src/ZF/Perm.ML
author nipkow
Tue Sep 21 19:11:07 1999 +0200 (1999-09-21)
changeset 7570 a9391550eea1
parent 7379 999b1b777fc2
child 8551 5c22595bc599
permissions -rw-r--r--
Mod because of new solver interface.
clasohm@1461
     1
(*  Title:      ZF/Perm.ML
clasohm@0
     2
    ID:         $Id$
clasohm@1461
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   1991  University of Cambridge
clasohm@0
     5
lcp@735
     6
The theory underlying permutation groups
clasohm@0
     7
  -- Composition of relations, the identity relation
clasohm@0
     8
  -- Injections, surjections, bijections
clasohm@0
     9
  -- Lemmas for the Schroeder-Bernstein Theorem
clasohm@0
    10
*)
clasohm@0
    11
clasohm@0
    12
(** Surjective function space **)
clasohm@0
    13
paulson@5137
    14
Goalw [surj_def] "f: surj(A,B) ==> f: A->B";
clasohm@0
    15
by (etac CollectD1 1);
clasohm@760
    16
qed "surj_is_fun";
clasohm@0
    17
paulson@5137
    18
Goalw [surj_def] "f : Pi(A,B) ==> f: surj(A,range(f))";
wenzelm@4091
    19
by (blast_tac (claset() addIs [apply_equality, range_of_fun, domain_type]) 1);
clasohm@760
    20
qed "fun_is_surj";
clasohm@0
    21
paulson@5137
    22
Goalw [surj_def] "f: surj(A,B) ==> range(f)=B";
wenzelm@4091
    23
by (best_tac (claset() addIs [apply_Pair] addEs [range_type]) 1);
clasohm@760
    24
qed "surj_range";
clasohm@0
    25
lcp@502
    26
(** A function with a right inverse is a surjection **)
lcp@502
    27
lcp@502
    28
val prems = goalw Perm.thy [surj_def]
lcp@502
    29
    "[| f: A->B;  !!y. y:B ==> d(y): A;  !!y. y:B ==> f`d(y) = y \
lcp@502
    30
\    |] ==> f: surj(A,B)";
wenzelm@4091
    31
by (blast_tac (claset() addIs prems) 1);
clasohm@760
    32
qed "f_imp_surjective";
lcp@502
    33
paulson@5321
    34
val prems = Goal
clasohm@1461
    35
    "[| !!x. x:A ==> c(x): B;           \
clasohm@1461
    36
\       !!y. y:B ==> d(y): A;           \
clasohm@1461
    37
\       !!y. y:B ==> c(d(y)) = y        \
wenzelm@3840
    38
\    |] ==> (lam x:A. c(x)) : surj(A,B)";
lcp@502
    39
by (res_inst_tac [("d", "d")] f_imp_surjective 1);
paulson@5529
    40
by (ALLGOALS (asm_simp_tac (simpset() addsimps [lam_type]@prems) ));
clasohm@760
    41
qed "lam_surjective";
lcp@502
    42
lcp@735
    43
(*Cantor's theorem revisited*)
wenzelm@5067
    44
Goalw [surj_def] "f ~: surj(A,Pow(A))";
paulson@4152
    45
by Safe_tac;
lcp@735
    46
by (cut_facts_tac [cantor] 1);
lcp@735
    47
by (fast_tac subset_cs 1);
clasohm@760
    48
qed "cantor_surj";
lcp@735
    49
clasohm@0
    50
clasohm@0
    51
(** Injective function space **)
clasohm@0
    52
paulson@5137
    53
Goalw [inj_def] "f: inj(A,B) ==> f: A->B";
clasohm@0
    54
by (etac CollectD1 1);
clasohm@760
    55
qed "inj_is_fun";
clasohm@0
    56
paulson@1787
    57
(*Good for dealing with sets of pairs, but a bit ugly in use [used in AC]*)
wenzelm@5067
    58
Goalw [inj_def]
paulson@5147
    59
    "[| <a,b>:f;  <c,b>:f;  f: inj(A,B) |] ==> a=c";
clasohm@0
    60
by (REPEAT (eresolve_tac [asm_rl, Pair_mem_PiE, CollectE] 1));
paulson@3016
    61
by (Blast_tac 1);
clasohm@760
