src/HOL/Number_Theory/MiscAlgebra.thy
author wenzelm
Sat Sep 10 23:27:32 2011 +0200 (2011-09-10)
changeset 44872 a98ef45122f3
parent 44106 0e018cbcc0de
child 44890 22f665a2e91c
permissions -rw-r--r--
misc tuning;
wenzelm@41959
     1
(*  Title:      HOL/Number_Theory/MiscAlgebra.thy
nipkow@31719
     2
    Author:     Jeremy Avigad
nipkow@31719
     3
haftmann@31772
     4
These are things that can be added to the Algebra library.
nipkow@31719
     5
*)
nipkow@31719
     6
nipkow@31719
     7
theory MiscAlgebra
haftmann@31772
     8
imports
nipkow@31719
     9
  "~~/src/HOL/Algebra/Ring"
nipkow@31719
    10
  "~~/src/HOL/Algebra/FiniteProduct"
haftmann@44106
    11
begin
nipkow@31719
    12
nipkow@31719
    13
(* finiteness stuff *)
nipkow@31719
    14
wenzelm@44872
    15
lemma bounded_set1_int [intro]: "finite {(x::int). a < x & x < b & P x}"
nipkow@31719
    16
  apply (subgoal_tac "{x. a < x & x < b & P x} <= {a<..<b}")
nipkow@31719
    17
  apply (erule finite_subset)
nipkow@31719
    18
  apply auto
nipkow@31719
    19
done
nipkow@31719
    20
nipkow@31719
    21
nipkow@31719
    22
(* The rest is for the algebra libraries *)
nipkow@31719
    23
nipkow@31719
    24
(* These go in Group.thy. *)
nipkow@31719
    25
nipkow@31719
    26
(*
nipkow@31719
    27
  Show that the units in any monoid give rise to a group.
nipkow@31719
    28
nipkow@31719
    29
  The file Residues.thy provides some infrastructure to use
nipkow@31719
    30
  facts about the unit group within the ring locale.
nipkow@31719
    31
*)
nipkow@31719
    32
nipkow@31719
    33
haftmann@35416
    34
definition units_of :: "('a, 'b) monoid_scheme => 'a monoid" where
nipkow@31719
    35
  "units_of G == (| carrier = Units G,
nipkow@31719
    36
     Group.monoid.mult = Group.monoid.mult G,
haftmann@44106
    37
     one  = one G |)"
nipkow@31719
    38
nipkow@31719
    39
(*
nipkow@31719
    40
nipkow@31719
    41
lemma (in monoid) Units_mult_closed [intro]:
nipkow@31719
    42
  "x : Units G ==> y : Units G ==> x \<otimes> y : Units G"
nipkow@31719
    43
  apply (unfold Units_def)
nipkow@31719
    44
  apply (clarsimp)
nipkow@31719
    45
  apply (rule_tac x = "xaa \<otimes> xa" in bexI)
nipkow@31719
    46
  apply auto
nipkow@31719
    47
  apply (subst m_assoc)
nipkow@31719
    48
  apply auto
nipkow@31719
    49
  apply (subst (2) m_assoc [symmetric])
nipkow@31719
    50
  apply auto
nipkow@31719
    51
  apply (subst m_assoc)
nipkow@31719
    52
  apply auto
nipkow@31719
    53
  apply (subst (2) m_assoc [symmetric])
nipkow@31719
    54
  apply auto
nipkow@31719
    55
done
nipkow@31719
    56
nipkow@31719
    57
*)
nipkow@31719
    58
nipkow@31719
    59
lemma (in monoid) units_group: "group(units_of G)"
nipkow@31719
    60
  apply (unfold units_of_def)
nipkow@31719
    61
  apply (rule groupI)
nipkow@31719
    62
  apply auto
nipkow@31719
    63
  apply (subst m_assoc)
nipkow@31719
    64
  apply auto
nipkow@31719
    65
  apply (rule_tac x = "inv x" in bexI)
nipkow@31719
    66
  apply auto
wenzelm@44872
    67
  done
nipkow@31719
    68
nipkow@31719
    69
lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"
nipkow@31719
    70
  apply (rule group.group_comm_groupI)
nipkow@31719
    71
  apply (rule units_group)
wenzelm@41541
    72
  apply (insert comm_monoid_axioms)
nipkow@31719
    73
  apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
wenzelm@41541
    74
  apply auto
wenzelm@41541
    75
  done
nipkow@31719
    76
nipkow@31719
    77
lemma units_of_carrier: "carrier (units_of G) = Units G"
wenzelm@44872
