src/HOL/Tools/Sledgehammer/clausifier.ML
author blanchet
Mon Jul 26 20:07:31 2010 +0200 (2010-07-26)
changeset 38001 a9b47b85ca24
parent 38000 c0b9efa8bfca
child 38005 b6555e9c5de4
permissions -rw-r--r--
reintroduced more preprocessing steps to Sledgehammer, adapted to the new FOF setting
blanchet@37574
     1
(*  Title:      HOL/Tools/Sledgehammer/clausifier.ML
wenzelm@33311
     2
    Author:     Jia Meng, Cambridge University Computer Laboratory
blanchet@36393
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@15347
     4
wenzelm@20461
     5
Transformation of axiom rules (elim/intro/etc) into CNF forms.
paulson@15347
     6
*)
paulson@15347
     7
blanchet@37574
     8
signature CLAUSIFIER =
wenzelm@21505
     9
sig
blanchet@38001
    10
  val introduce_combinators_in_cterm : cterm -> thm
blanchet@37628
    11
  val cnf_axiom: theory -> bool -> thm -> thm list
blanchet@37620
    12
  val cnf_rules_pairs :
blanchet@37628
    13
    theory -> bool -> (string * thm) list -> ((string * int) * thm) list
blanchet@36398
    14
  val neg_clausify: thm -> thm list
wenzelm@21505
    15
end;
mengj@19196
    16
blanchet@37574
    17
structure Clausifier : CLAUSIFIER =
paulson@15997
    18
struct
paulson@15347
    19
paulson@15997
    20
(**** Transformation of Elimination Rules into First-Order Formulas****)
paulson@15347
    21
wenzelm@29064
    22
val cfalse = cterm_of @{theory HOL} HOLogic.false_const;
wenzelm@29064
    23
val ctp_false = cterm_of @{theory HOL} (HOLogic.mk_Trueprop HOLogic.false_const);
wenzelm@20461
    24
blanchet@38001
    25
(* Converts an elim-rule into an equivalent theorem that does not have the
blanchet@38001
    26
   predicate variable. Leaves other theorems unchanged. We simply instantiate
blanchet@38001
    27
   the conclusion variable to False. (Cf. "transform_elim_term" in
blanchet@38001
    28
   "ATP_Systems".) *)
blanchet@38001
    29
fun transform_elim_theorem th =
paulson@21430
    30
  case concl_of th of    (*conclusion variable*)
blanchet@35963
    31
       @{const Trueprop} $ (v as Var (_, @{typ bool})) =>
wenzelm@29064
    32
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, cfalse)]) th
blanchet@35963
    33
    | v as Var(_, @{typ prop}) =>
wenzelm@29064
    34
           Thm.instantiate ([], [(cterm_of @{theory HOL} v, ctp_false)]) th
blanchet@38001
    35
    | _ => th
paulson@15997
    36
paulson@24742
    37
(*To enforce single-threading*)
paulson@24742
    38
exception Clausify_failure of theory;
wenzelm@20461
    39
wenzelm@28544
    40
paulson@16009
    41
(**** SKOLEMIZATION BY INFERENCE (lcp) ****)
paulson@16009
    42
blanchet@37410
    43
fun mk_skolem_id t =
blanchet@37436
    44
  let val T = fastype_of t in
blanchet@37496
    45
    Const (@{const_name skolem_id}, T --> T) $ t
blanchet@37436
    46
  end
blanchet@37410
    47
blanchet@37617
    48
fun beta_eta_under_lambdas (Abs (s, T, t')) =
blanchet@37617
    49
    Abs (s, T, beta_eta_under_lambdas t')
blanchet@37617
    50
  | beta_eta_under_lambdas t = Envir.beta_eta_contract t
blanchet@37512
    51
paulson@18141
    52
(*Traverse a theorem, accumulating Skolem function definitions.*)
blanchet@37617
    53
fun assume_skolem_funs th =
blanchet@37399
    54
  let
blanchet@37617
    55
    fun dec_sko (Const (@{const_name Ex}, _) $ (body as Abs (s', T, p))) rhss =
blanchet@37399
    56
        (*Existential: declare a Skolem function, then insert into body and continue*)
blanchet@37399
    57
        let
blanchet@37617
    58
          val args = OldTerm.term_frees body
