaieb@27669
   389
  from d(3) have "a * x * k = (b * y + d) *k " by algebra
chaieb@27669
   390
  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
chaieb@27669
   391
  thus ?thesis by blast
chaieb@27669
   392
qed
chaieb@27669
   393
chaieb@27669
   394
lemma gcd_mult_distrib: "gcd(a * c) (b * c) = c * gcd a b"
chaieb@27669
   395
by(simp add: gcd_mult_distrib2 mult_commute)
chaieb@27669
   396
chaieb@27669
   397
lemma gcd_bezout: "(\<exists>x y. a * x - b * y = d \<or> b * x - a * y = d) \<longleftrightarrow> gcd a b dvd d"
chaieb@27669
   398
  (is "?lhs \<longleftrightarrow> ?rhs")
chaieb@27669
   399
proof-
chaieb@27669
   400
  let ?g = "gcd a b"
chaieb@27669
   401
  {assume H: ?rhs then obtain k where k: "d = ?g*k" unfolding dvd_def by blast
chaieb@27669
   402
    from bezout_gcd[of a b] obtain x y where xy: "a * x - b * y = ?g \<or> b * x - a * y = ?g"
chaieb@27669
   403
      by blast
chaieb@27669
   404
    hence "(a * x - b * y)*k = ?g*k \<or> (b * x - a * y)*k = ?g*k" by auto
chaieb@27669
   405
    hence "a * x*k - b * y*k = ?g*k \<or> b * x * k - a * y*k = ?g*k" 
chaieb@27669
   406
      by (simp only: diff_mult_distrib)
chaieb@27669
   407
    hence "a * (x*k) - b * (y*k) = d \<or> b * (x * k) - a * (y*k) = d"
chaieb@27669
   408
      by (simp add: k[symmetric] mult_assoc)
chaieb@27669
   409
    hence ?lhs by blast}
chaieb@27669
   410
  moreover
chaieb@27669
   411
  {fix x y assume H: "a * x - b * y = d \<or> b * x - a * y = d"
chaieb@27669
   412
    have dv: "?g dvd a*x" "?g dvd b * y" "?g dvd b*x" "?g dvd a * y"
chaieb@27669
   413
      using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all
nipkow@31952
   414
    from dvd_diff_nat[OF dv(1,2)] dvd_diff_nat[OF dv(3,4)] H
chaieb@27669
   415
    have ?rhs by auto}
chaieb@27669
   416
  ultimately show ?thesis by blast
chaieb@27669
   417
qed
chaieb@27669
   418
chaieb@27669
   419
lemma gcd_bezout_sum: assumes H:"a * x + b * y = d" shows "gcd a b dvd d"
chaieb@27669
   420
proof-
chaieb@27669
   421
  let ?g = "gcd a b"
chaieb@27669
   422
    have dv: "?g dvd a*x" "?g dvd b * y" 
chaieb@27669
   423
      using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all
chaieb@27669
   424
    from dvd_add[OF dv] H
chaieb@27669
   425
    show ?thesis by auto
chaieb@27669
   426
qed
chaieb@27669
   427
chaieb@27669
   428
lemma gcd_mult': "gcd b (a * b) = b"
wenzelm@41541
   429
by (simp add: mult_commute[of a b]) 
chaieb@27669
   430
chaieb@27669
   431
lemma gcd_add: "gcd(a + b) b = gcd a b" 
chaieb@27669
   432
  "gcd(b + a) b = gcd a b" "gcd a (a + b) = gcd a b" "gcd a (b + a) = gcd a b"
wenzelm@41541
   433
by (simp_all add: gcd_commute)
chaieb@27669
   434
chaieb@27669
   435
lemma gcd_sub: "b <= a ==> gcd(a - b) b = gcd a b" "a <= b ==> gcd a (b - a) = gcd a b"
chaieb@27669
   436
proof-
chaieb@27669
   437
  {fix a b assume H: "b \<le> (a::nat)"
chaieb@27669
   438
    hence th: "a - b + b = a" by arith
chaieb@27669
   439
    from gcd_add(1)[of "a - b" b] th  have "gcd(a - b) b = gcd a b" by simp}
chaieb@27669
   440
  note th = this
chaieb@27669
   441
{
chaieb@27669
   442
