src/Provers/Arith/fast_lin_arith.ML
author nipkow
Tue Sep 21 19:11:07 1999 +0200 (1999-09-21)
changeset 7570 a9391550eea1
parent 7552 0d6d1f50b86d
child 7582 2650c9c2ab7f
permissions -rw-r--r--
Mod because of new solver interface.
nipkow@5982
     1
(*  Title:      Provers/Arith/fast_lin_arith.ML
nipkow@5982
     2
    ID:         $Id$
nipkow@5982
     3
    Author:     Tobias Nipkow
nipkow@5982
     4
    Copyright   1998  TU Munich
nipkow@5982
     5
nipkow@6062
     6
A generic linear arithmetic package.
nipkow@6102
     7
It provides two tactics
nipkow@6102
     8
nipkow@5982
     9
    lin_arith_tac:         int -> tactic
nipkow@5982
    10
cut_lin_arith_tac: thms -> int -> tactic
nipkow@6102
    11
nipkow@6102
    12
and a simplification procedure
nipkow@6102
    13
nipkow@6102
    14
    lin_arith_prover: Sign.sg -> thm list -> term -> thm option
nipkow@6102
    15
nipkow@6102
    16
Only take premises and conclusions into account that are already (negated)
nipkow@6102
    17
(in)equations. lin_arith_prover tries to prove or disprove the term.
nipkow@5982
    18
*)
nipkow@5982
    19
nipkow@5982
    20
(*** Data needed for setting up the linear arithmetic package ***)
nipkow@5982
    21
nipkow@6102
    22
signature LIN_ARITH_LOGIC =
nipkow@6102
    23
sig
nipkow@6102
    24
  val conjI:		thm
nipkow@6102
    25
  val ccontr:           thm (* (~ P ==> False) ==> P *)
nipkow@6102
    26
  val neqE:             thm (* [| m ~= n; m < n ==> P; n < m ==> P |] ==> P *)
nipkow@6102
    27
  val notI:             thm (* (P ==> False) ==> ~ P *)
nipkow@6110
    28
  val not_lessD:        thm (* ~(m < n) ==> n <= m *)
nipkow@6128
    29
  val not_leD:          thm (* ~(m <= n) ==> n < m *)
nipkow@6102
    30
  val sym:		thm (* x = y ==> y = x *)
nipkow@6102
    31
  val mk_Eq: thm -> thm
nipkow@6102
    32
  val mk_Trueprop: term -> term
nipkow@6102
    33
  val neg_prop: term -> term
nipkow@6102
    34
  val is_False: thm -> bool
nipkow@6128
    35
  val is_nat: typ list * term -> bool
nipkow@6128
    36
  val mk_nat_thm: Sign.sg -> term -> thm
nipkow@6102
    37
end;
nipkow@6102
    38
(*
nipkow@6102
    39
mk_Eq(~in) = `in == False'
nipkow@6102
    40
mk_Eq(in) = `in == True'
nipkow@6102
    41
where `in' is an (in)equality.
nipkow@6102
    42
nipkow@6102
    43
neg_prop(t) = neg if t is wrapped up in Trueprop and
nipkow@6102
    44
  nt is the (logically) negated version of t, where the negation
nipkow@6102
    45
  of a negative term is the term itself (no double negation!);
nipkow@6128
    46
nipkow@6128
    47
is_nat(parameter-types,t) =  t:nat
nipkow@6128
    48
mk_nat_thm(t) = "0 <= t"
nipkow@6102
    49
*)
nipkow@6102
    50
nipkow@5982
    51
signature LIN_ARITH_DATA =
nipkow@5982
    52
sig
nipkow@6128
    53
  val add_mono_thms:    thm list ref
nipkow@5982
    54
                            (* [| i rel1 j; m rel2 n |] ==> i + m rel3 j + n *)
nipkow@6128
    55
  val lessD:            thm list ref (* m < n ==> m+1 <= n *)
nipkow@6128
    56
  val decomp:
nipkow@7551
    57
    term ->
nipkow@7551
    58
      ((term * int)list * int * string * (term * int)list * int * bool)option
nipkow@6128
    59
  val simp: (thm -> thm) ref
nipkow@5982
    60
end;
nipkow@5982
    61
(*
nipkow@7551
    62
decomp(`x Rel y') should yield (p,i,Rel,q,j,d)
nipkow@5982
    63
   where Rel is one of "<", "~<", "<=", "~<=" and "=" and
nipkow@5982
    64
         p/q is the decomposition of the sum terms x/y into a list
nipkow@7551
    65
         of summand * multiplicity pairs and a constant summand and
nipkow@7551
    66
         d indicates if the domain is discrete.