    62
qed "inj_equality";
clasohm@0
    63
paulson@5137
    64
Goalw [inj_def] "[| f:inj(A,B);  a:A;  b:A;  f`a=f`b |] ==> a=b";
paulson@3016
    65
by (Blast_tac 1);
lcp@826
    66
val inj_apply_equality = result();
lcp@826
    67
lcp@484
    68
(** A function with a left inverse is an injection **)
lcp@484
    69
paulson@5137
    70
Goal "[| f: A->B;  ALL x:A. d(f`x)=x |] ==> f: inj(A,B)";
wenzelm@4091
    71
by (asm_simp_tac (simpset() addsimps [inj_def]) 1);
paulson@6053
    72
by (blast_tac (claset() addIs [subst_context RS box_equals]) 1);
paulson@1787
    73
bind_thm ("f_imp_injective", ballI RSN (2,result()));
lcp@484
    74
paulson@5321
    75
val prems = Goal
clasohm@1461
    76
    "[| !!x. x:A ==> c(x): B;           \
clasohm@1461
    77
\       !!x. x:A ==> d(c(x)) = x        \
wenzelm@3840
    78
\    |] ==> (lam x:A. c(x)) : inj(A,B)";
lcp@484
    79
by (res_inst_tac [("d", "d")] f_imp_injective 1);
paulson@5529
    80
by (ALLGOALS (asm_simp_tac (simpset() addsimps [lam_type]@prems)));
clasohm@760
    81
qed "lam_injective";
lcp@484
    82
lcp@484
    83
(** Bijections **)
clasohm@0
    84
paulson@5137
    85
Goalw [bij_def] "f: bij(A,B) ==> f: inj(A,B)";
clasohm@0
    86
by (etac IntD1 1);
clasohm@760
    87
qed "bij_is_inj";
clasohm@0
    88
paulson@5137
    89
Goalw [bij_def] "f: bij(A,B) ==> f: surj(A,B)";
clasohm@0
    90
by (etac IntD2 1);
clasohm@760
    91
qed "bij_is_surj";
clasohm@0
    92
clasohm@0
    93
(* f: bij(A,B) ==> f: A->B *)
paulson@6153
    94
bind_thm ("bij_is_fun", bij_is_inj RS inj_is_fun);
clasohm@0
    95
lcp@502
    96
val prems = goalw Perm.thy [bij_def]
clasohm@1461
    97
    "[| !!x. x:A ==> c(x): B;           \
clasohm@1461
    98
\       !!y. y:B ==> d(y): A;           \
clasohm@1461
    99
\       !!x. x:A ==> d(c(x)) = x;       \
clasohm@1461
   100
\       !!y. y:B ==> c(d(y)) = y        \
wenzelm@3840
   101
\    |] ==> (lam x:A. c(x)) : bij(A,B)";
lcp@502
   102
by (REPEAT (ares_tac (prems @ [IntI, lam_injective, lam_surjective]) 1));
clasohm@760
   103
qed "lam_bijective";
lcp@502
   104
paulson@5284
   105
Goal "(ALL y : x. EX! y'. f(y') = f(y))  \
paulson@5284
   106
\     ==> (lam z:{f(y). y:x}. THE y. f(y) = z) : bij({f(y). y:x}, x)";
paulson@5284
   107
by (res_inst_tac [("d","f")] lam_bijective 1);
paulson@5284
   108
by (auto_tac (claset(),
paulson@5284
   109
	      simpset() addsimps [the_equality2]));
paulson@5284
   110
qed "RepFun_bijective";
paulson@5284
   111
lcp@6
   112
clasohm@0
   113
(** Identity function **)
clasohm@0
   114
clasohm@0
   115
val [prem] = goalw Perm.thy [id_def] "a:A ==> <a,a> : id(A)";  
clasohm@0
   116
by (rtac (prem RS lamI) 1);
clasohm@760
   117
qed "idI";
clasohm@0
   118
clasohm@0
   119
val major::prems = goalw Perm.thy [id_def]
clasohm@0
   120
    "[| p: id(A);  !!x.[| x:A; p=<x,x> |] ==> P  \
clasohm@0
   121
\    |] ==>  P";  
clasohm@0
   122
by (rtac (major RS lamE) 1);
clasohm@0
   123
by (REPEAT (ares_tac prems 1));
clasohm@760
   124
qed "idE";
clasohm@0
   125
wenzelm@5067
   126
Goalw [id_def] "id(A) : A->A";  
clasohm@0
   127