  assume ab: "b \<le> a"
chaieb@27669
   443
  from th[OF ab] show "gcd (a - b)  b = gcd a b" by blast
chaieb@27669
   444
next
chaieb@27669
   445
  assume ab: "a \<le> b"
chaieb@27669
   446
  from th[OF ab] show "gcd a (b - a) = gcd a b" 
chaieb@27669
   447
    by (simp add: gcd_commute)}
chaieb@27669
   448
qed
chaieb@27669
   449
chaieb@27669
   450
haftmann@23687
   451
subsection {* LCM defined by GCD *}
wenzelm@22367
   452
chaieb@27669
   453
haftmann@23687
   454
definition
haftmann@27556
   455
  lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat"
haftmann@23687
   456
where
chaieb@27568
   457
  lcm_def: "lcm m n = m * n div gcd m n"
haftmann@23687
   458
haftmann@23687
   459
lemma prod_gcd_lcm:
haftmann@27556
   460
  "m * n = gcd m n * lcm m n"
haftmann@23687
   461
  unfolding lcm_def by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod])
haftmann@23687
   462
haftmann@27556
   463
lemma lcm_0 [simp]: "lcm m 0 = 0"
haftmann@23687
   464
  unfolding lcm_def by simp
haftmann@23687
   465
haftmann@27556
   466
lemma lcm_1 [simp]: "lcm m 1 = m"
haftmann@23687
   467
  unfolding lcm_def by simp
haftmann@23687
   468
haftmann@27556
   469
lemma lcm_0_left [simp]: "lcm 0 n = 0"
haftmann@23687
   470
  unfolding lcm_def by simp
haftmann@23687
   471
haftmann@27556
   472
lemma lcm_1_left [simp]: "lcm 1 m = m"
haftmann@23687
   473
  unfolding lcm_def by simp
haftmann@23687
   474
haftmann@23687
   475
lemma dvd_pos:
haftmann@23687
   476
  fixes n m :: nat
haftmann@23687
   477
  assumes "n > 0" and "m dvd n"
haftmann@23687
   478
  shows "m > 0"
haftmann@23687
   479
using assms by (cases m) auto
haftmann@23687
   480
haftmann@23951
   481
lemma lcm_least:
haftmann@23687
   482
  assumes "m dvd k" and "n dvd k"
haftmann@27556
   483
  shows "lcm m n dvd k"
haftmann@23687
   484
proof (cases k)
haftmann@23687
   485
  case 0 then show ?thesis by auto
haftmann@23687
   486
next
haftmann@23687
   487
  case (Suc _) then have pos_k: "k > 0" by auto
haftmann@23687
   488
  from assms dvd_pos [OF this] have pos_mn: "m > 0" "n > 0" by auto
haftmann@27556
   489
  with gcd_zero [of m n] have pos_gcd: "gcd m n > 0" by simp
haftmann@23687
   490
  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
haftmann@23687
   491
  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
haftmann@23687
   492
  from pos_k k_m have pos_p: "p > 0" by auto
haftmann@23687
   493
  from pos_k k_n have pos_q: "q > 0" by auto
haftmann@27556
   494
  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
haftmann@23687
   495
    by (simp add: mult_ac gcd_mult_distrib2)
haftmann@27556
   496
  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
haftmann@23687
   497
    by (simp add: k_m [symmetric] k_n [symmetric])
haftmann@27556
   498
  also have "\<dots> = k * p * q * gcd m n"
haftmann@23687
   499
    by (simp add: mult_ac gcd_mult_distrib2)
haftmann@27556
   500
  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
haftmann@23687
   501
    by (simp only: k_m [symmetric] k_n [symmetric])
haftmann@27556
   502
  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
haftmann@23687
   503