blanchet@37399
    59
          val Ts = map type_of args
blanchet@37399
    60
          val cT = Ts ---> T (* FIXME: use "skolem_type_and_args" *)
blanchet@37500
    61
          (* Forms a lambda-abstraction over the formal parameters *)
blanchet@37500
    62
          val rhs =
blanchet@37500
    63
            list_abs_free (map dest_Free args,
blanchet@37617
    64
                           HOLogic.choice_const T $ beta_eta_under_lambdas body)
blanchet@37518
    65
            |> mk_skolem_id
blanchet@37518
    66
          val comb = list_comb (rhs, args)
blanchet@37617
    67
        in dec_sko (subst_bound (comb, p)) (rhs :: rhss) end
blanchet@37617
    68
      | dec_sko (Const (@{const_name All},_) $ Abs (a, T, p)) rhss =
blanchet@37399
    69
        (*Universal quant: insert a free variable into body and continue*)
blanchet@37399
    70
        let val fname = Name.variant (OldTerm.add_term_names (p,[])) a
blanchet@37617
    71
        in dec_sko (subst_bound (Free(fname,T), p)) rhss end
blanchet@37617
    72
      | dec_sko (@{const "op &"} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    73
      | dec_sko (@{const "op |"} $ p $ q) rhss = rhss |> dec_sko p |> dec_sko q
blanchet@37617
    74
      | dec_sko (@{const Trueprop} $ p) rhss = dec_sko p rhss
blanchet@37617
    75
      | dec_sko _ rhss = rhss
paulson@20419
    76
  in  dec_sko (prop_of th) []  end;
paulson@20419
    77
paulson@20419
    78
paulson@24827
    79
(**** REPLACING ABSTRACTIONS BY COMBINATORS ****)
paulson@20419
    80
paulson@20419
    81
(*Returns the vars of a theorem*)
paulson@20419
    82
fun vars_of_thm th =
wenzelm@22691
    83
  map (Thm.cterm_of (theory_of_thm th) o Var) (Thm.fold_terms Term.add_vars th []);
paulson@20419
    84
blanchet@37540
    85
val fun_cong_all = @{thm expand_fun_eq [THEN iffD1]}
paulson@20419
    86
blanchet@38000
    87
(* ### FIXME: removes only one lambda? *)
blanchet@38001
    88
(* Removes the lambdas from an equation of the form "t = (%x. u)".
blanchet@38001
    89
   (Cf. "extensionalize_term" in "ATP_Systems".) *)
blanchet@38000
    90
fun extensionalize_theorem th =
blanchet@37540
    91
  case prop_of th of
blanchet@37540
    92
    _ $ (Const (@{const_name "op ="}, Type (_, [Type (@{type_name fun}, _), _]))
blanchet@38000
    93
         $ _ $ Abs (s, _, _)) => extensionalize_theorem (th RS fun_cong_all)
blanchet@37540
    94
  | _ => th
paulson@20419
    95
blanchet@37416
    96
fun is_quasi_lambda_free (Const (@{const_name skolem_id}, _) $ _) = true
blanchet@37416
    97
  | is_quasi_lambda_free (t1 $ t2) =
blanchet@37416
    98
    is_quasi_lambda_free t1 andalso is_quasi_lambda_free t2
blanchet@37416
    99
  | is_quasi_lambda_free (Abs _) = false
blanchet@37416
   100
  | is_quasi_lambda_free _ = true
wenzelm@20461
   101
wenzelm@32010
   102
val [f_B,g_B] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_B}));
wenzelm@32010
   103
val [g_C,f_C] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_C}));
wenzelm@32010
   104
val [f_S,g_S] = map (cterm_of @{theory}) (OldTerm.term_vars (prop_of @{thm abs_S}));
paulson@20863
   105
paulson@24827
   106
(*FIXME: requires more use of cterm constructors*)
paulson@24827
   107
fun abstract ct =
wenzelm@28544
   108
  let
wenzelm@28544
   109
      val thy = theory_of_cterm ct
paulson@25256
   110
      val Abs(x,_,body) = term_of ct
blanchet@35963
   111
      val Type(@{type_name fun}, [xT,bodyT]) = typ_of (ctyp_of_term ct)
paulson@24827
   112
      val cxT = ctyp_of thy xT and cbodyT = ctyp_of thy bodyT