by (rtac lam_type 1);
clasohm@0
   128
by (assume_tac 1);
clasohm@760
   129
qed "id_type";
clasohm@0
   130
paulson@5137
   131
Goalw [id_def] "x:A ==> id(A)`x = x";
paulson@2469
   132
by (Asm_simp_tac 1);
paulson@2469
   133
qed "id_conv";
paulson@2469
   134
paulson@2469
   135
Addsimps [id_conv];
lcp@826
   136
clasohm@0
   137
val [prem] = goalw Perm.thy [id_def] "A<=B ==> id(A) <= id(B)";
clasohm@0
   138
by (rtac (prem RS lam_mono) 1);
clasohm@760
   139
qed "id_mono";
clasohm@0
   140
paulson@5143
   141
Goalw [inj_def,id_def] "A<=B ==> id(A): inj(A,B)";
clasohm@0
   142
by (REPEAT (ares_tac [CollectI,lam_type] 1));
lcp@435
   143
by (etac subsetD 1 THEN assume_tac 1);
paulson@2469
   144
by (Simp_tac 1);
clasohm@760
   145
qed "id_subset_inj";
lcp@435
   146
lcp@435
   147
val id_inj = subset_refl RS id_subset_inj;
clasohm@0
   148
wenzelm@5067
   149
Goalw [id_def,surj_def] "id(A): surj(A,A)";
wenzelm@4091
   150
by (blast_tac (claset() addIs [lam_type, beta]) 1);
clasohm@760
   151
qed "id_surj";
clasohm@0
   152
wenzelm@5067
   153
Goalw [bij_def] "id(A): bij(A,A)";
wenzelm@4091
   154
by (blast_tac (claset() addIs [id_inj, id_surj]) 1);
clasohm@760
   155
qed "id_bij";
clasohm@0
   156
wenzelm@5067
   157
Goalw [id_def] "A <= B <-> id(A) : A->B";
wenzelm@4091
   158
by (fast_tac (claset() addSIs [lam_type] addDs [apply_type] 
wenzelm@4091
   159
                      addss (simpset())) 1);
clasohm@760
   160
qed "subset_iff_id";
lcp@517
   161
clasohm@0
   162
lcp@502
   163
(*** Converse of a function ***)
clasohm@0
   164
paulson@5137
   165
Goalw [inj_def] "f: inj(A,B) ==> converse(f) : range(f)->A";
wenzelm@4091
   166
by (asm_simp_tac (simpset() addsimps [Pi_iff, function_def]) 1);
paulson@2033
   167
by (etac CollectE 1);
wenzelm@4091
   168
by (asm_simp_tac (simpset() addsimps [apply_iff]) 1);
wenzelm@4091
   169
by (blast_tac (claset() addDs [fun_is_rel]) 1);
clasohm@760
   170
qed "inj_converse_fun";
clasohm@0
   171
lcp@502
   172
(** Equations for converse(f) **)
clasohm@0
   173
clasohm@0
   174
(*The premises are equivalent to saying that f is injective...*) 
paulson@5268
   175
Goal "[| f: A->B;  converse(f): C->A;  a: A |] ==> converse(f)`(f`a) = a";
wenzelm@4091
   176
by (blast_tac (claset() addIs [apply_Pair, apply_equality, converseI]) 1);
clasohm@760
   177
qed "left_inverse_lemma";
clasohm@0
   178
paulson@5268
   179
Goal "[| f: inj(A,B);  a: A |] ==> converse(f)`(f`a) = a";
wenzelm@4091
   180
by (blast_tac (claset() addIs [left_inverse_lemma, inj_converse_fun,
paulson@6176
   181
			       inj_is_fun]) 1);
clasohm@760
   182
qed "left_inverse";
clasohm@0
   183
lcp@435
   184
val left_inverse_bij = bij_is_inj RS left_inverse;
lcp@435
   185
paulson@5321
   186
Goal "[| f: A->B;  converse(f): C->A;  b: C |] ==> f`(converse(f)`b) = b";
clasohm@0
   187
by (rtac (apply_Pair RS (converseD RS apply_equality)) 1);
paulson@5321
   188
by (REPEAT (assume_tac 1));
clasohm@760
   189
qed "right_inverse_lemma";
clasohm@0
   190
lcp@502
   191
(*Should the premises be f:surj(A,B), b:B for symmetry with left_inverse?