    by (simp add: mult_ac)
haftmann@27556
   504
  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
haftmann@23687
   505
    by simp
haftmann@23687
   506
  with prod_gcd_lcm [of m n]
haftmann@27556
   507
  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
haftmann@23687
   508
    by (simp add: mult_ac)
haftmann@27556
   509
  with pos_gcd have "lcm m n * gcd q p = k" by simp
haftmann@23687
   510
  then show ?thesis using dvd_def by auto
haftmann@23687
   511
qed
haftmann@23687
   512
haftmann@23687
   513
lemma lcm_dvd1 [iff]:
haftmann@27556
   514
  "m dvd lcm m n"
haftmann@23687
   515
proof (cases m)
haftmann@23687
   516
  case 0 then show ?thesis by simp
haftmann@23687
   517
next
haftmann@23687
   518
  case (Suc _)
haftmann@23687
   519
  then have mpos: "m > 0" by simp
haftmann@23687
   520
  show ?thesis
haftmann@23687
   521
  proof (cases n)
haftmann@23687
   522
    case 0 then show ?thesis by simp
haftmann@23687
   523
  next
haftmann@23687
   524
    case (Suc _)
haftmann@23687
   525
    then have npos: "n > 0" by simp
haftmann@27556
   526
    have "gcd m n dvd n" by simp
haftmann@27556
   527
    then obtain k where "n = gcd m n * k" using dvd_def by auto
haftmann@27556
   528
    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" by (simp add: mult_ac)
haftmann@23687
   529
    also have "\<dots> = m * k" using mpos npos gcd_zero by simp
haftmann@23687
   530
    finally show ?thesis by (simp add: lcm_def)
haftmann@23687
   531
  qed
haftmann@23687
   532
qed
haftmann@23687
   533
haftmann@23687
   534
lemma lcm_dvd2 [iff]: 
haftmann@27556
   535
  "n dvd lcm m n"
haftmann@23687
   536
proof (cases n)
haftmann@23687
   537
  case 0 then show ?thesis by simp
haftmann@23687
   538
next
haftmann@23687
   539
  case (Suc _)
haftmann@23687
   540
  then have npos: "n > 0" by simp
haftmann@23687
   541
  show ?thesis
haftmann@23687
   542
  proof (cases m)
haftmann@23687
   543
    case 0 then show ?thesis by simp
haftmann@23687
   544
  next
haftmann@23687
   545
    case (Suc _)
haftmann@23687
   546
    then have mpos: "m > 0" by simp
haftmann@27556
   547
    have "gcd m n dvd m" by simp
haftmann@27556
   548
    then obtain k where "m = gcd m n * k" using dvd_def by auto
haftmann@27556
   549
    then have "m * n div gcd m n = (gcd m n * k) * n div gcd m n" by (simp add: mult_ac)
haftmann@23687
   550
    also have "\<dots> = n * k" using mpos npos gcd_zero by simp
haftmann@23687
   551
    finally show ?thesis by (simp add: lcm_def)
haftmann@23687
   552
  qed
haftmann@23687
   553
qed
haftmann@23687
   554
chaieb@27568
   555
lemma gcd_add1_eq: "gcd (m + k) k = gcd (m + k) m"
chaieb@27568
   556
  by (simp add: gcd_commute)
chaieb@27568
   557
chaieb@27568
   558
lemma gcd_diff2: "m \<le> n ==> gcd n (n - m) = gcd n m"
chaieb@27568
   559
  apply (subgoal_tac "n = m + (n - m)")
chaieb@27669
   560
  apply (erule ssubst, rule gcd_add1_eq, simp)  
chaieb@27568
   561
  done
chaieb@27568
   562
haftmann@23687
   563
haftmann@23687
   564
subsection {* GCD and LCM on integers *}
wenzelm@22367
   565
wenzelm@22367
   566
definition
haftmann@27556