nipkow@5982
    67
nipkow@5982
    68
simp must reduce contradictory <= to False.
nipkow@5982
    69
   It should also cancel common summands to keep <= reduced;
nipkow@5982
    70
   otherwise <= can grow to massive proportions.
nipkow@5982
    71
*)
nipkow@5982
    72
nipkow@6062
    73
signature FAST_LIN_ARITH =
nipkow@6062
    74
sig
nipkow@6074
    75
  val lin_arith_prover: Sign.sg -> thm list -> term -> thm option
nipkow@6062
    76
  val     lin_arith_tac:             int -> tactic
nipkow@6062
    77
  val cut_lin_arith_tac: thm list -> int -> tactic
nipkow@6062
    78
end;
nipkow@6062
    79
nipkow@6102
    80
functor Fast_Lin_Arith(structure LA_Logic:LIN_ARITH_LOGIC 
nipkow@6102
    81
                       and       LA_Data:LIN_ARITH_DATA) : FAST_LIN_ARITH =
nipkow@5982
    82
struct
nipkow@5982
    83
nipkow@5982
    84
(*** A fast decision procedure ***)
nipkow@5982
    85
(*** Code ported from HOL Light ***)
nipkow@6056
    86
(* possible optimizations:
nipkow@6056
    87
   use (var,coeff) rep or vector rep  tp save space;
nipkow@6056
    88
   treat non-negative atoms separately rather than adding 0 <= atom
nipkow@6056
    89
*)
nipkow@5982
    90
nipkow@5982
    91
datatype lineq_type = Eq | Le | Lt;
nipkow@5982
    92
nipkow@6056
    93
datatype injust = Asm of int
nipkow@6056
    94
                | Nat of int (* index of atom *)
nipkow@6128
    95
                | LessD of injust
nipkow@6128
    96
                | NotLessD of injust
nipkow@6128
    97
                | NotLeD of injust
nipkow@7551
    98
                | NotLeDD of injust
nipkow@5982
    99
                | Multiplied of int * injust
nipkow@5982
   100
                | Added of injust * injust;
nipkow@5982
   101
nipkow@5982
   102
datatype lineq = Lineq of int * lineq_type * int list * injust;
nipkow@5982
   103
nipkow@5982
   104
(* ------------------------------------------------------------------------- *)
nipkow@5982
   105
(* Calculate new (in)equality type after addition.                           *)
nipkow@5982
   106
(* ------------------------------------------------------------------------- *)
nipkow@5982
   107
nipkow@5982
   108
fun find_add_type(Eq,x) = x
nipkow@5982
   109
  | find_add_type(x,Eq) = x
nipkow@5982
   110
  | find_add_type(_,Lt) = Lt
nipkow@5982
   111
  | find_add_type(Lt,_) = Lt
nipkow@5982
   112
  | find_add_type(Le,Le) = Le;
nipkow@5982
   113
nipkow@5982
   114
(* ------------------------------------------------------------------------- *)
nipkow@5982
   115
(* Multiply out an (in)equation.                                             *)
nipkow@5982
   116
(* ------------------------------------------------------------------------- *)
nipkow@5982
   117
nipkow@5982
   118
fun multiply_ineq n (i as Lineq(k,ty,l,just)) =
nipkow@5982
   119
  if n = 1 then i
nipkow@5982
   120
  else if n = 0 andalso ty = Lt then sys_error "multiply_ineq"
nipkow@5982
   121
  else if n < 0 andalso (ty=Le orelse ty=Lt) then sys_error "multiply_ineq"