lcp@502
   192
  No: they would not imply that converse(f) was a function! *)
paulson@5137
   193
Goal "[| f: inj(A,B);  b: range(f) |] ==> f`(converse(f)`b) = b";
clasohm@0
   194
by (rtac right_inverse_lemma 1);
lcp@435
   195
by (REPEAT (ares_tac [inj_converse_fun,inj_is_fun] 1));
clasohm@760
   196
qed "right_inverse";
clasohm@0
   197
paulson@6176
   198
Addsimps [left_inverse, right_inverse];
paulson@6176
   199
paulson@2469
   200
paulson@5137
   201
Goal "[| f: bij(A,B);  b: B |] ==> f`(converse(f)`b) = b";
paulson@6176
   202
by (force_tac (claset(), simpset() addsimps [bij_def, surj_range]) 1);
clasohm@760
   203
qed "right_inverse_bij";
lcp@435
   204
lcp@502
   205
(** Converses of injections, surjections, bijections **)
lcp@502
   206
paulson@5137
   207
Goal "f: inj(A,B) ==> converse(f): inj(range(f), A)";
clasohm@1461
   208
by (rtac f_imp_injective 1);
clasohm@1461
   209
by (etac inj_converse_fun 1);
clasohm@1461
   210
by (rtac right_inverse 1);
lcp@502
   211
by (REPEAT (assume_tac 1));
clasohm@760
   212
qed "inj_converse_inj";
clasohm@0
   213
paulson@5137
   214
Goal "f: inj(A,B) ==> converse(f): surj(range(f), A)";
paulson@6176
   215
by (blast_tac (claset() addIs [f_imp_surjective, inj_converse_fun, 
paulson@6176
   216
			       left_inverse,
paulson@6176
   217
			       inj_is_fun, range_of_fun RS apply_type]) 1);
clasohm@760
   218
qed "inj_converse_surj";
lcp@502
   219
paulson@5137
   220
Goalw [bij_def] "f: bij(A,B) ==> converse(f): bij(B,A)";
wenzelm@4091
   221
by (fast_tac (claset() addEs [surj_range RS subst, inj_converse_inj,
paulson@3016
   222
			      inj_converse_surj]) 1);
clasohm@760
   223
qed "bij_converse_bij";
paulson@2469
   224
(*Adding this as an SI seems to cause looping*)
clasohm@0
   225
paulson@6153
   226
AddTCs [bij_converse_bij];
paulson@6153
   227
clasohm@0
   228
clasohm@0
   229
(** Composition of two relations **)
clasohm@0
   230
lcp@791
   231
(*The inductive definition package could derive these theorems for (r O s)*)
clasohm@0
   232
paulson@5137
   233
Goalw [comp_def] "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s";
paulson@3016
   234
by (Blast_tac 1);
clasohm@760
   235
qed "compI";
clasohm@0
   236
clasohm@0
   237
val prems = goalw Perm.thy [comp_def]
clasohm@0
   238
    "[| xz : r O s;  \
clasohm@0
   239
\       !!x y z. [| xz=<x,z>;  <x,y>:s;  <y,z>:r |] ==> P \
clasohm@0
   240
\    |] ==> P";
clasohm@0
   241
by (cut_facts_tac prems 1);
clasohm@0
   242
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1));
clasohm@760
   243
qed "compE";
clasohm@0
   244
paulson@2688
   245
bind_thm ("compEpair", 
clasohm@0
   246
    rule_by_tactic (REPEAT_FIRST (etac Pair_inject ORELSE' bound_hyp_subst_tac)
clasohm@1461
   247
                    THEN prune_params_tac)
paulson@2688
   248
        (read_instantiate [("xz","<a,c>")] compE));
clasohm@0
   249
paulson@2469
   250
AddSIs [idI];
paulson@2469
   251
AddIs  [compI];
paulson@2469
   252
AddSEs [compE,idE];
clasohm@0
   253
paulson@5202
   254
Goal "converse(R O S) = converse(S) O converse(R)";
paulson@5202
   255
by (Blast_tac 1);
paulson@5202
   256
qed "converse_comp";
paulson@5202
   257
paulson@5202
   258
clasohm@0
   259
(** Domain and Range -- see Suppes, section 3.1 **)
clasohm@0
   260
clasohm@0
   261
(*Boyer et al., Set Theory in First-Order Logic, JAR 2 (1986), 287-327*)
wenzelm@5067
   262
Goal "range(r O s) <= range(r)";
paulson@3016
   263
by (Blast_tac 1);
clasohm@760
   264
qed "range_comp";
clasohm@0
   265
paulson@5137
   266
Goal "domain(r) <= range(s) ==> range(r O s) = range(r)";
clasohm@0
   267
by (rtac (range_comp RS equalityI) 1);
paulson@3016
   268
by (Blast_tac 1);
clasohm@760
   269
qed "range_comp_eq";
clasohm@0
   270
wenzelm@5067
   271
Goal "domain(r O s) <= domain(s)";
paulson@3016
   272
by (Blast_tac 1);
clasohm@760
   273
qed "domain_comp";
clasohm@0
   274
paulson@5137
   275
Goal "range(s) <= domain(r) ==> domain(r O s) = domain(s)";
clasohm@0
   276
by (rtac (domain_comp RS equalityI) 1);
paulson@3016
   277
by (Blast_tac 1);
clasohm@760
   278
qed "domain_comp_eq";
clasohm@0
   279
wenzelm@5067
   280
Goal "(r O s)``A = r``(s``A)";
paulson@3016
   281
by (Blast_tac 1);
clasohm@760
   282
qed "image_comp";
lcp@218
   283
lcp@218