   567
  zgcd :: "int \<Rightarrow> int \<Rightarrow> int" where
haftmann@27556
   568
  "zgcd i j = int (gcd (nat (abs i)) (nat (abs j)))"
wenzelm@22367
   569
wenzelm@41541
   570
lemma zgcd_zdvd1 [iff, algebra]: "zgcd i j dvd i"
nipkow@29700
   571
by (simp add: zgcd_def int_dvd_iff)
chaieb@22027
   572
wenzelm@41541
   573
lemma zgcd_zdvd2 [iff, algebra]: "zgcd i j dvd j"
nipkow@29700
   574
by (simp add: zgcd_def int_dvd_iff)
chaieb@22027
   575
haftmann@27556
   576
lemma zgcd_pos: "zgcd i j \<ge> 0"
nipkow@29700
   577
by (simp add: zgcd_def)
wenzelm@22367
   578
chaieb@27669
   579
lemma zgcd0 [simp,algebra]: "(zgcd i j = 0) = (i = 0 \<and> j = 0)"
nipkow@29700
   580
by (simp add: zgcd_def gcd_zero)
chaieb@22027
   581
haftmann@27556
   582
lemma zgcd_commute: "zgcd i j = zgcd j i"
nipkow@29700
   583
unfolding zgcd_def by (simp add: gcd_commute)
wenzelm@22367
   584
chaieb@27669
   585
lemma zgcd_zminus [simp, algebra]: "zgcd (- i) j = zgcd i j"
nipkow@29700
   586
unfolding zgcd_def by simp
wenzelm@22367
   587
chaieb@27669
   588
lemma zgcd_zminus2 [simp, algebra]: "zgcd i (- j) = zgcd i j"
nipkow@29700
   589
unfolding zgcd_def by simp
wenzelm@22367
   590
chaieb@27669
   591
  (* should be solved by algebra*)
haftmann@27556
   592
lemma zrelprime_dvd_mult: "zgcd i j = 1 \<Longrightarrow> i dvd k * j \<Longrightarrow> i dvd k"
haftmann@27556
   593
  unfolding zgcd_def
wenzelm@22367
   594
proof -
haftmann@27556
   595
  assume "int (gcd (nat \<bar>i\<bar>) (nat \<bar>j\<bar>)) = 1" "i dvd k * j"
haftmann@27556
   596
  then have g: "gcd (nat \<bar>i\<bar>) (nat \<bar>j\<bar>) = 1" by simp
wenzelm@22367
   597
  from `i dvd k * j` obtain h where h: "k*j = i*h" unfolding dvd_def by blast
chaieb@22027
   598
  have th: "nat \<bar>i\<bar> dvd nat \<bar>k\<bar> * nat \<bar>j\<bar>"
wenzelm@22367
   599
    unfolding dvd_def
wenzelm@22367
   600
    by (rule_tac x= "nat \<bar>h\<bar>" in exI, simp add: h nat_abs_mult_distrib [symmetric])
wenzelm@22367
   601
  from relprime_dvd_mult [OF g th] obtain h' where h': "nat \<bar>k\<bar> = nat \<bar>i\<bar> * h'"
chaieb@22027
   602
    unfolding dvd_def by blast
chaieb@22027
   603
  from h' have "int (nat \<bar>k\<bar>) = int (nat \<bar>i\<bar> * h')" by simp
huffman@23431
   604
  then have "\<bar>k\<bar> = \<bar>i\<bar> * int h'" by (simp add: int_mult)
chaieb@22027
   605
  then show ?thesis
nipkow@30042
   606
    apply (subst abs_dvd_iff [symmetric])
nipkow@30042
   607
    apply (subst dvd_abs_iff [symmetric])
chaieb@22027
   608
    apply (unfold dvd_def)
wenzelm@22367
   609
    apply (rule_tac x = "int h'" in exI, simp)
chaieb@22027
   610
    done
chaieb@22027
   611
qed
chaieb@22027
   612
haftmann@27556
   613
lemma int_nat_abs: "int (nat (abs x)) = abs x" by arith
wenzelm@22367
   614
haftmann@27556
   615
lemma zgcd_greatest:
wenzelm@22367
   616
  assumes "k dvd m" and "k dvd n"
haftmann@27556
   617
  shows "k dvd zgcd m n"
wenzelm@22367
   618
proof -
chaieb@22027
   619
  let ?k' = "nat \<bar>k\<bar>"
chaieb@22027
   620
  let ?m' = "nat \<bar>m\<bar>"
chaieb@22027
   621
  let ?n' = "nat \<bar>n\<bar>"