wenzelm@27184
   113
      fun makeK() = instantiate' [SOME cxT, SOME cbodyT] [SOME (cterm_of thy body)] @{thm abs_K}
paulson@24827
   114
  in
paulson@24827
   115
      case body of
paulson@24827
   116
          Const _ => makeK()
paulson@24827
   117
        | Free _ => makeK()
paulson@24827
   118
        | Var _ => makeK()  (*though Var isn't expected*)
wenzelm@27184
   119
        | Bound 0 => instantiate' [SOME cxT] [] @{thm abs_I} (*identity: I*)
paulson@24827
   120
        | rator$rand =>
wenzelm@27184
   121
            if loose_bvar1 (rator,0) then (*C or S*)
wenzelm@27179
   122
               if loose_bvar1 (rand,0) then (*S*)
wenzelm@27179
   123
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27179
   124
                     val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27184
   125
                     val abs_S' = cterm_instantiate [(f_S,crator),(g_S,crand)] @{thm abs_S}
wenzelm@27184
   126
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_S')
wenzelm@27179
   127
                 in
wenzelm@27179
   128
                   Thm.transitive abs_S' (Conv.binop_conv abstract rhs)
wenzelm@27179
   129
                 end
wenzelm@27179
   130
               else (*C*)
wenzelm@27179
   131
                 let val crator = cterm_of thy (Abs(x,xT,rator))
wenzelm@27184
   132
                     val abs_C' = cterm_instantiate [(f_C,crator),(g_C,cterm_of thy rand)] @{thm abs_C}
wenzelm@27184
   133
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_C')
wenzelm@27179
   134
                 in
wenzelm@27179
   135
                   Thm.transitive abs_C' (Conv.fun_conv (Conv.arg_conv abstract) rhs)
wenzelm@27179
   136
                 end
wenzelm@27184
   137
            else if loose_bvar1 (rand,0) then (*B or eta*)
wenzelm@36945
   138
               if rand = Bound 0 then Thm.eta_conversion ct
wenzelm@27179
   139
               else (*B*)
wenzelm@27179
   140
                 let val crand = cterm_of thy (Abs(x,xT,rand))
wenzelm@27179
   141
                     val crator = cterm_of thy rator
wenzelm@27184
   142
                     val abs_B' = cterm_instantiate [(f_B,crator),(g_B,crand)] @{thm abs_B}
wenzelm@27184
   143
                     val (_,rhs) = Thm.dest_equals (cprop_of abs_B')
blanchet@37349
   144
                 in Thm.transitive abs_B' (Conv.arg_conv abstract rhs) end
wenzelm@27179
   145
            else makeK()
blanchet@37349
   146
        | _ => raise Fail "abstract: Bad term"
paulson@24827
   147
  end;
paulson@20863
   148
blanchet@37349
   149
(* Traverse a theorem, remplacing lambda-abstractions with combinators. *)
blanchet@38001
   150
fun introduce_combinators_in_cterm ct =
blanchet@37416
   151
  if is_quasi_lambda_free (term_of ct) then
blanchet@37349
   152
    Thm.reflexive ct
blanchet@37349
   153
  else case term_of ct of
blanchet@37349
   154
    Abs _ =>
blanchet@37349
   155
    let
blanchet@37349
   156
      val (cv, cta) = Thm.dest_abs NONE ct
blanchet@37349
   157
      val (v, _) = dest_Free (term_of cv)
blanchet@38001
   158
      val u_th = introduce_combinators_in_cterm cta
blanchet@37349
   159
      val cu = Thm.rhs_of u_th
blanchet@37349
   160
      val comb_eq = abstract (Thm.cabs cv cu)
blanchet@37349
   161
    in Thm.transitive (Thm.abstract_rule v cv u_th) comb_eq end
blanchet@37349
   162
  | _ $ _ =>
blanchet@37349
   163
    let val (ct1, ct2) = Thm.dest_comb ct in
blanchet@38001
   164
        Thm.combination (introduce_combinators_in_cterm ct1)
blanchet@38001
   165