   284
clasohm@0
   285
(** Other results **)
clasohm@0
   286
paulson@5137
   287
Goal "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
paulson@3016
   288
by (Blast_tac 1);
clasohm@760
   289
qed "comp_mono";
clasohm@0
   290
clasohm@0
   291
(*composition preserves relations*)
paulson@5137
   292
Goal "[| s<=A*B;  r<=B*C |] ==> (r O s) <= A*C";
paulson@3016
   293
by (Blast_tac 1);
clasohm@760
   294
qed "comp_rel";
clasohm@0
   295
clasohm@0
   296
(*associative law for composition*)
wenzelm@5067
   297
Goal "(r O s) O t = r O (s O t)";
paulson@3016
   298
by (Blast_tac 1);
clasohm@760
   299
qed "comp_assoc";
clasohm@0
   300
clasohm@0
   301
(*left identity of composition; provable inclusions are
clasohm@0
   302
        id(A) O r <= r       
clasohm@0
   303
  and   [| r<=A*B; B<=C |] ==> r <= id(C) O r *)
paulson@5137
   304
Goal "r<=A*B ==> id(B) O r = r";
paulson@3016
   305
by (Blast_tac 1);
clasohm@760
   306
qed "left_comp_id";
clasohm@0
   307
clasohm@0
   308
(*right identity of composition; provable inclusions are
clasohm@0
   309
        r O id(A) <= r
clasohm@0
   310
  and   [| r<=A*B; A<=C |] ==> r <= r O id(C) *)
paulson@5137
   311
Goal "r<=A*B ==> r O id(A) = r";
paulson@3016
   312
by (Blast_tac 1);
clasohm@760
   313
qed "right_comp_id";
clasohm@0
   314
clasohm@0
   315
clasohm@0
   316
(** Composition preserves functions, injections, and surjections **)
clasohm@0
   317
wenzelm@5067
   318
Goalw [function_def]
paulson@5147
   319
    "[| function(g);  function(f) |] ==> function(f O g)";
paulson@3016
   320
by (Blast_tac 1);
clasohm@760
   321
qed "comp_function";
lcp@693
   322
paulson@5137
   323
Goal "[| g: A->B;  f: B->C |] ==> (f O g) : A->C";
paulson@1787
   324
by (asm_full_simp_tac
wenzelm@4091
   325
    (simpset() addsimps [Pi_def, comp_function, Pow_iff, comp_rel]
paulson@1787
   326
           setloop etac conjE) 1);
paulson@2033
   327
by (stac (range_rel_subset RS domain_comp_eq) 1 THEN assume_tac 2);
paulson@3016
   328
by (Blast_tac 1);
clasohm@760
   329
qed "comp_fun";
clasohm@0
   330
paulson@5137
   331
Goal "[| g: A->B;  f: B->C;  a:A |] ==> (f O g)`a = f`(g`a)";
lcp@435
   332
by (REPEAT (ares_tac [comp_fun,apply_equality,compI,
clasohm@1461
   333
                      apply_Pair,apply_type] 1));
clasohm@760
   334
qed "comp_fun_apply";
clasohm@0
   335
paulson@2469
   336
Addsimps [comp_fun_apply];
paulson@2469
   337
lcp@862
   338
(*Simplifies compositions of lambda-abstractions*)
paulson@5321
   339
val [prem] = Goal
clasohm@1461
   340
    "[| !!x. x:A ==> b(x): B    \
wenzelm@3840
   341
\    |] ==> (lam y:B. c(y)) O (lam x:A. b(x)) = (lam x:A. c(b(x)))";
clasohm@1461
   342
by (rtac fun_extension 1);
clasohm@1461
   343
by (rtac comp_fun 1);
clasohm@1461
   344
by (rtac lam_funtype 2);
paulson@6153
   345
by (typecheck_tac (tcset() addTCs [prem]));
wenzelm@4091
   346
by (asm_simp_tac (simpset() 
nipkow@7570
   347
                   setSolver (mk_solver ""
nipkow@7570
   348
                   (type_solver_tac (tcset() addTCs [prem, lam_funtype])))) 1);
lcp@862
   349
qed "comp_lam";
lcp@862
   350
paulson@5137
   351
Goal "[| g: inj(A,B);  f: inj(B,C) |] ==> (f O g) : inj(A,C)";
lcp@502
   352
by (res_inst_tac [("d", "%y. converse(g) ` (converse(f) ` y)")]
lcp@502
   353
    f_imp_injective 1);
lcp@502
   354
by (REPEAT (ares_tac [comp_fun, inj_is_fun] 1));
paulson@6176
   355
by (asm_simp_tac (simpset()  
nipkow@7570
   356
		  setSolver (mk_solver ""
nipkow@7570
   357
		  (type_solver_tac (tcset() addTCs [inj_is_fun])))) 1);
clasohm@760
   358
qed "comp_inj";
clasohm@0
   359
wenzelm@5067
   360
Goalw [surj_def]
paulson@5147
   361
    "[| g: surj(A,B);  f: surj(B,C) |] ==> (f O g) : surj(A,C)";
wenzelm@4091
   362
by (blast_tac (claset() addSIs [comp_fun,comp_fun_apply]) 1);
clasohm@760
   363
qed "comp_surj";
clasohm@0
   364
wenzelm@5067
   365
Goalw [bij_def]
paulson@5147
   366
    "[| g: bij(A,B);  f: bij(B,C) |] ==> (f O g) : bij(A,C)";
wenzelm@4091
   367
by (blast_tac (claset() addIs [comp_inj,comp_surj]) 1);
clasohm@760
   368
qed "comp_bij";
clasohm@0
   369
clasohm@0
   370
clasohm@0
   371
(** Dual properties of inj and surj -- useful for proofs from
clasohm@0
   372
    D Pastre.  Automatic theorem proving in set theory. 