wenzelm@22367
   622
  from `k dvd m` and `k dvd n` have dvd': "?k' dvd ?m'" "?k' dvd ?n'"
nipkow@30042
   623
    unfolding zdvd_int by (simp_all only: int_nat_abs abs_dvd_iff dvd_abs_iff)
haftmann@27556
   624
  from gcd_greatest [OF dvd'] have "int (nat \<bar>k\<bar>) dvd zgcd m n"
haftmann@27556
   625
    unfolding zgcd_def by (simp only: zdvd_int)
haftmann@27556
   626
  then have "\<bar>k\<bar> dvd zgcd m n" by (simp only: int_nat_abs)
nipkow@30042
   627
  then show "k dvd zgcd m n" by simp
chaieb@22027
   628
qed
chaieb@22027
   629
haftmann@27556
   630
lemma div_zgcd_relprime:
wenzelm@22367
   631
  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
haftmann@27556
   632
  shows "zgcd (a div (zgcd a b)) (b div (zgcd a b)) = 1"
wenzelm@22367
   633
proof -
chaieb@25112
   634
  from nz have nz': "nat \<bar>a\<bar> \<noteq> 0 \<or> nat \<bar>b\<bar> \<noteq> 0" by arith 
haftmann@27556
   635
  let ?g = "zgcd a b"
chaieb@22027
   636
  let ?a' = "a div ?g"
chaieb@22027
   637
  let ?b' = "b div ?g"
haftmann@27556
   638
  let ?g' = "zgcd ?a' ?b'"
wenzelm@41541
   639
  have dvdg: "?g dvd a" "?g dvd b" by simp_all
wenzelm@41541
   640
  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
wenzelm@22367
   641
  from dvdg dvdg' obtain ka kb ka' kb' where
wenzelm@22367
   642
   kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'"
chaieb@22027
   643
    unfolding dvd_def by blast
wenzelm@22367
   644
  then have "?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all
wenzelm@22367
   645
  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
wenzelm@22367
   646
    by (auto simp add: zdvd_mult_div_cancel [OF dvdg(1)]
wenzelm@22367
   647
      zdvd_mult_div_cancel [OF dvdg(2)] dvd_def)
chaieb@22027
   648
  have "?g \<noteq> 0" using nz by simp
haftmann@27556
   649
  then have gp: "?g \<noteq> 0" using zgcd_pos[where i="a" and j="b"] by arith
haftmann@27556
   650
  from zgcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
wenzelm@22367
   651
  with zdvd_mult_cancel1 [OF gp] have "\<bar>?g'\<bar> = 1" by simp
haftmann@27556
   652
  with zgcd_pos show "?g' = 1" by simp
chaieb@22027
   653
qed
chaieb@22027
   654
chaieb@27669
   655
lemma zgcd_0 [simp, algebra]: "zgcd m 0 = abs m"
chaieb@27568
   656
  by (simp add: zgcd_def abs_if)
chaieb@27568
   657
chaieb@27669
   658
lemma zgcd_0_left [simp, algebra]: "zgcd 0 m = abs m"
chaieb@27568
   659
  by (simp add: zgcd_def abs_if)
chaieb@27568
   660
chaieb@27568
   661
lemma zgcd_non_0: "0 < n ==> zgcd m n = zgcd n (m mod n)"
chaieb@27568
   662
  apply (frule_tac b = n and a = m in pos_mod_sign)
chaieb@27568
   663
  apply (simp del: pos_mod_sign add: zgcd_def abs_if nat_mod_distrib)
chaieb@27568
   664
  apply (auto simp add: gcd_non_0 nat_mod_distrib [symmetric] zmod_zminus1_eq_if)
chaieb@27568
   665
  apply (frule_tac a = m in pos_mod_bound)
chaieb@27568
   666
  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2 nat_le_eq_zle)
chaieb@27568
   667
  done
chaieb@27568
   668
chaieb@27568
   669
lemma zgcd_eq: "zgcd m n = zgcd n (m mod n)"
wenzelm@41541
   670
  apply (cases "n = 0", simp)
chaieb@27568