nipkow@5982
   122
  else Lineq(n * k,ty,map (apl(n,op * )) l,Multiplied(n,just));
nipkow@5982
   123
nipkow@5982
   124
(* ------------------------------------------------------------------------- *)
nipkow@5982
   125
(* Add together (in)equations.                                               *)
nipkow@5982
   126
(* ------------------------------------------------------------------------- *)
nipkow@5982
   127
nipkow@5982
   128
fun add_ineq (i1 as Lineq(k1,ty1,l1,just1)) (i2 as Lineq(k2,ty2,l2,just2)) =
nipkow@5982
   129
  let val l = map2 (op +) (l1,l2)
nipkow@5982
   130
  in Lineq(k1+k2,find_add_type(ty1,ty2),l,Added(just1,just2)) end;
nipkow@5982
   131
nipkow@5982
   132
(* ------------------------------------------------------------------------- *)
nipkow@5982
   133
(* Elimination of variable between a single pair of (in)equations.           *)
nipkow@5982
   134
(* If they're both inequalities, 1st coefficient must be +ve, 2nd -ve.       *)
nipkow@5982
   135
(* ------------------------------------------------------------------------- *)
nipkow@5982
   136
nipkow@5982
   137
fun gcd x y =
nipkow@5982
   138
  let fun gxd x y =
nipkow@5982
   139
    if y = 0 then x else gxd y (x mod y)
nipkow@5982
   140
  in if x < y then gxd y x else gxd x y end;
nipkow@5982
   141
nipkow@5982
   142
fun lcm x y = (x * y) div gcd x y;
nipkow@5982
   143
nipkow@5982
   144
fun el 0 (h::_) = h
nipkow@5982
   145
  | el n (_::t) = el (n - 1) t
nipkow@5982
   146
  | el _ _  = sys_error "el";
nipkow@5982
   147
nipkow@5982
   148
fun elim_var v (i1 as Lineq(k1,ty1,l1,just1)) (i2 as Lineq(k2,ty2,l2,just2)) =
nipkow@5982
   149
  let val c1 = el v l1 and c2 = el v l2
nipkow@5982
   150
      val m = lcm (abs c1) (abs c2)
nipkow@5982
   151
      val m1 = m div (abs c1) and m2 = m div (abs c2)
nipkow@5982
   152
      val (n1,n2) =
nipkow@5982
   153
        if (c1 >= 0) = (c2 >= 0)
nipkow@5982
   154
        then if ty1 = Eq then (~m1,m2)
nipkow@5982
   155
             else if ty2 = Eq then (m1,~m2)
nipkow@5982
   156
                  else sys_error "elim_var"
nipkow@5982
   157
        else (m1,m2)
nipkow@5982
   158
      val (p1,p2) = if ty1=Eq andalso ty2=Eq andalso (n1 = ~1 orelse n2 = ~1)
nipkow@5982
   159
                    then (~n1,~n2) else (n1,n2)
nipkow@5982
   160
  in add_ineq (multiply_ineq n1 i1) (multiply_ineq n2 i2) end;
nipkow@5982
   161
nipkow@5982
   162
(* ------------------------------------------------------------------------- *)
nipkow@5982
   163
(* The main refutation-finding code.                                         *)
nipkow@5982
   164
(* ------------------------------------------------------------------------- *)
nipkow@5982
   165
nipkow@5982
   166
fun is_trivial (Lineq(_,_,l,_)) = forall (fn i => i=0) l;
nipkow@5982
   167
nipkow@5982
   168
fun is_answer (ans as Lineq(k,ty,l,_)) =
nipkow@5982
   169
  case ty  of Eq => k <> 0 | Le => k > 0 | Lt => k >= 0;
nipkow@5982
   170
nipkow@5982
   171
fun calc_blowup l =
nipkow@5982
   172