clasohm@0
   373
    Artificial Intelligence, 10:1--27, 1978. **)
clasohm@0
   374
wenzelm@5067
   375
Goalw [inj_def]
paulson@5147
   376
    "[| (f O g): inj(A,C);  g: A->B;  f: B->C |] ==> g: inj(A,B)";
paulson@4152
   377
by Safe_tac;
clasohm@0
   378
by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp] 1));
wenzelm@4091
   379
by (asm_simp_tac (simpset() ) 1);
clasohm@760
   380
qed "comp_mem_injD1";
clasohm@0
   381
wenzelm@5067
   382
Goalw [inj_def,surj_def]
paulson@5147
   383
    "[| (f O g): inj(A,C);  g: surj(A,B);  f: B->C |] ==> f: inj(B,C)";
paulson@4152
   384
by Safe_tac;
clasohm@0
   385
by (res_inst_tac [("x1", "x")] (bspec RS bexE) 1);
clasohm@0
   386
by (eres_inst_tac [("x1", "w")] (bspec RS bexE) 3);
clasohm@0
   387
by (REPEAT (assume_tac 1));
paulson@4152
   388
by Safe_tac;
lcp@6
   389
by (res_inst_tac [("t", "op `(g)")] subst_context 1);
clasohm@0
   390
by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp] 1));
wenzelm@4091
   391
by (asm_simp_tac (simpset() ) 1);
clasohm@760
   392
qed "comp_mem_injD2";
clasohm@0
   393
wenzelm@5067
   394
Goalw [surj_def]
paulson@5147
   395
    "[| (f O g): surj(A,C);  g: A->B;  f: B->C |] ==> f: surj(B,C)";
wenzelm@4091
   396
by (blast_tac (claset() addSIs [comp_fun_apply RS sym, apply_funtype]) 1);
clasohm@760
   397
qed "comp_mem_surjD1";
clasohm@0
   398
paulson@5268
   399
Goal "[| (f O g)`a = c;  g: A->B;  f: B->C;  a:A |] ==> f`(g`a) = c";
lcp@435
   400
by (REPEAT (ares_tac [comp_fun_apply RS sym RS trans] 1));
clasohm@760
   401
qed "comp_fun_applyD";
clasohm@0
   402
wenzelm@5067
   403
Goalw [inj_def,surj_def]
paulson@5147
   404
    "[| (f O g): surj(A,C);  g: A->B;  f: inj(B,C) |] ==> g: surj(A,B)";
paulson@4152
   405
by Safe_tac;
clasohm@0
   406
by (eres_inst_tac [("x1", "f`y")] (bspec RS bexE) 1);
lcp@435
   407
by (REPEAT (ares_tac [apply_type] 1 ORELSE dtac comp_fun_applyD 1));
wenzelm@4091
   408
by (blast_tac (claset() addSIs [apply_funtype]) 1);
clasohm@760
   409
qed "comp_mem_surjD2";
clasohm@0
   410
clasohm@0
   411
clasohm@0
   412
(** inverses of composition **)
clasohm@0
   413
clasohm@0
   414
(*left inverse of composition; one inclusion is
clasohm@0
   415
        f: A->B ==> id(A) <= converse(f) O f *)
paulson@5137
   416
Goalw [inj_def] "f: inj(A,B) ==> converse(f) O f = id(A)";
wenzelm@4091
   417
by (fast_tac (claset() addIs [apply_Pair] 
paulson@1787
   418
                      addEs [domain_type]
wenzelm@4091
   419
               addss (simpset() addsimps [apply_iff])) 1);
clasohm@760
   420
qed "left_comp_inverse";
clasohm@0
   421
clasohm@0
   422
(*right inverse of composition; one inclusion is
clasohm@1461
   423
                f: A->B ==> f O converse(f) <= id(B) 
lcp@735
   424
*)
clasohm@0
   425
val [prem] = goalw Perm.thy [surj_def]
clasohm@0
   426
    "f: surj(A,B) ==> f O converse(f) = id(B)";
clasohm@0
   427
val appfD = (prem RS CollectD1) RSN (3,apply_equality2);
clasohm@0
   428
by (cut_facts_tac [prem] 1);
clasohm@0
   429
by (rtac equalityI 1);
wenzelm@4091
   430
by (best_tac (claset() addEs [domain_type, range_type, make_elim appfD]) 1);
wenzelm@4091
   431
by (blast_tac (claset() addIs [apply_Pair]) 1);