   671
  apply (auto simp add: linorder_neq_iff zgcd_non_0)
chaieb@27568
   672
  apply (cut_tac m = "-m" and n = "-n" in zgcd_non_0, auto)
chaieb@27568
   673
  done
chaieb@27568
   674
chaieb@27669
   675
lemma zgcd_1 [simp, algebra]: "zgcd m 1 = 1"
chaieb@27568
   676
  by (simp add: zgcd_def abs_if)
chaieb@27568
   677
chaieb@27669
   678
lemma zgcd_0_1_iff [simp, algebra]: "zgcd 0 m = 1 \<longleftrightarrow> \<bar>m\<bar> = 1"
chaieb@27568
   679
  by (simp add: zgcd_def abs_if)
chaieb@27568
   680
chaieb@27669
   681
lemma zgcd_greatest_iff[algebra]: "k dvd zgcd m n = (k dvd m \<and> k dvd n)"
chaieb@27568
   682
  by (simp add: zgcd_def abs_if int_dvd_iff dvd_int_iff nat_dvd_iff)
chaieb@27568
   683
chaieb@27669
   684
lemma zgcd_1_left [simp, algebra]: "zgcd 1 m = 1"
wenzelm@41541
   685
  by (simp add: zgcd_def)
chaieb@27568
   686
chaieb@27568
   687
lemma zgcd_assoc: "zgcd (zgcd k m) n = zgcd k (zgcd m n)"
chaieb@27568
   688
  by (simp add: zgcd_def gcd_assoc)
chaieb@27568
   689
chaieb@27568
   690
lemma zgcd_left_commute: "zgcd k (zgcd m n) = zgcd m (zgcd k n)"
chaieb@27568
   691
  apply (rule zgcd_commute [THEN trans])
chaieb@27568
   692
  apply (rule zgcd_assoc [THEN trans])
chaieb@27568
   693
  apply (rule zgcd_commute [THEN arg_cong])
chaieb@27568
   694
  done
chaieb@27568
   695
chaieb@27568
   696
lemmas zgcd_ac = zgcd_assoc zgcd_commute zgcd_left_commute
chaieb@27568
   697
  -- {* addition is an AC-operator *}
chaieb@27568
   698
chaieb@27568
   699
lemma zgcd_zmult_distrib2: "0 \<le> k ==> k * zgcd m n = zgcd (k * m) (k * n)"
chaieb@27568
   700
  by (simp del: minus_mult_right [symmetric]
chaieb@27568
   701
      add: minus_mult_right nat_mult_distrib zgcd_def abs_if
huffman@44821
   702
          mult_less_0_iff gcd_mult_distrib2 [symmetric] of_nat_mult)
chaieb@27568
   703
chaieb@27568
   704
lemma zgcd_zmult_distrib2_abs: "zgcd (k * m) (k * n) = abs k * zgcd m n"
chaieb@27568
   705
  by (simp add: abs_if zgcd_zmult_distrib2)
chaieb@27568
   706
chaieb@27568
   707
lemma zgcd_self [simp]: "0 \<le> m ==> zgcd m m = m"
chaieb@27568
   708
  by (cut_tac k = m and m = 1 and n = 1 in zgcd_zmult_distrib2, simp_all)
chaieb@27568
   709
chaieb@27568
   710
lemma zgcd_zmult_eq_self [simp]: "0 \<le> k ==> zgcd k (k * n) = k"
chaieb@27568
   711
  by (cut_tac k = k and m = 1 and n = n in zgcd_zmult_distrib2, simp_all)
chaieb@27568
   712
chaieb@27568
   713
lemma zgcd_zmult_eq_self2 [simp]: "0 \<le> k ==> zgcd (k * n) k = k"
chaieb@27568
   714
  by (cut_tac k = k and m = n and n = 1 in zgcd_zmult_distrib2, simp_all)
chaieb@27568
   715
chaieb@27568
   716
chaieb@27568
   717
definition "zlcm i j = int (lcm(nat(abs i)) (nat(abs j)))"
chaieb@23244
   718
chaieb@27669
   719
lemma dvd_zlcm_self1[simp, algebra]: "i dvd zlcm i j"
haftmann@27556
   720
by(simp add:zlcm_def dvd_int_iff)
nipkow@23983
   721
chaieb@27669
   722
lemma dvd_zlcm_self2[simp, algebra]: "j dvd zlcm i j"
haftmann@27556
   723
by(simp add:zlcm_def dvd_int_iff)
nipkow@23983
   724
chaieb@23244
   725
haftmann@27556
   726
lemma dvd_imp_dvd_zlcm1:
haftmann@27556
   727