                        (introduce_combinators_in_cterm ct2)
blanchet@37349
   166
    end
blanchet@37349
   167
blanchet@38001
   168
fun introduce_combinators_in_theorem th =
blanchet@37416
   169
  if is_quasi_lambda_free (prop_of th) then
blanchet@37349
   170
    th
paulson@24827
   171
  else
blanchet@37349
   172
    let
blanchet@37349
   173
      val th = Drule.eta_contraction_rule th
blanchet@38001
   174
      val eqth = introduce_combinators_in_cterm (cprop_of th)
blanchet@37349
   175
    in Thm.equal_elim eqth th end
blanchet@37349
   176
    handle THM (msg, _, _) =>
blanchet@37349
   177
           (warning ("Error in the combinator translation of " ^
blanchet@37349
   178
                     Display.string_of_thm_without_context th ^
blanchet@37349
   179
                     "\nException message: " ^ msg ^ ".");
blanchet@37349
   180
            (* A type variable of sort "{}" will make abstraction fail. *)
blanchet@37349
   181
            TrueI)
paulson@16009
   182
paulson@16009
   183
(*cterms are used throughout for efficiency*)
wenzelm@29064
   184
val cTrueprop = Thm.cterm_of @{theory HOL} HOLogic.Trueprop;
paulson@16009
   185
paulson@16009
   186
(*Given an abstraction over n variables, replace the bound variables by free
paulson@16009
   187
  ones. Return the body, along with the list of free variables.*)
wenzelm@20461
   188
fun c_variant_abs_multi (ct0, vars) =
paulson@16009
   189
      let val (cv,ct) = Thm.dest_abs NONE ct0
paulson@16009
   190
      in  c_variant_abs_multi (ct, cv::vars)  end
paulson@16009
   191
      handle CTERM _ => (ct0, rev vars);
paulson@16009
   192
blanchet@37617
   193
val skolem_id_def_raw = @{thms skolem_id_def_raw}
blanchet@37617
   194
blanchet@37617
   195
(* Given the definition of a Skolem function, return a theorem to replace
blanchet@37617
   196
   an existential formula by a use of that function.
paulson@18141
   197
   Example: "EX x. x : A & x ~: B ==> sko A B : A & sko A B ~: B"  [.] *)
blanchet@37628
   198
fun skolem_theorem_of_def thy cheat rhs0 =
blanchet@37399
   199
  let
blanchet@37617
   200
    val rhs = rhs0 |> Type.legacy_freeze_thaw |> #1 |> Thm.cterm_of thy
blanchet@37617
   201
    val rhs' = rhs |> Thm.dest_comb |> snd
blanchet@37617
   202
    val (ch, frees) = c_variant_abs_multi (rhs', [])
blanchet@37617
   203
    val (hilbert, cabs) = ch |> Thm.dest_comb |>> term_of
blanchet@37617
   204
    val T =
blanchet@37617
   205
      case hilbert of
blanchet@37617
   206
        Const (@{const_name Eps}, Type (@{type_name fun}, [_, T])) => T
blanchet@37617
   207
      | _ => raise TERM ("skolem_theorem_of_def: expected \"Eps\"", [hilbert])
blanchet@37617
   208
    val cex = Thm.cterm_of thy (HOLogic.exists_const T)
blanchet@37617
   209
    val ex_tm = Thm.capply cTrueprop (Thm.capply cex cabs)
blanchet@37629
   210
    val conc =
blanchet@37617
   211
      Drule.list_comb (rhs, frees)
blanchet@37617
   212
      |> Drule.beta_conv cabs |> Thm.capply cTrueprop
blanchet@37617
   213
    fun tacf [prem] =
blanchet@37629
   214
      if cheat then
blanchet@37629
   215
        Skip_Proof.cheat_tac thy
blanchet@37629
   216
      else
blanchet@37629
   217
        rewrite_goals_tac skolem_id_def_raw
blanchet@37629
   218
        THEN rtac ((prem |> rewrite_rule skolem_id_def_raw)
blanchet@37629
   219
                   RS @{thm someI_ex}) 1
blanchet@37617
   220
  in
blanchet@37629
   221
    Goal.prove_internal [ex_tm] conc tacf
blanchet@37629
   222
    |> forall_intr_list frees
blanchet@37629