    78
  unfolding units_of_def by auto
nipkow@31719
    79
nipkow@31719
    80
lemma units_of_mult: "mult(units_of G) = mult G"
wenzelm@44872
    81
  unfolding units_of_def by auto
nipkow@31719
    82
nipkow@31719
    83
lemma units_of_one: "one(units_of G) = one G"
wenzelm@44872
    84
  unfolding units_of_def by auto
nipkow@31719
    85
wenzelm@44872
    86
lemma (in monoid) units_of_inv: "x : Units G ==>
nipkow@31719
    87
    m_inv (units_of G) x = m_inv G x"
nipkow@31719
    88
  apply (rule sym)
nipkow@31719
    89
  apply (subst m_inv_def)
nipkow@31719
    90
  apply (rule the1_equality)
nipkow@31719
    91
  apply (rule ex_ex1I)
nipkow@31719
    92
  apply (subst (asm) Units_def)
nipkow@31719
    93
  apply auto
nipkow@31719
    94
  apply (erule inv_unique)
nipkow@31719
    95
  apply auto
nipkow@31719
    96
  apply (rule Units_closed)
nipkow@31719
    97
  apply (simp_all only: units_of_carrier [symmetric])
nipkow@31719
    98
  apply (insert units_group)
nipkow@31719
    99
  apply auto
nipkow@31719
   100
  apply (subst units_of_mult [symmetric])
nipkow@31719
   101
  apply (subst units_of_one [symmetric])
nipkow@31719
   102
  apply (erule group.r_inv, assumption)
nipkow@31719
   103
  apply (subst units_of_mult [symmetric])
nipkow@31719
   104
  apply (subst units_of_one [symmetric])
nipkow@31719
   105
  apply (erule group.l_inv, assumption)
nipkow@31719
   106
done
nipkow@31719
   107
wenzelm@44872
   108
lemma (in group) inj_on_const_mult: "a: (carrier G) ==>
nipkow@31719
   109
    inj_on (%x. a \<otimes> x) (carrier G)"
wenzelm@44872
   110
  unfolding inj_on_def by auto
nipkow@31719
   111
nipkow@31719
   112
lemma (in group) surj_const_mult: "a : (carrier G) ==>
wenzelm@44872
   113
    (%x. a \<otimes> x) ` (carrier G) = (carrier G)"
nipkow@31719
   114
  apply (auto simp add: image_def)
nipkow@31719
   115
  apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
nipkow@31719
   116
  apply auto
nipkow@31719
   117
(* auto should get this. I suppose we need "comm_monoid_simprules"
nipkow@31719
   118
   for mult_ac rewriting. *)
nipkow@31719
   119
  apply (subst m_assoc [symmetric])
nipkow@31719
   120
  apply auto
wenzelm@44872
   121
  done
nipkow@31719
   122
nipkow@31719
   123
lemma (in group) l_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
nipkow@31719
   124
    (x \<otimes> a = x) = (a = one G)"
nipkow@31719
   125
  apply auto
nipkow@31719
   126
  apply (subst l_cancel [symmetric])
nipkow@31719
   127
  prefer 4
nipkow@31719
   128
  apply (erule ssubst)
nipkow@31719
   129
  apply auto
wenzelm@44872
   130
  done
nipkow@31719
   131
nipkow@31719
   132
lemma (in group) r_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
nipkow@31719
   133
    (a \<otimes> x = x) = (a = one G)"
nipkow@31719
   134
  apply auto
nipkow@31719
   135
  apply (subst r_cancel [symmetric])
nipkow@31719
   136
  prefer 4
nipkow@31719
   137
  apply (erule ssubst)
nipkow@31719
   138
  apply auto
wenzelm@44872
   139
  done
nipkow@31719
   140
nipkow@31719
   141
(* Is there a better way to do this? *)
nipkow@31719
   142
nipkow@31719
   143
lemma (in group) l_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
nipkow@31719
   144
    (x = x \<otimes> a) = (a = one G)"
wenzelm@44872
   145
  apply (subst eq_commute)
wenzelm@44872
   146
  apply simp
wenzelm@44872
   147
  done
nipkow@31719
   148
nipkow@31719
   149
lemma (in group) r_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
nipkow@31719
   150
    (x = a \<otimes> x) = (a = one G)"
wenzelm@44872
   151