  let val (p,n) = partition (apl(0,op<)) (filter (apl(0,op<>)) l)
nipkow@5982
   173
  in (length p) * (length n) end;
nipkow@5982
   174
nipkow@5982
   175
(* ------------------------------------------------------------------------- *)
nipkow@5982
   176
(* Main elimination code:                                                    *)
nipkow@5982
   177
(*                                                                           *)
nipkow@5982
   178
(* (1) Looks for immediate solutions (false assertions with no variables).   *)
nipkow@5982
   179
(*                                                                           *)
nipkow@5982
   180
(* (2) If there are any equations, picks a variable with the lowest absolute *)
nipkow@5982
   181
(* coefficient in any of them, and uses it to eliminate.                     *)
nipkow@5982
   182
(*                                                                           *)
nipkow@5982
   183
(* (3) Otherwise, chooses a variable in the inequality to minimize the       *)
nipkow@5982
   184
(* blowup (number of consequences generated) and eliminates it.              *)
nipkow@5982
   185
(* ------------------------------------------------------------------------- *)
nipkow@5982
   186
nipkow@5982
   187
fun allpairs f xs ys =
nipkow@5982
   188
  flat(map (fn x => map (fn y => f x y) ys) xs);
nipkow@5982
   189
nipkow@5982
   190
fun extract_first p =
nipkow@5982
   191
  let fun extract xs (y::ys) = if p y then (Some y,xs@ys)
nipkow@5982
   192
                               else extract (y::xs) ys
nipkow@5982
   193
        | extract xs []      = (None,xs)
nipkow@5982
   194
  in extract [] end;
nipkow@5982
   195
nipkow@7551
   196
nipkow@6056
   197
fun print_ineqs ineqs =
nipkow@6056
   198
 writeln(cat_lines(""::map (fn Lineq(c,t,l,_) =>
nipkow@6056
   199
   string_of_int c ^
nipkow@6056
   200
   (case t of Eq => " =  " | Lt=> " <  " | Le => " <= ") ^
nipkow@6056
   201
   commas(map string_of_int l)) ineqs));
nipkow@7551
   202
nipkow@6056
   203
nipkow@5982
   204
fun elim ineqs =
nipkow@6056
   205
  let (*val dummy = print_ineqs ineqs;*)
nipkow@6056
   206
      val (triv,nontriv) = partition is_trivial ineqs in
nipkow@5982
   207
  if not(null triv)
nipkow@5982
   208
  then case find_first is_answer triv of
nipkow@5982
   209
         None => elim nontriv | some => some
nipkow@5982
   210
  else
nipkow@5982
   211
  if null nontriv then None else
nipkow@5982
   212
  let val (eqs,noneqs) = partition (fn (Lineq(_,ty,_,_)) => ty=Eq) nontriv in
nipkow@5982
   213
  if not(null eqs) then
nipkow@5982
   214
     let val clist = foldl (fn (cs,Lineq(_,_,l,_)) => l union cs) ([],eqs)
nipkow@5982
   215
         val sclist = sort (fn (x,y) => int_ord(abs(x),abs(y)))
nipkow@5982
   216
                           (filter (fn i => i<>0) clist)
nipkow@5982
   217
         val c = hd sclist
nipkow@5982
   218
         val (Some(eq as Lineq(_,_,ceq,_)),othereqs) =
nipkow@5982
   219
               extract_first (fn Lineq(_,_,l,_) => c mem l) eqs