  assumes "k dvd i" shows "k dvd (zlcm i j)"
nipkow@23983
   728
proof -
nipkow@23983
   729
  have "nat(abs k) dvd nat(abs i)" using `k dvd i`
nipkow@30042
   730
    by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric])
haftmann@27556
   731
  thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans)
nipkow@23983
   732
qed
nipkow@23983
   733
haftmann@27556
   734
lemma dvd_imp_dvd_zlcm2:
haftmann@27556
   735
  assumes "k dvd j" shows "k dvd (zlcm i j)"
nipkow@23983
   736
proof -
nipkow@23983
   737
  have "nat(abs k) dvd nat(abs j)" using `k dvd j`
nipkow@30042
   738
    by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric])
haftmann@27556
   739
  thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans)
nipkow@23983
   740
qed
nipkow@23983
   741
chaieb@23994
   742
chaieb@23244
   743
lemma zdvd_self_abs1: "(d::int) dvd (abs d)"
chaieb@23244
   744
by (case_tac "d <0", simp_all)
chaieb@23244
   745
chaieb@23244
   746
lemma zdvd_self_abs2: "(abs (d::int)) dvd d"
chaieb@23244
   747
by (case_tac "d<0", simp_all)
chaieb@23244
   748
chaieb@23244
   749
(* lcm a b is positive for positive a and b *)
chaieb@23244
   750
chaieb@23244
   751
lemma lcm_pos: 
chaieb@23244
   752
  assumes mpos: "m > 0"
wenzelm@38159
   753
    and npos: "n>0"
haftmann@27556
   754
  shows "lcm m n > 0"
wenzelm@38159
   755
proof (rule ccontr, simp add: lcm_def gcd_zero)
wenzelm@38159
   756
  assume h:"m*n div gcd m n = 0"
wenzelm@38159
   757
  from mpos npos have "gcd m n \<noteq> 0" using gcd_zero by simp
wenzelm@38159
   758
  hence gcdp: "gcd m n > 0" by simp
wenzelm@38159
   759
  with h
wenzelm@38159
   760
  have "m*n < gcd m n"
wenzelm@38159
   761
    by (cases "m * n < gcd m n") (auto simp add: div_if[OF gcdp, where m="m*n"])
wenzelm@38159
   762
  moreover 
wenzelm@38159
   763
  have "gcd m n dvd m" by simp
wenzelm@38159
   764
  with mpos dvd_imp_le have t1:"gcd m n \<le> m" by simp
wenzelm@38159
   765
  with npos have t1:"gcd m n *n \<le> m*n" by simp
wenzelm@38159
   766
  have "gcd m n \<le> gcd m n*n" using npos by simp
wenzelm@38159
   767
  with t1 have "gcd m n \<le> m*n" by arith
wenzelm@38159
   768
  ultimately show "False" by simp
chaieb@23244
   769
qed
chaieb@23244
   770
haftmann@27556
   771
lemma zlcm_pos: 
nipkow@23983
   772
  assumes anz: "a \<noteq> 0"
nipkow@23983
   773
  and bnz: "b \<noteq> 0" 
haftmann@27556
   774
  shows "0 < zlcm a b"
chaieb@23244
   775
proof-
chaieb@23244
   776
  let ?na = "nat (abs a)"
chaieb@23244
   777
  let ?nb = "nat (abs b)"
nipkow@23983
   778
  have nap: "?na >0" using anz by simp
nipkow@23983
   779
  have nbp: "?nb >0" using bnz by simp
haftmann@27556
   780
  have "0 < lcm ?na ?nb" by (rule lcm_pos[OF nap nbp])
haftmann@27556
   781
  thus ?thesis by (simp add: zlcm_def)
chaieb@23244
   782
qed
chaieb@23244
   783
haftmann@28562
   784
lemma zgcd_code [code]:
haftmann@27651
   785
  "zgcd k l = \<bar>if l = 0 then k else zgcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
haftmann@27651
   786
  by (simp add: zgcd_def gcd.simps [of "nat \<bar>k\<bar>"] nat_mod_distrib)
haftmann@27651
   787
wenzelm@21256
   788
end