  apply (subst eq_commute)
wenzelm@44872
   152
  apply simp
wenzelm@44872
   153
  done
nipkow@31719
   154
nipkow@31719
   155
(* This should be generalized to arbitrary groups, not just commutative
nipkow@31719
   156
   ones, using Lagrange's theorem. *)
nipkow@31719
   157
nipkow@31719
   158
lemma (in comm_group) power_order_eq_one:
wenzelm@44872
   159
  assumes fin [simp]: "finite (carrier G)"
wenzelm@44872
   160
    and a [simp]: "a : carrier G"
wenzelm@44872
   161
  shows "a (^) card(carrier G) = one G"
nipkow@31719
   162
proof -
nipkow@31719
   163
  have "(\<Otimes>x:carrier G. x) = (\<Otimes>x:carrier G. a \<otimes> x)"
wenzelm@44872
   164
    by (subst (2) finprod_reindex [symmetric],
nipkow@31719
   165
      auto simp add: Pi_def inj_on_const_mult surj_const_mult)
nipkow@31719
   166
  also have "\<dots> = (\<Otimes>x:carrier G. a) \<otimes> (\<Otimes>x:carrier G. x)"
nipkow@31719
   167
    by (auto simp add: finprod_multf Pi_def)
nipkow@31719
   168
  also have "(\<Otimes>x:carrier G. a) = a (^) card(carrier G)"
nipkow@31719
   169
    by (auto simp add: finprod_const)
nipkow@31719
   170
  finally show ?thesis
nipkow@31719
   171
(* uses the preceeding lemma *)
nipkow@31719
   172
    by auto
nipkow@31719
   173
qed
nipkow@31719
   174
nipkow@31719
   175
nipkow@31719
   176
(* Miscellaneous *)
nipkow@31719
   177
nipkow@31719
   178
lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> ~= \<one>\<^bsub>R\<^esub> \<Longrightarrow> ALL x : carrier R - {\<zero>\<^bsub>R\<^esub>}.
nipkow@31719
   179
    x : Units R \<Longrightarrow> field R"
nipkow@31719
   180
  apply (unfold_locales)
wenzelm@41541
   181
  apply (insert cring_axioms, auto)
nipkow@31719
   182
  apply (rule trans)
nipkow@31719
   183
  apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
nipkow@31719
   184
  apply assumption
wenzelm@44872
   185
  apply (subst m_assoc)
wenzelm@41541
   186
  apply auto
nipkow@31719
   187
  apply (unfold Units_def)
nipkow@31719
   188
  apply auto
wenzelm@41541
   189
  done
nipkow@31719
   190
nipkow@31719
   191
lemma (in monoid) inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
wenzelm@41541
   192
    x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
nipkow@31719
   193
  apply (subgoal_tac "x : Units G")
nipkow@31719
   194
  apply (subgoal_tac "y = inv x \<otimes> \<one>")
nipkow@31719
   195
  apply simp
nipkow@31719
   196
  apply (erule subst)
nipkow@31719
   197
  apply (subst m_assoc [symmetric])
nipkow@31719
   198
  apply auto
nipkow@31719
   199
  apply (unfold Units_def)
nipkow@31719
   200
  apply auto
wenzelm@41541
   201
  done
nipkow@31719
   202
nipkow@31719
   203
lemma (in comm_monoid) comm_inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
nipkow@31719
   204
  x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
nipkow@31719
   205
  apply (rule inv_char)
nipkow@31719
   206
  apply auto
wenzelm@44872
   207
  apply (subst m_comm, auto)
wenzelm@41541
   208
  done
nipkow@31719
   209
wenzelm@44872
   210
lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"
nipkow@31719
   211
  apply (rule inv_char)
nipkow@31719
   212
  apply (auto simp add: l_minus r_minus)
wenzelm@41541
   213
  done
nipkow@31719
   214
wenzelm@44872
   215
lemma (in monoid) inv_eq_imp_eq: "x : Units G \<Longrightarrow> y : Units G \<Longrightarrow>
nipkow@31719
   216
    inv x = inv y \<Longrightarrow> x = y"
nipkow@31719
   217
  apply (subgoal_tac "inv(inv x) = inv(inv y)")
nipkow@31719
   218
  apply (subst (asm) Units_inv_inv)+
nipkow@31719
   219