clasohm@760
   432
qed "right_comp_inverse";
clasohm@0
   433
lcp@435
   434
(** Proving that a function is a bijection **)
lcp@435
   435
wenzelm@5067
   436
Goalw [id_def]
paulson@7379
   437
    "[| f: A->B;  g: B->A |] ==> f O g = id(B) <-> (ALL y:B. f`(g`y)=y)";
paulson@4152
   438
by Safe_tac;
wenzelm@3840
   439
by (dres_inst_tac [("t", "%h. h`y ")] subst_context 1);
paulson@2469
   440
by (Asm_full_simp_tac 1);
lcp@437
   441
by (rtac fun_extension 1);
lcp@435
   442
by (REPEAT (ares_tac [comp_fun, lam_type] 1));
paulson@4477
   443
by Auto_tac;
clasohm@760
   444
qed "comp_eq_id_iff";
lcp@435
   445
wenzelm@5067
   446
Goalw [bij_def]
paulson@7379
   447
    "[| f: A->B;  g: B->A;  f O g = id(B);  g O f = id(A) |] ==> f : bij(A,B)";
wenzelm@4091
   448
by (asm_full_simp_tac (simpset() addsimps [comp_eq_id_iff]) 1);
lcp@502
   449
by (REPEAT (ares_tac [conjI, f_imp_injective, f_imp_surjective] 1
lcp@502
   450
       ORELSE eresolve_tac [bspec, apply_type] 1));
clasohm@760
   451
qed "fg_imp_bijective";
lcp@435
   452
paulson@5137
   453
Goal "[| f: A->A;  f O f = id(A) |] ==> f : bij(A,A)";
lcp@435
   454
by (REPEAT (ares_tac [fg_imp_bijective] 1));
clasohm@760
   455
qed "nilpotent_imp_bijective";
lcp@435
   456
paulson@5137
   457
Goal "[| converse(f): B->A;  f: A->B |] ==> f : bij(A,B)";
wenzelm@4091
   458
by (asm_simp_tac (simpset() addsimps [fg_imp_bijective, comp_eq_id_iff, 
clasohm@1461
   459
                                  left_inverse_lemma, right_inverse_lemma]) 1);
clasohm@760
   460
qed "invertible_imp_bijective";
clasohm@0
   461
clasohm@0
   462
(** Unions of functions -- cf similar theorems on func.ML **)
clasohm@0
   463
paulson@1709
   464
(*Theorem by KG, proof by LCP*)
paulson@5466
   465
Goal "[| f: inj(A,B);  g: inj(C,D);  B Int D = 0 |] \
paulson@6068
   466
\     ==> (lam a: A Un C. if a:A then f`a else g`a) : inj(A Un C, B Un D)";
paulson@6068
   467
by (res_inst_tac [("d","%z. if z:B then converse(f)`z else converse(g)`z")]
paulson@1709
   468
        lam_injective 1);
paulson@6176
   469
by (auto_tac (claset(),
paulson@6176
   470
	      simpset() addsimps [inj_is_fun RS apply_type]));
paulson@5466
   471
by (blast_tac (claset() addIs [inj_is_fun RS apply_type]) 1);
paulson@1709
   472
qed "inj_disjoint_Un";
paulson@1610
   473
wenzelm@5067
   474
Goalw [surj_def]
paulson@7379
   475
    "[| f: surj(A,B);  g: surj(C,D);  A Int C = 0 |]  \
paulson@7379
   476
\    ==> (f Un g) : surj(A Un C, B Un D)";
wenzelm@4091
   477
by (blast_tac (claset() addIs [fun_disjoint_apply1, fun_disjoint_apply2,
paulson@3016
   478
			      fun_disjoint_Un, trans]) 1);
clasohm@760
   479
qed "surj_disjoint_Un";
clasohm@0
   480
clasohm@0
   481
(*A simple, high-level proof; the version for injections follows from it,
lcp@502
   482
  using  f:inj(A,B) <-> f:bij(A,range(f))  *)
paulson@7379
   483
Goal "[| f: bij(A,B);  g: bij(C,D);  A Int C = 0;  B Int D = 0 |] \
paulson@7379
   484
\     ==> (f Un g) : bij(A Un C, B Un D)";
clasohm@0
   485
by (rtac invertible_imp_bijective 1);
paulson@2033
   486
by (stac converse_Un 1);
clasohm@0
   487
by (REPEAT (ares_tac [fun_disjoint_Un, bij_is_fun, bij_converse_bij] 1));
clasohm@760
   488