nipkow@5982
   220
         val v = find_index (fn k => k=c) ceq
nipkow@5982
   221
         val (ioth,roth) = partition (fn (Lineq(_,_,l,_)) => el v l = 0)
nipkow@5982
   222
                                     (othereqs @ noneqs)
nipkow@5982
   223
         val others = map (elim_var v eq) roth @ ioth
nipkow@5982
   224
     in elim others end
nipkow@5982
   225
  else
nipkow@5982
   226
  let val lists = map (fn (Lineq(_,_,l,_)) => l) noneqs
nipkow@5982
   227
      val numlist = 0 upto (length(hd lists) - 1)
nipkow@5982
   228
      val coeffs = map (fn i => map (el i) lists) numlist
nipkow@5982
   229
      val blows = map calc_blowup coeffs
nipkow@5982
   230
      val iblows = blows ~~ numlist
nipkow@5982
   231
      val nziblows = filter (fn (i,_) => i<>0) iblows
nipkow@5982
   232
  in if null nziblows then None else
nipkow@5982
   233
     let val (c,v) = hd(sort (fn (x,y) => int_ord(fst(x),fst(y))) nziblows)
nipkow@5982
   234
         val (no,yes) = partition (fn (Lineq(_,_,l,_)) => el v l = 0) ineqs
nipkow@5982
   235
         val (pos,neg) = partition(fn (Lineq(_,_,l,_)) => el v l > 0) yes
nipkow@5982
   236
     in elim (no @ allpairs (elim_var v) pos neg) end
nipkow@5982
   237
  end
nipkow@5982
   238
  end
nipkow@5982
   239
  end;
nipkow@5982
   240
nipkow@5982
   241
(* ------------------------------------------------------------------------- *)
nipkow@5982
   242
(* Translate back a proof.                                                   *)
nipkow@5982
   243
(* ------------------------------------------------------------------------- *)
nipkow@5982
   244
nipkow@6056
   245
(* FIXME OPTIMIZE!!!!
nipkow@6056
   246
   Addition/Multiplication need i*t representation rather than t+t+...
nipkow@6056
   247
nipkow@6056
   248
Simplification may detect a contradiction 'prematurely' due to type
nipkow@6056
   249
information: n+1 <= 0 is simplified to False and does not need to be crossed
nipkow@6056
   250
with 0 <= n.
nipkow@6056
   251
*)
nipkow@6056
   252
local
nipkow@6056
   253
 exception FalseE of thm
nipkow@6056
   254
in
nipkow@6074
   255
fun mkthm sg asms just =
nipkow@7551
   256
  let val atoms = foldl (fn (ats,(lhs,_,_,rhs,_,_)) =>
nipkow@6056
   257
                            map fst lhs  union  (map fst rhs  union  ats))
nipkow@7551
   258
                        ([], mapfilter (LA_Data.decomp o concl_of) asms)
nipkow@6056
   259
nipkow@6056
   260
      fun addthms thm1 thm2 =
nipkow@6102
   261
        let val conj = thm1 RS (thm2 RS LA_Logic.conjI)
nipkow@5982
   262
        in the(get_first (fn th => Some(conj RS th) handle _ => None)
nipkow@6128
   263
                         (!LA_Data.add_mono_thms))
nipkow@5982
   264
        end;
nipkow@5982
   265
nipkow@5982
   266
      fun multn(n,thm) =
nipkow@5982
   267
        let fun mul(i,th) = if i=1 then th else mul(i-1, addthms thm th)
nipkow@6102
   268
        in if n < 0 then mul(~n,thm) RS LA_Logic.sym else mul(n,thm) end;
nipkow@5982
   269