  apply auto
wenzelm@44872
   220
  done
nipkow@31719
   221
nipkow@31719
   222
lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> : Units R"
nipkow@31719
   223
  apply (unfold Units_def)
nipkow@31719
   224
  apply auto
nipkow@31719
   225
  apply (rule_tac x = "\<ominus> \<one>" in bexI)
nipkow@31719
   226
  apply auto
nipkow@31719
   227
  apply (simp add: l_minus r_minus)
wenzelm@44872
   228
  done
nipkow@31719
   229
nipkow@31719
   230
lemma (in monoid) inv_one [simp]: "inv \<one> = \<one>"
nipkow@31719
   231
  apply (rule inv_char)
nipkow@31719
   232
  apply auto
wenzelm@44872
   233
  done
nipkow@31719
   234
nipkow@31719
   235
lemma (in ring) inv_eq_neg_one_eq: "x : Units R \<Longrightarrow> (inv x = \<ominus> \<one>) = (x = \<ominus> \<one>)"
nipkow@31719
   236
  apply auto
nipkow@31719
   237
  apply (subst Units_inv_inv [symmetric])
nipkow@31719
   238
  apply auto
wenzelm@44872
   239
  done
nipkow@31719
   240
nipkow@31719
   241
lemma (in monoid) inv_eq_one_eq: "x : Units G \<Longrightarrow> (inv x = \<one>) = (x = \<one>)"
nipkow@31719
   242
  apply auto
nipkow@31719
   243
  apply (subst Units_inv_inv [symmetric])
nipkow@31719
   244
  apply auto
wenzelm@44872
   245
  done
nipkow@31719
   246
nipkow@31719
   247
nipkow@31719
   248
(* This goes in FiniteProduct *)
nipkow@31719
   249
nipkow@31719
   250
lemma (in comm_monoid) finprod_UN_disjoint:
nipkow@31719
   251
  "finite I \<Longrightarrow> (ALL i:I. finite (A i)) \<longrightarrow> (ALL i:I. ALL j:I. i ~= j \<longrightarrow>
nipkow@31719
   252
     (A i) Int (A j) = {}) \<longrightarrow>
nipkow@31719
   253
      (ALL i:I. ALL x: (A i). g x : carrier G) \<longrightarrow>
nipkow@31719
   254
        finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"
nipkow@31719
   255
  apply (induct set: finite)
nipkow@31719
   256
  apply force
nipkow@31719
   257
  apply clarsimp
nipkow@31719
   258
  apply (subst finprod_Un_disjoint)
nipkow@31719
   259
  apply blast
nipkow@31719
   260
  apply (erule finite_UN_I)
nipkow@31719
   261
  apply blast
nipkow@31721
   262
  apply (fastsimp)
wenzelm@44872
   263
  apply (auto intro!: funcsetI finprod_closed)
wenzelm@44872
   264
  done
nipkow@31719
   265
nipkow@31719
   266
lemma (in comm_monoid) finprod_Union_disjoint:
nipkow@31719
   267
  "[| finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));
wenzelm@44872
   268
      (ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |]
wenzelm@44872
   269
   ==> finprod G f (Union C) = finprod G (finprod G f) C"
nipkow@31719
   270
  apply (frule finprod_UN_disjoint [of C id f])
haftmann@44106
   271
  apply (auto simp add: SUP_def)
wenzelm@44872
   272
  done
nipkow@31719
   273
wenzelm@44872
   274
lemma (in comm_monoid) finprod_one:
wenzelm@44872
   275
    "finite A \<Longrightarrow> (\<And>x. x:A \<Longrightarrow> f x = \<one>) \<Longrightarrow> finprod G f A = \<one>"
wenzelm@44872
   276
  by (induct set: finite) auto
nipkow@31719
   277
nipkow@31719
   278
nipkow@31719
   279
(* need better simplification rules for rings *)
nipkow@31719
   280
(* the next one holds more generally for abelian groups *)
nipkow@31719
   281
nipkow@31719
   282
lemma (in cring) sum_zero_eq_neg:
wenzelm@44872
   283
    "x : carrier R \<Longrightarrow> y : carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
wenzelm@44872
   284
  apply (subgoal_tac "\<ominus> y = \<zero> \<oplus> \<ominus> y")
nipkow@31719
   285
  apply (erule ssubst)back
nipkow@31719
   286
  apply (erule subst)
wenzelm@41541
   287
  apply (simp_all add: ring_simprules)