qed "bij_disjoint_Un";
clasohm@0
   489
clasohm@0
   490
clasohm@0
   491
(** Restrictions as surjections and bijections *)
clasohm@0
   492
clasohm@0
   493
val prems = goalw Perm.thy [surj_def]
clasohm@0
   494
    "f: Pi(A,B) ==> f: surj(A, f``A)";
clasohm@0
   495
val rls = apply_equality :: (prems RL [apply_Pair,Pi_type]);
wenzelm@4091
   496
by (fast_tac (claset() addIs rls) 1);
clasohm@760
   497
qed "surj_image";
clasohm@0
   498
paulson@5137
   499
Goal "[| f: Pi(C,B);  A<=C |] ==> restrict(f,A)``A = f``A";
clasohm@0
   500
by (rtac equalityI 1);
clasohm@0
   501
by (SELECT_GOAL (rewtac restrict_def) 2);
clasohm@0
   502
by (REPEAT (eresolve_tac [imageE, apply_equality RS subst] 2
clasohm@0
   503
     ORELSE ares_tac [subsetI,lamI,imageI] 2));
clasohm@0
   504
by (REPEAT (ares_tac [image_mono,restrict_subset,subset_refl] 1));
clasohm@760
   505
qed "restrict_image";
clasohm@0
   506
wenzelm@5067
   507
Goalw [inj_def]
paulson@5147
   508
    "[| f: inj(A,B);  C<=A |] ==> restrict(f,C): inj(C,B)";
wenzelm@4091
   509
by (safe_tac (claset() addSEs [restrict_type2]));
clasohm@0
   510
by (REPEAT (eresolve_tac [asm_rl, bspec RS bspec RS mp, subsetD,
clasohm@0
   511
                          box_equals, restrict] 1));
clasohm@760
   512
qed "restrict_inj";
clasohm@0
   513
paulson@5321
   514
Goal "[| f: Pi(A,B);  C<=A |] ==> restrict(f,C): surj(C, f``C)";
clasohm@0
   515
by (rtac (restrict_image RS subst) 1);
clasohm@0
   516
by (rtac (restrict_type2 RS surj_image) 3);
paulson@5321
   517
by (REPEAT (assume_tac 1));
clasohm@760
   518
qed "restrict_surj";
clasohm@0
   519
wenzelm@5067
   520
Goalw [inj_def,bij_def]
paulson@5147
   521
    "[| f: inj(A,B);  C<=A |] ==> restrict(f,C): bij(C, f``C)";
wenzelm@4091
   522
by (blast_tac (claset() addSIs [restrict, restrict_surj]
paulson@3016
   523
		       addIs [box_equals, surj_is_fun]) 1);
clasohm@760
   524
qed "restrict_bij";
clasohm@0
   525
clasohm@0
   526
clasohm@0
   527
(*** Lemmas for Ramsey's Theorem ***)
clasohm@0
   528
paulson@5137
   529
Goalw [inj_def] "[| f: inj(A,B);  B<=D |] ==> f: inj(A,D)";
wenzelm@4091
   530
by (blast_tac (claset() addIs [fun_weaken_type]) 1);
clasohm@760
   531
qed "inj_weaken_type";
clasohm@0
   532
clasohm@0
   533
val [major] = goal Perm.thy  
clasohm@0
   534
    "[| f: inj(succ(m), A) |] ==> restrict(f,m) : inj(m, A-{f`m})";
clasohm@0
   535
by (rtac (major RS restrict_bij RS bij_is_inj RS inj_weaken_type) 1);
paulson@3016
   536
by (Blast_tac 1);
clasohm@0
   537
by (cut_facts_tac [major] 1);
clasohm@0
   538
by (rewtac inj_def);
wenzelm@4091
   539
by (fast_tac (claset() addEs [range_type, mem_irrefl] 
paulson@2469
   540
	              addDs [apply_equality]) 1);
clasohm@760
   541
qed "inj_succ_restrict";
clasohm@0
   542
wenzelm@5067
   543
Goalw [inj_def]
paulson@7379
   544
    "[| f: inj(A,B);  a~:A;  b~:B |] \
paulson@7379
   545
\    ==> cons(<a,b>,f) : inj(cons(a,A), cons(b,B))";
oheimb@5525
   546
by (force_tac (claset() addIs [apply_type],
oheimb@5525
   547
               simpset() addsimps [fun_extend, fun_extend_apply2,
oheimb@5525
   548
						fun_extend_apply1]) 1);
clasohm@760
   549
qed "inj_extend";
paulson@1787
   550