nipkow@6056
   270
      fun simp thm =
nipkow@6128
   271
        let val thm' = !LA_Data.simp thm
nipkow@6102
   272
        in if LA_Logic.is_False thm' then raise FalseE thm' else thm' end
nipkow@6056
   273
nipkow@7551
   274
      fun mk(Asm i) = ((*writeln"Asm";prth*)(nth_elem(i,asms)))
nipkow@7552
   275
        | mk(Nat(i)) = ((*writeln"N";*)LA_Logic.mk_nat_thm sg (nth_elem(i,atoms)))
nipkow@7551
   276
        | mk(LessD(j)) = ((*writeln"L";prth*)(hd([mk j] RL !LA_Data.lessD)))
nipkow@7551
   277
        | mk(NotLeD(j)) = ((*writeln"NLe";prth*)(mk j RS LA_Logic.not_leD))
nipkow@7551
   278
        | mk(NotLeDD(j)) = ((*writeln"NLeD";prth*)(hd([mk j RS LA_Logic.not_leD] RL !LA_Data.lessD)))
nipkow@7551
   279
        | mk(NotLessD(j)) = ((*writeln"NL";prth*)(mk j RS LA_Logic.not_lessD))
nipkow@7570
   280
        | mk(Added(j1,j2)) = ((*writeln"+";prth*)(simp((*prth*)(addthms (mk j1) (mk j2)))))
nipkow@7552
   281
        | mk(Multiplied(n,j)) = ((*writeln"*";*)multn(n,mk j))
nipkow@5982
   282
nipkow@7551
   283
  in (*writeln"mkthm";*)!LA_Data.simp(mk just) handle FalseE thm => thm end
nipkow@6056
   284
end;
nipkow@5982
   285
nipkow@5982
   286
fun coeff poly atom = case assoc(poly,atom) of None => 0 | Some i => i;
nipkow@5982
   287
nipkow@5982
   288
fun mklineq atoms =
nipkow@5982
   289
  let val n = length atoms in
nipkow@7551
   290
    fn ((lhs,i,rel,rhs,j,discrete),k) =>
nipkow@5982
   291
    let val lhsa = map (coeff lhs) atoms
nipkow@5982
   292
        and rhsa = map (coeff rhs) atoms
nipkow@5982
   293
        val diff = map2 (op -) (rhsa,lhsa)
nipkow@5982
   294
        val c = i-j
nipkow@6056
   295
        val just = Asm k
nipkow@5982
   296
    in case rel of
nipkow@5982
   297
        "<="   => Some(Lineq(c,Le,diff,just))
nipkow@7551
   298
       | "~<=" => if discrete
nipkow@7551
   299
                  then Some(Lineq(1-c,Le,map (op ~) diff,NotLeDD(just)))
nipkow@7551
   300
                  else Some(Lineq(~c,Lt,map (op ~) diff,NotLeD(just)))
nipkow@7551
   301
       | "<"   => if discrete
nipkow@7551
   302
                  then Some(Lineq(c+1,Le,diff,LessD(just)))
nipkow@7551
   303
                  else Some(Lineq(c,Lt,diff,just))
nipkow@6128
   304
       | "~<"  => Some(Lineq(~c,Le,map (op~) diff,NotLessD(just)))
nipkow@5982
   305
       | "="   => Some(Lineq(c,Eq,diff,just))
nipkow@5982
   306
       | "~="  => None
nipkow@5982
   307
       | _     => sys_error("mklineq" ^ rel)   
nipkow@5982
   308
    end
nipkow@5982
   309
  end;
nipkow@5982
   310
nipkow@6056
   311
fun mknat pTs ixs (atom,i) =
nipkow@6128
   312
  if LA_Logic.is_nat(pTs,atom)
nipkow@6056
   313
  then let val l = map (fn j => if j=i then 1 else 0) ixs
nipkow@6056
   314
       in Some(Lineq(0,Le,l,Nat(i))) end
nipkow@6056
   315
  else None
nipkow@6056
   316
nipkow@6056
   317
fun abstract pTs items =
nipkow@7551
   318
  let val atoms = foldl (fn (ats,((lhs,_,_,rhs,_,_),_)) =>
nipkow@5982
   319
                            (map fst lhs) union ((map fst rhs) union ats))