   223
    |> Thm.forall_elim_vars 0  (*Introduce Vars, but don't discharge defs.*)
blanchet@37629
   224
    |> Thm.varifyT_global
blanchet@37617
   225
  end
paulson@24742
   226
blanchet@37995
   227
(* Converts an Isabelle theorem (intro, elim or simp format, even higher-order)
blanchet@37995
   228
   into NNF. *)
paulson@24937
   229
fun to_nnf th ctxt0 =
blanchet@38001
   230
  let val th1 = th |> transform_elim_theorem |> zero_var_indexes
wenzelm@32262
   231
      val ((_, [th2]), ctxt) = Variable.import true [th1] ctxt0
blanchet@37540
   232
      val th3 = th2 |> Conv.fconv_rule Object_Logic.atomize
blanchet@38000
   233
                    |> extensionalize_theorem
blanchet@37540
   234
                    |> Meson.make_nnf ctxt
paulson@24937
   235
  in  (th3, ctxt)  end;
paulson@16009
   236
blanchet@37995
   237
(* Skolemize a named theorem, with Skolem functions as additional premises. *)
blanchet@37628
   238
fun skolemize_theorem thy cheat th =
blanchet@37626
   239
  let
blanchet@37626
   240
    val ctxt0 = Variable.global_thm_context th
blanchet@37626
   241
    val (nnfth, ctxt) = to_nnf th ctxt0
blanchet@37628
   242
    val sko_ths = map (skolem_theorem_of_def thy cheat)
blanchet@37628
   243
                      (assume_skolem_funs nnfth)
blanchet@37626
   244
    val (cnfs, ctxt) = Meson.make_cnf sko_ths nnfth ctxt
blanchet@37626
   245
  in
blanchet@38001
   246
    cnfs |> map introduce_combinators_in_theorem
blanchet@37626
   247
         |> Variable.export ctxt ctxt0
blanchet@37626
   248
         |> Meson.finish_cnf
blanchet@37626
   249
         |> map Thm.close_derivation
blanchet@37626
   250
  end
blanchet@37626
   251
  handle THM _ => []
wenzelm@27184
   252
blanchet@36228
   253
(* Convert Isabelle theorems into axiom clauses. *)
blanchet@37618
   254
(* FIXME: is transfer necessary? *)
blanchet@37628
   255
fun cnf_axiom thy cheat = skolemize_theorem thy cheat o Thm.transfer thy
paulson@15347
   256
paulson@18141
   257
paulson@22471
   258
(**** Translate a set of theorems into CNF ****)
paulson@15347
   259
paulson@21290
   260
(*The combination of rev and tail recursion preserves the original order*)
blanchet@37995
   261
(* ### FIXME: kill "cheat" *)
blanchet@37628
   262
fun cnf_rules_pairs thy cheat =
blanchet@37416
   263
  let
blanchet@37500
   264
    fun do_one _ [] = []
blanchet@37500
   265
      | do_one ((name, k), th) (cls :: clss) =
blanchet@37620
   266
        ((name, k), cls) :: do_one ((name, k + 1), th) clss
blanchet@37500
   267
    fun do_all pairs [] = pairs
blanchet@37500
   268
      | do_all pairs ((name, th) :: ths) =
blanchet@37416
   269
        let
blanchet@37628
   270
          val new_pairs = do_one ((name, 0), th) (cnf_axiom thy cheat th)
blanchet@37570
   271
                          handle THM _ => []
blanchet@37500
   272
        in do_all (new_pairs @ pairs) ths end
blanchet@37500
   273
  in do_all [] o rev end
mengj@19353
   274
mengj@19196
   275
paulson@21999
   276
(*** Converting a subgoal into negated conjecture clauses. ***)
paulson@21999
   277
wenzelm@32262
   278
fun neg_skolemize_tac ctxt =
blanchet@37332
   279
  EVERY' [rtac ccontr, Object_Logic.atomize_prems_tac, Meson.skolemize_tac ctxt]
blanchet@36398
   280
blanchet@35869
   281
val neg_clausify =
blanchet@37349
   282
  single
blanchet@37349
   283
  #> Meson.make_clauses_unsorted
blanchet@38001
   284
  #> map introduce_combinators_in_theorem
blanchet@37349
   285
  #> Meson.finish_cnf
paulson@21999
   286
wenzelm@20461
   287
end;