wenzelm@41541
   288
  done
nipkow@31719
   289
nipkow@31719
   290
(* there's a name conflict -- maybe "domain" should be
nipkow@31719
   291
   "integral_domain" *)
nipkow@31719
   292
wenzelm@44872
   293
lemma (in Ring.domain) square_eq_one:
nipkow@31719
   294
  fixes x
nipkow@31719
   295
  assumes [simp]: "x : carrier R" and
nipkow@31719
   296
    "x \<otimes> x = \<one>"
nipkow@31719
   297
  shows "x = \<one> | x = \<ominus>\<one>"
nipkow@31719
   298
proof -
nipkow@31719
   299
  have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
nipkow@31719
   300
    by (simp add: ring_simprules)
nipkow@31719
   301
  also with `x \<otimes> x = \<one>` have "\<dots> = \<zero>"
nipkow@31719
   302
    by (simp add: ring_simprules)
nipkow@31719
   303
  finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
wenzelm@44872
   304
  then have "(x \<oplus> \<one>) = \<zero> | (x \<oplus> \<ominus> \<one>) = \<zero>"
nipkow@31719
   305
    by (intro integral, auto)
wenzelm@44872
   306
  then show ?thesis
nipkow@31719
   307
    apply auto
nipkow@31719
   308
    apply (erule notE)
nipkow@31719
   309
    apply (rule sum_zero_eq_neg)
nipkow@31719
   310
    apply auto
nipkow@31719
   311
    apply (subgoal_tac "x = \<ominus> (\<ominus> \<one>)")
wenzelm@44872
   312
    apply (simp add: ring_simprules)
nipkow@31719
   313
    apply (rule sum_zero_eq_neg)
nipkow@31719
   314
    apply auto
nipkow@31719
   315
    done
nipkow@31719
   316
qed
nipkow@31719
   317
nipkow@31719
   318
lemma (in Ring.domain) inv_eq_self: "x : Units R \<Longrightarrow>
nipkow@31719
   319
    x = inv x \<Longrightarrow> x = \<one> | x = \<ominus> \<one>"
nipkow@31719
   320
  apply (rule square_eq_one)
nipkow@31719
   321
  apply auto
nipkow@31719
   322
  apply (erule ssubst)back
nipkow@31719
   323
  apply (erule Units_r_inv)
wenzelm@44872
   324
  done
nipkow@31719
   325
nipkow@31719
   326
nipkow@31719
   327
(*
nipkow@31719
   328
  The following translates theorems about groups to the facts about
nipkow@31719
   329
  the units of a ring. (The list should be expanded as more things are
nipkow@31719
   330
  needed.)
nipkow@31719
   331
*)
nipkow@31719
   332
wenzelm@44872
   333
lemma (in ring) finite_ring_finite_units [intro]:
wenzelm@44872
   334
    "finite (carrier R) \<Longrightarrow> finite (Units R)"
wenzelm@44872
   335
  by (rule finite_subset) auto
nipkow@31719
   336
nipkow@31719
   337
(* this belongs with MiscAlgebra.thy *)
wenzelm@44872
   338
lemma (in monoid) units_of_pow:
nipkow@31719
   339
    "x : Units G \<Longrightarrow> x (^)\<^bsub>units_of G\<^esub> (n::nat) = x (^)\<^bsub>G\<^esub> n"
nipkow@31719
   340
  apply (induct n)
wenzelm@44872
   341
  apply (auto simp add: units_group group.is_monoid
wenzelm@41541
   342
    monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult)
wenzelm@41541
   343
  done
nipkow@31719
   344
nipkow@31719
   345
lemma (in cring) units_power_order_eq_one: "finite (Units R) \<Longrightarrow> a : Units R
nipkow@31719
   346
    \<Longrightarrow> a (^) card(Units R) = \<one>"
nipkow@31719
   347
  apply (subst units_of_carrier [symmetric])
nipkow@31719
   348
  apply (subst units_of_one [symmetric])
nipkow@31719
   349
  apply (subst units_of_pow [symmetric])
nipkow@31719
   350
  apply assumption
nipkow@31719
   351
  apply (rule comm_group.power_order_eq_one)
nipkow@31719
   352
  apply (rule units_comm_group)
nipkow@31719
   353
  apply (unfold units_of_def, auto)
wenzelm@41541
   354
  done
nipkow@31719
   355
nipkow@31719
   356
end