nipkow@5982
   320
                        ([],items)
nipkow@6056
   321
      val ixs = 0 upto (length(atoms)-1)
nipkow@6056
   322
      val iatoms = atoms ~~ ixs
nipkow@6056
   323
  in mapfilter (mklineq atoms) items @ mapfilter (mknat pTs ixs) iatoms end;
nipkow@5982
   324
nipkow@5982
   325
(* Ordinary refutation *)
nipkow@6074
   326
fun refute1(pTs,items) =
nipkow@6074
   327
  (case elim (abstract pTs items) of
nipkow@6074
   328
       None => []
nipkow@6074
   329
     | Some(Lineq(_,_,_,j)) => [j]);
nipkow@6074
   330
nipkow@6074
   331
fun refute1_tac(i,just) =
nipkow@6074
   332
  fn state =>
nipkow@6074
   333
    let val sg = #sign(rep_thm state)
nipkow@6102
   334
    in resolve_tac [LA_Logic.notI,LA_Logic.ccontr] i THEN
nipkow@6074
   335
       METAHYPS (fn asms => rtac (mkthm sg asms just) 1) i
nipkow@6074
   336
    end
nipkow@6074
   337
    state;
nipkow@5982
   338
nipkow@5982
   339
(* Double refutation caused by equality in conclusion *)
nipkow@7551
   340
fun refute2(pTs,items, (rhs,i,_,lhs,j,d), nHs) =
nipkow@7551
   341
  (case elim (abstract pTs (items@[((rhs,i,"<",lhs,j,d),nHs)])) of
nipkow@6074
   342
    None => []
nipkow@5982
   343
  | Some(Lineq(_,_,_,j1)) =>
nipkow@7551
   344
      (case elim (abstract pTs (items@[((lhs,j,"<",rhs,i,d),nHs)])) of
nipkow@6074
   345
        None => []
nipkow@6074
   346
      | Some(Lineq(_,_,_,j2)) => [j1,j2]));
nipkow@6074
   347
nipkow@6074
   348
fun refute2_tac(i,just1,just2) =
nipkow@6074
   349
  fn state => 
nipkow@6074
   350
    let val sg = #sign(rep_thm state)
nipkow@6102
   351
    in rtac LA_Logic.ccontr i THEN rotate_tac ~1 i THEN etac LA_Logic.neqE i THEN
nipkow@6074
   352
       METAHYPS (fn asms => rtac (mkthm sg asms just1) 1) i THEN
nipkow@6074
   353
       METAHYPS (fn asms => rtac (mkthm sg asms just2) 1) i
nipkow@6074
   354
    end
nipkow@6074
   355
    state;
nipkow@6074
   356
nipkow@6074
   357
fun prove(pTs,Hs,concl) =
nipkow@6074
   358
let val nHs = length Hs
nipkow@6074
   359
    val ixHs = Hs ~~ (0 upto (nHs-1))
nipkow@7551
   360
    val Hitems = mapfilter (fn (h,i) => case LA_Data.decomp h of
nipkow@6074
   361
                                 None => None | Some(it) => Some(it,i)) ixHs
nipkow@7551
   362
in case LA_Data.decomp concl of
nipkow@6074
   363
     None => if null Hitems then [] else refute1(pTs,Hitems)
nipkow@7551
   364
   | Some(citem as (r,i,rel,l,j,d)) =>
nipkow@6074
   365
       if rel = "="
nipkow@6074
   366
       then refute2(pTs,Hitems,citem,nHs)
nipkow@6074
   367
       else let val neg::rel0 = explode rel
nipkow@6074
   368
                val nrel = if neg = "~" then implode rel0 else "~"^rel
nipkow@7551
   369
            in refute1(pTs, Hitems@[((r,i,nrel,l,j,d),nHs)]) end
nipkow@6074
   370
end;
nipkow@5982
   371
nipkow@5982
   372
(*
nipkow@5982
   373
Fast but very incomplete decider. Only premises and conclusions
nipkow@5982
   374
that are already (negated) (in)equations are taken into account.
nipkow@5982
   375
*)
nipkow@5982
   376
val lin_arith_tac = SUBGOAL (fn (A,n) =>
nipkow@6056
   377
  let val pTs = rev(map snd (Logic.strip_params A))
nipkow@6056
   378
      val Hs = Logic.strip_assums_hyp A
nipkow@6074
   379
      val concl = Logic.strip_assums_concl A
nipkow@6074
   380
  in case prove(pTs,Hs,concl) of
nipkow@6074
   381
       [j] => refute1_tac(n,j)
nipkow@6074
   382
     | [j1,j2] => refute2_tac(n,j1,j2)
nipkow@6074
   383
     | _ => no_tac
nipkow@5982
   384
  end);
nipkow@5982
   385
nipkow@5982
   386
fun cut_lin_arith_tac thms i = cut_facts_tac thms i THEN lin_arith_tac i;
nipkow@5982
   387
nipkow@6079
   388
fun prover1(just,sg,thms,concl,pos) =
nipkow@6102
   389
let val nconcl = LA_Logic.neg_prop concl
nipkow@6074
   390
    val cnconcl = cterm_of sg nconcl
nipkow@6074
   391
    val Fthm = mkthm sg (thms @ [assume cnconcl]) just
nipkow@6102
   392
    val contr = if pos then LA_Logic.ccontr else LA_Logic.notI
nipkow@6102
   393
in Some(LA_Logic.mk_Eq ((implies_intr cnconcl Fthm) COMP contr)) end
nipkow@6074
   394
handle _ => None;
nipkow@6074
   395
nipkow@6074
   396
(* handle thm with equality conclusion *)
nipkow@6074
   397
fun prover2(just1,just2,sg,thms,concl) =
nipkow@6102
   398
let val nconcl = LA_Logic.neg_prop concl (* m ~= n *)
nipkow@6074
   399
    val cnconcl = cterm_of sg nconcl
nipkow@6074
   400
    val neqthm = assume cnconcl
nipkow@6102
   401
    val casethm = neqthm COMP LA_Logic.neqE (* [|m<n ==> R; n<m ==> R|] ==> R *)
nipkow@6074
   402
    val [lessimp1,lessimp2] = prems_of casethm
nipkow@6074
   403
    val less1 = fst(Logic.dest_implies lessimp1) (* m<n *)
nipkow@6074
   404
    and less2 = fst(Logic.dest_implies lessimp2) (* n<m *)
nipkow@6074
   405
    val cless1 = cterm_of sg less1 and cless2 = cterm_of sg less2
nipkow@6074
   406
    val thm1 = mkthm sg (thms @ [assume cless1]) just1
nipkow@6074
   407
    and thm2 = mkthm sg (thms @ [assume cless2]) just2
nipkow@6074
   408
    val dthm1 = implies_intr cless1 thm1 and dthm2 = implies_intr cless2 thm2
nipkow@6074
   409
    val thm = dthm2 COMP (dthm1 COMP casethm)
nipkow@6102
   410
in Some(LA_Logic.mk_Eq ((implies_intr cnconcl thm) COMP LA_Logic.ccontr)) end
nipkow@6074
   411
handle _ => None;
nipkow@6074
   412
nipkow@6079
   413
(* PRE: concl is not negated! *)
nipkow@6074
   414
fun lin_arith_prover sg thms concl =
nipkow@6074
   415
let val Hs = map (#prop o rep_thm) thms
nipkow@6102
   416
    val Tconcl = LA_Logic.mk_Trueprop concl
nipkow@6074
   417
in case prove([],Hs,Tconcl) of
nipkow@6079
   418
     [j] => prover1(j,sg,thms,Tconcl,true)
nipkow@6074
   419
   | [j1,j2] => prover2(j1,j2,sg,thms,Tconcl)
nipkow@6102
   420
   | _ => let val nTconcl = LA_Logic.neg_prop Tconcl
nipkow@6079
   421
          in case prove([],Hs,nTconcl) of
nipkow@6079
   422
               [j] => prover1(j,sg,thms,nTconcl,false)
nipkow@6079
   423
               (* [_,_] impossible because of negation *)
nipkow@6079
   424
             | _ => None
nipkow@6079
   425
          end
nipkow@5982
   426
end;
nipkow@6074
   427
nipkow@6074
   428
end;